

STYUDY MATRIAL

OF

OPERATING SYSTEM

Prepared by
Smt.Pranati Pattnaik
Sr.Lecturer in CA
Govt.Polytechnic , Bhubaneswar

Theory 1- OPERATING SYSTEM

4th Semester IT

Unit -1 Introduction

An operating system (OS) is system software that manages computer

hardware, software resources, and provides common services for computer programs.

An Operating System (OS) is an interface between computer user and

computer hardware. An operating system is software which performs all the basic

tasks like file management, memory management, process management, handling

input and output, and controlling peripheral devices such as disk drives and printers.

An operating system performs two basically unrelated functions

1. The operating system as a Resource manager.

A user process accesses several hardware and software resources during its

execution. Resource management performs the following:

(a) Time management. (CPU, DISK Scheduling)

(b) Space management. (Primary and Secondary memory)

(c) Process Synchronization and Deadlock handling.

(d) Accounting and Status Information.

2. The operating system as a Virtual machine or extended machine

The operating system hides the truth and low level details about hardware from

the programmer and provides users with a much friendlier interface to the machine. The

function of operating system is to present user with equivalent of an extended machine

or virtual machine that is easier to program than the underlying hardware.

The user of the virtual machine have the illusion that each one of them is the sole

user of the machine, even though the machine may be operating in a multiuser

environment. It performs the following tasks

(a) Procession creation and management, File manipulation, Interrupt handling,

I/O Operation

(b) Error detection and handling

(c) Protection and security

We can say that operating system is a Resource Manager as well as a Virtual

Machine Manager.

A process is defined as an entity which represents the basic unit of work to be
implemented in the system.

Unit-2 Process Scheduling

2.1 Process Concepts

A process is basically a program in execution. The execution of a process must
progress in a sequential fashion.

To put it in simple terms, we write our computer programs in a text file and when we
execute this program, it becomes a process which performs all the tasks mentioned
in the program.

When a program is loaded into the memory and it becomes a process.

Process Life Cycle

When a process executes, it passes through different states. These stages may differ
in different operating systems, and the names of these states are also not
standardized.

Process life cycle in OS is one of the five states in which a process can be starting from

the time it has been submitted for execution, till the time when it has been executed by the
system.

A process can be in any of the following states

In general, a process can have one of the following five states at a time.

1. Start: This is the initial state when a process is first started/created

2. Ready: The process is waiting to be assigned to a processor. Ready processes
are waiting to have the processor allocated to them by the operating system so that
they can run. Process may come into this state after Start state or while running it by
but interrupted by the scheduler to assign CPU to some other process.

3. Running: Once the process has been assigned to a processor by the OS
scheduler, the process state is set to running and the processor executes its
instructions.

4. Waiting: Process moves into the waiting state if it needs to wait for a resource,
such as waiting for user input, or waiting for a file to become available.

5. Terminated or Exit: Once the process finishes its execution, or it is terminated by
the operating system, it is moved to the terminated state where it waits to be removed
from main memory.

• First, the process is "created" by being loaded from a secondary storage device into main

memory. After that the process scheduler assigns it the "waiting" state.

• While the process is "waiting", it waits for the scheduler to do a so-called context switch. The
context switch loads the process into the processor and changes the state to "running" while
the previously "running" process is stored in a "waiting" state.

• If a process in the "running" state needs to wait for a resource (wait for user input or file to
open, for example), it is assigned the "blocked" state. The process state is changed back to
"waiting" when the process no longer needs to wait (in a blocked state).

• Once the process finishes execution, or is terminated by the operating system, it is no longer
needed. The process is removed instantly or is moved to the "terminated" state. When
removed, it just waits to be removed from main memory.

Process Control

Process control is the ability to monitor and adjust a process to give a desired output. It is

used in industry to maintain quality and improve performance.

Process Control Block is a data structure that contains information of the process related

to it. The process control block is also known as a task control block, entry of the process

table, etc. Another responsibility of an operating system is to collect all information that it needs

about a particular process into a data structure called Process Control Block.

Structure of the Process Control Block

https://en.wikipedia.org/wiki/Auxiliary_memory
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Context_switch

The process control stores many data items that are needed for efficient process
management. When a process is created, the operating system creates a
corresponding PCB and when it is terminated, its PCB is released to the pool of free
memory locations from which new PCB are drawn.

diagram −

The following are the data items −

1. Process State

This specifies the process state i.e. new, ready, running, waiting or terminated.

2. Process Number or ID

It is an unique process number or process identifier that identifies each process. This
shows the number of the particular process.

3. Program Counter

This contains the address of the next instruction that needs to be executed in the
process.

4. Registers

This specifies the registers that are used by the process. They may include
accumulators, index registers, stack pointers, general purpose registers etc.
Whenever a processor switches over from one process to another process,
information about the current status of the old process is saved in the register along
with the program counter so that the process be allowed to continue correctly
afterwards.

This specifies the registers that are used by the process. They may include
accumulators, index registers, stack pointers, general purpose registers etc.

5. List of Open Files

These are the different files that are associated with the process

6. CPU Scheduling Information

The process priority, pointers to scheduling queues etc. is the CPU scheduling
information that is contained in the PCB. This may also include any other scheduling
parameters.

7. Memory Management Information

The memory management information includes the page tables or the segment tables
depending on the memory system used. It also contains the value of the base
registers, limit registers etc.

8. I/O Status Information

This information includes the list of I/O devices used by the process, the list of files
etc.

9. Accounting information

The time limits, account numbers, amount of CPU used, process numbers etc. are all
a part of the PCB accounting information.

Location of the Process Control Block

The process control block is kept in a memory area that is protected from the
normal user access. This is done because it contains important process information.
Some of the operating systems place the PCB at the beginning of the kernel stack for
the process as it is a safe location.

Interacting processes

Process Interaction is a model of managing parallel or
concurrent processes by defining how data between these processes is exchanged
and how the processes are synchronized with each other. ... Such a framework
should provide the ability to use data about interacting processes for performing
necessary operations and tasks.

Inter process communication

Inter process communication is the mechanism provided by the operating system that
allows processes to communicate with each other. This communication could involve
a process letting another process know that some event has occurred or the
transferring of data from one process to another.

A diagram that illustrates inter process communication is as follows −

Inter-process communication or inter process communication (IPC) refers

specifically to the mechanisms an operating system provides to allow the processes to

manage shared data. The Processes may be running on single or multiple

computers connected by a network.

Typically, applications can use IPC, categorized as clients and servers, where

the client requests data and the server responds to client requests. Many applications

are both clients and servers, as commonly seen in distributed computing.

Inter process communication (IPC) is used for exchanging data between

multiple threads in one or more processes or programs. ... Since every single user

request may result in multiple processes running in the operating system,

the process may require to communicate with each other.

IPC is a facility provided by an OS using which cooperating processes can

communicate with each other. IPC is based on the use of share variables i.e the

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Distributed_computing

variables that can be referenced by more than one process or message passing.

Synchronization is often necessary when processes communicate. Processes are

executed with high speed. But for communication one process must perform some

action such as setting the value of a variable or sending some message that the other

detects.

Concurrent process is the appearance of simultaneous execution of multiple

processes. It includes

• Communication among process

• Sharing and competing among resources

• Synchronization of activities

• Allocation of process time

• Allocation of memory

It is a set of programming interface which allow a programmer to coordinate activities

among various program processes which can run concurrently in an operating system.

This allows a specific program to handle many user requests at the same time.

Processes in the system are of two types:

• Independent Processes
• Cooperating Processes

1. Independent processes are those processes which neither affect nor get affected
by other processes running in the system. In other words, Any process that does not
share data with other processes is an independent process.
2. Cooperating processes are those if they can affect or get affected by the other
processes running in the system. In other words, a process that shares data with other
processes is a cooperating process.

Inter-process communication is useful for creating cooperating processes. The
cooperating processes are important because they provide:

1. Information sharing among processes: Since several users may be

interested in the same piece of information. We must provide environment to
allow concurrent access to such information.

2. Increase in computational speed: To run the task faster, we must break into
subtasks, each of which can be executing in parallel order. Speedup can be
achieved only if the computer has multiple processing elements.

3. It provides modularity: We may want to construct the system in a modular

fashion, dividing the system functions into separate processes or threads.

4. It provides convenience in accessing data: Even an individual user can work
on many tasks at the same time. For example a user can be editing, printing
and compiling in parallel.

There are two fundamental models of inter process communication

(A) Shared memory

(B) Message passing

(A). Shared memory is the memory that can be simultaneously accessed by multiple

processes. This is done so that the processes can communicate with each other. Windows

operating systems use shared memory.

Advantages of Shared Memory
1. Fastest bidirectional communication method
2. Can be used with any number of processes.
3. It saves resources.

Disadvantages of Shared Memory
1. Data inconsistency occurs like the Lost update. It needs a concurrency control mechanism
2. Lack of data protection

(B). Message passing

It is the second method for inter process communication. It provides two operations
for processes to communicate.

1. Send (message)
2. Receive (message)

Message passing is slower as compared to shared memory method. This is because
it makes use of system calls to provide communication between processes.

Multiple processes can read and write data to the message queue without being connected

to each other. Messages are stored in the queue until their recipient retrieves them. Message

queues are quite useful for inter process communication and are used by most operating

systems.

Section 2.3 Process Scheduling

The process scheduling is the activity of the process manager that handles the removal of

the running process from the CPU and the selection of another process on the basis of a

particular strategy.

Process Scheduling is an OS task that schedules processes of different states like

ready, waiting, and running.

Process scheduling allows OS to allocate a time interval of CPU execution for each

process. Another important reason for using a process scheduling system is that it

keeps the CPU busy all the time. This allows you to get the minimum response

time for programs.

Process Scheduling Queues

Process Scheduling Queues help you to maintain a distinct queue for each and

every process states and PCBs. All the process of the same execution state are

placed in the same queue. Therefore, whenever the state of a process is modified,

its PCB needs to be unlinked from its existing queue, which moves back to the new

state queue.

Three types of operating system queues are:

1. Job queue – It helps you to store all the processes in the system.

2. Ready queue – This type of queue helps you to set every process residing in

the main memory, which is ready and waiting to execute.

3. Device queues – It is a process that is blocked because of the absence of an

I/O device.

In the above-given Diagram,

• Rectangle represents a queue.

• Circle denotes the resource.

• Arrow indicates the flow of the process.

1. Every new process first put in the Ready queue. It waits in the ready queue

until it is finally processed for execution. Here, the new process is put in the

ready queue and wait until it is selected for execution or it is dispatched.

2. One of the processes is allocated the CPU and it is executing.

3. The process should issue an I/O request

4. Then, it should be placed in the I/O queue.

5. The process should create a new subprocess.

6. The process should be waiting for its termination.

7. It should remove forcefully from the CPU, as a result interrupt. Once

interrupt is completed, it should be sent back to ready queue.

Context Switch

In computing, a context switch is the process of storing the state of a process
or thread, so that it can be restored and resume execution at a later point. This allows
multiple processes to share a single central processing unit (CPU) and is an essential
feature of a multitasking operating system.

Context Switching involves storing the context or state of a process so that it
can be reloaded when required and execution can be resumed from the same point

https://www.guru99.com/images/1/122319_0900_ProcessSche1.png

as earlier. This is a feature of a multitasking operating system and allows a single CPU
to be shared by multiple processes.

Example:

Process 1 is switched out and Process 2 is switched in because of an interrupt or a

system call. Context switching involves saving the state of Process 1 into PCB1 and loading
the state of process 2 from PCB2. After some time again a context switch occurs, and Process
2 is switched out and Process 1 is switched in again. This involves saving the state of Process
2 into PCB2 and loading the state of process 1 from PCB1

Schedulers

A scheduler is a type of system software that allows you to handle process

scheduling. The scheduler is an operating system module that selects the next jobs to be

admitted into the system and the next process to run.

Type of Process Schedulers

A scheduler is a type of system software that allows you to handle process

scheduling.

There are mainly three types of Process Schedulers:

1. Long Term

2. Short Term

3. Medium Term

Long Term Scheduler

Long term scheduler is also known as a job scheduler. This scheduler regulates the

program and select process from the queue and loads them into memory for

execution. It also regulates the degree of multi-programing.

However, the main goal of this type of scheduler is to offer a balanced mix of jobs,

like Processor, I/O jobs., that allows managing multiprogramming.

Medium Term Scheduler

Medium-term scheduling is an important part of swapping. It enables you to

handle the swapped out-processes. In this scheduler, a running process can become

suspended, which makes an I/O request.

A running process can become suspended if it makes an I/O request. A suspended

processes can't make any progress towards completion. In order to

remove the process from memory and make space for other processes, the

suspended process should be moved to secondary storage.

Short Term Scheduler

Short term scheduling is also known as CPU scheduler. The main goal of this

scheduler is to boost the system performance according to set criteria. This helps

you to select from a group of processes that are ready to execute and allocates CPU

to one of them. The dispatcher gives control of the CPU to the process selected by

the short-term scheduler.

Section 2.3 Job Scheduling

Job scheduling is the process of allocating system resources to many
different tasks by an operating system (OS). The system handles
prioritized job queues that are awaiting CPU time and it should determine which job to
be taken from which queue and the amount of time to be allocated for the job. This
type of scheduling makes sure that all jobs are carried out fairly and on time. Most
OSs like Unix, Windows, etc., include standard job-scheduling abilities.

Scheduling Criteria

A scheduler algorithm is evaluated against some widely accepted performance criteria

as follows:

(a). CPU utilization : It is defined as the average fraction of time during which CPU is

busy, executing either user programs or system modules.

(b). Throughput: It is defined as the average amount of work completed per unit time.

(c). Turn Around Time (TAT) : It is defined as the total time elapsed from the time

the job is submitted to the time the job is completed.

TAT = (Process finish time – Process arrival time)

(d). Waiting Time (WT): It is defined as the total time spent by the job while waiting in

suspended state or ready state in a multiprogramming environment.

WT = (Turn around time – Processing time)

e). Response time(RT): It is an amount to time in which the request was

submitted until the first response is produced.

Types of CPU scheduling Algorithm

There are mainly six types of process scheduling algorithms

1. First Come First Serve (FCFS)

2. Shortest-Job-First (SJF) Scheduling

3. Shortest Remaining Time

4. Priority Scheduling

5. Round Robin Scheduling

6. Multilevel Queue Scheduling

.

First Come First Serve

First Come First Serve is the full form of FCFS. It is the easiest and most simple CPU
scheduling algorithm. In this type of algorithm, the process which requests the CPU
gets the CPU allocation first. This scheduling method can be managed with a FIFO
queue.

As the process enters the ready queue, its PCB (Process Control Block) is linked with
the tail of the queue. So, when CPU becomes free, it should be assigned to the
process at the beginning of the queue.I

Characteristics of FCFS method:

• It offers non-preemptive scheduling algorithm.
• Jobs are always executed on a first-come, first-serve basis

• It is easy to implement and use.
• However, this method is poor in performance, and the general wait

time is quite high.

Shortest Remaining Time

The full form of SRT is Shortest remaining time. It is also known as SJF preemptive
scheduling. In this method, the process will be allocated to the task, which is closest
to its completion. This method prevents a newer ready state process from holding the
completion of an older process.

Characteristics of SRT scheduling method:

• This method is mostly applied in batch environments where short jobs are
required to be given preference.

• This is not an ideal method to implement it in a shared system where the
required CPU time is unknown.

• Associate with each process as the length of its next CPU burst. So that
operating system uses these lengths, which helps to schedule the process with
the shortest possible time.

Priority Based Scheduling

Priority scheduling is a method of scheduling processes based on priority. In this

method, the scheduler selects the tasks to work as per the priority.

Priority scheduling also helps OS to involve priority assignments. The processes with
higher priority should be carried out first, whereas jobs with equal priorities are carried
out on a round-robin or FCFS basis. Priority can be decided based on memory
requirements, time requirements, etc.

Round-Robin Scheduling

Round robin is the oldest, simplest scheduling algorithm. The name of this algorithm
comes from the round-robin principle, where each person gets an equal share of
something in turn. It is mostly used for scheduling algorithms in multitasking. This
algorithm method helps for starvation free execution of processes.

Characteristics of Round-Robin Scheduling

• Round robin is a hybrid model which is clock-driven

• Time slice should be minimum, which is assigned for a specific task to be
processed. However, it may vary for different processes.

• It is a real time system which responds to the event within a specific time limit.

Shortest Job First

SJF is a full form of (Shortest job first) is a scheduling algorithm in which the process
with the shortest execution time should be selected for execution next. This scheduling
method can be preemptive or non-preemptive. It significantly reduces the average
waiting time for other processes awaiting execution.

Characteristics of SJF Scheduling

• It is associated with each job as a unit of time to complete.
• In this method, when the CPU is available, the next process or job with the

shortest completion time will be executed first.
• It is Implemented with non-preemptive policy.
• This algorithm method is useful for batch-type processing, where waiting for

jobs to complete is not critical.

Write Read

Process A Process B Data

• It improves job output by offering shorter jobs, which should be executed first,
which mostly have a shorter turnaround time.

Multiple-Level Queues Scheduling

This algorithm separates the ready queue into various separate queues. In this
method, processes are assigned to a queue based on a specific property of the
process, like the process priority, size of the memory, etc. However, this is not an
independent scheduling OS algorithm as it needs to use other types of algorithms in
order to schedule the jobs.

Characteristic of Multiple-Level Queues Scheduling:

• Multiple queues should be maintained for processes with some characteristics.
• Every queue may have its separate scheduling algorithms.

• Priorities are given for each queue.

Section 2.4 Process Synchronization

It is the task phenomenon of coordinating the execution of processes in such

a way that no two processes can have access to the same shared data and

resources.

• It is a procedure that is involved in order to preserve the appropriate order of

execution of cooperative processes.

• In order to synchronize the processes, there are various synchronization
mechanisms.

• Process Synchronization is mainly needed in a multi-process system when
multiple processes are running together, and more than one processes try to
gain access to the same shared resource or any data at the same time.

Example: Process A changing the data in a memory location while another process

B is trying to read the data from the same memory location. There is a high

probability that data read by the second process will be erroneous.

Memory

Race Condition

At the time when more than one process is either executing the same code or

accessing the same memory or any shared variable; In that condition, there is a

possibility that the output or the value of the shared variable is wrong so for that

purpose all the processes are doing the race to say that my output is correct. This

condition is commonly known as a race condition.

As several processes access and process the manipulations on the same data

in a concurrent manner and due to which the outcome depends on the particular order

in which the access of data takes place.

Mainly this condition is a situation that may occur inside the critical section.

Race condition in the critical section happens when the result of multiple thread

execution differs according to the order in which the threads execute. But this condition

is critical sections can be avoided if the critical section is treated as an atomic

instruction. Proper thread synchronization using locks or atomic variables can also

prevent race conditions.

Critical section

A section of code or a set of operations, in which process may be changing

shared variables, updating a common file or a table etc. is known as the critical section

of that process. A Critical Section is a code segment that accesses shared variables

and has to be executed as an atomic action. It means that in a group of cooperating

processes, at a given point of time, only one process must be executing its critical

section. If any other process also wants to execute its critical section, it must wait until

the first one finishes. The entry to the critical section is mainly handled by wait() function

while the exit from the critical section is controlled by the signal() function.

.

Entry Section

In this section mainly the process requests for its entry in the critical section.

Exit Section

This section is followed by the critical section.

The solution to the Critical Section Problem

A solution to the critical section problem must satisfy the following

four conditions:

1. Mutual Exclusion

Out of a group of cooperating processes, only one process can be in its critical section
at a given point of time. No two contending processes should be simultaneously
executing inside their CS.

2. Progress

If no process is in its critical section, and if one or more threads want to execute their
critical section then any one of these threads must be allowed to get into its critical
section.

3. Bounded Waiting

No process should have to wait forever to enter its CS. After a process makes a
request for getting into its critical section, there is a limit for how many other processes

can get into their critical section, before this process's request is granted. So after the
limit is reached, the system must grant the process permission to get into its critical
section.

4. No assumption

No assumption should be made about relative speeds and priorities of contenting

processes.

Semaphores

Semaphore is simply a variable that is non-negative and shared between threads. It

is another algorithm or solution to the critical section problem. It is a signaling

mechanism and a thread that is waiting on a semaphore, which can be signaled by

another thread.

A Semaphore uses two atomic operations, 1)wait(), and 2) signal ()for the process

synchronization.

A Semaphore is an integer variable, which can be accessed only through two
operations wait() and signal().

Example

There are two types of semaphores:

1. Binary Semaphores or Mutex lock

2. Counting Semaphores

• Binary Semaphores: They can only be either 0 or 1. They are also known as

mutex locks, as the locks can provide mutual exclusion. All the processes can

share the same mutex semaphore that is initialized to 1. Then, a process has

to wait until the lock becomes 0. Then, the process can make the mutex

semaphore 1 and start its critical section. When it completes its critical section,

it can reset the value of mutex semaphore to 0 and some other process can

enter its critical section.

WAIT (S):

{while (S <= 0);

//no-op

S = S - 1;

}

The definition of signal () as follows: SIGNAL (

S):

S = S + 1;

• Counting Semaphores: They can have any value and are not restricted over

a certain domain. They can be used to control access to a resource that has

a limitation on the number of simultaneous accesses. The semaphore can be

initialized to the number of instances of the resource. Whenever a process

wants to use that resource, it checks if the number of remaining instances is

more than zero, i.e., the process has an instance available. Then, the process

can enter its critical section thereby decreasing the value of the counting

semaphore by 1. After the process is over with the use of the instance of the

resource, it can leave the critical section thereby adding 1 to the number of

available instances of the resource.

We can use binary semaphores to deal with the critical section problem for

multiple processes. The n processes share a semaphore, mutex, initialized

to 1. Each process Pi is organised as follows

Do {

Wait (mutex);

// critical section

Signal (mutex);

// remainder section

} While (TRUE);

Section 2.5 Principle of Concurrency
Concurrency is the execution of the multiple instruction sequences at the

same time. It happens in the operating system when there are several process threads

running in parallel. The running process threads always communicate with each other

through shared memory or message passing.

Both interleaved and overlapped processes can be viewed as examples of
concurrent processes, they both present the same problems.
The relative speed of execution cannot be predicted. It depends on the
following:

• The activities of other processes
• The way operating system handles interrupts
• The scheduling policies of the operating system

Problems in Concurrency:
• Sharing global resources –

Sharing of global resources safely is difficult. If two processes both
make use of a global variable and both perform read and write on
that variable, then the order in which various read and write are
executed is critical.

• Optimal allocation of resources –
It is difficult for the operating system to manage the allocation of
resources optimally.

• Locating programming errors –
It is very difficult to locate a programming error because reports are
usually not reproducible.

• Locking the channel –
It may be inefficient for the operating system to simply lock the
channel and prevents its use by other processes.

Advantages of Concurrency:
• Running of multiple applications –

It enable to run multiple applications at the same time.
• Better resource utilization –

It enables that the resources that are unused by one application can
be used for other applications.

• Better average response time –
Without concurrency, each application has to be run to completion
before the next one can be run.

• Better performance –
It enables the better performance by the operating system. When one
application uses only the processor and another application uses
only the disk drive then the time to run both applications concurrently
to completion will be shorter than the time to run each application
consecutively.

Drawbacks of Concurrency :
• It is required to protect multiple applications from one another.
• It is required to coordinate multiple applications through additional

mechanisms.
• Additional performance overheads and complexities in operating

systems are required for switching among applications.
• Sometimes running too many applications concurrently leads to

severely degraded performance.

3.0 MEMORY MANAGEMENT

INTRODUCTION

Memory Management is the process of controlling and coordinating computer

memory, assigning portions known as blocks to various running programs to optimize

the overall performance of the system. It is the most important function of an operating

system that manages primary memory.

Memory management is the functionality of an operating system which

handles or manages primary memory and moves processes back and forth between

main memory and disk during execution.

Memory management keeps track of each and every memory location,

regardless of either it is allocated to some process or it is free. It checks how much

memory is to be allocated to processes. It decides which process will get memory at

what time. It tracks whenever some memory gets freed or unallocated and

correspondingly it updates the status.

To summarize the functions of memory management as follows:

• It allows you to check how much memory needs to be allocated to

processes that decide which processor should get memory at what time.

• Tracks whenever inventory gets freed or unallocated. According to it will

update the status.
• It allocates the space to application routines.

• It also makes sure that these applications do not interfere with each

other.

• Helps protect different processes from each other

• It places the programs in memory so that memory is utilized to its full

extent.

Logical and Physical Address

The physical address refers to a location in the memory. It allows access to data in

the main memory. A physical address is not directly accessible to the user program

hence, a logical address needs to be mapped to it to make the address accessible.

This mapping is done by the MMU. Memory Management Unit (MMU) is a hardware

component responsible for translating a logical address to a physical address.

Physical Address identifies a physical location of required data in a memory.

The user never directly deals with the physical address but can access by its

corresponding logical address. The user program generates the logical address and

thinks that the program is running in this logical address but the program needs

physical memory for its execution, therefore, the logical address must be mapped

to the physical address by MMU (Memory Management Unit) before they are

used. The term Physical Address Space is used for all physical addresses

corresponding to the logical addresses in a Logical address space.

A logical address or virtual address is an address that is generated by the

CPU during program execution. A logical address doesn't exist physically. The

logical address is used as a reference to access the physical address. A logical

address usually ranges from zero to maximum (max). The user program that

generates the logical address assumes that the process runs on locations between

0 to the max. The term Logical Address Space is used for the set of all logical

addresses generated by a program’s perspective. This logical address(generated

by CPU) combines with the base address generated by the MMU to form

the physical address.

The diagram below explains how the mapping between logical and physical

addresses is done.

(Fig Logical vs physical address space)

1. The CPU generates the logical address (here, 346).

2. The MMU will generate the base address (here, 14000) which is stored in the
Relocation Register.

3. The value of Relocation Register (here, 14000) is added to the logical address

to get the physical address. i.e. 14000+346= 14346(Physical Address).

Differences Between Logical and Physical Address in Operating System
1. The basic difference between Logical and physical address is that Logical

address is generated by CPU in perspective of a program whereas the

physical address is a location that exists in the memory unit.

2. Logical Address Space is the set of all logical addresses generated by

CPU for a program whereas the set of all physical address mapped to

corresponding logical addresses is called Physical Address Space.

Memory Allocation

3. The logical address does not exist physically in the memory whereas

physical address is a location in the memory that can be accessed

physically.

4. Identical logical addresses are generated by Compile-time and Load time

address binding methods whereas they differ from each other in run-time

address binding method.

5. The logical address is generated by the CPU while the program is running

whereas the physical address is computed by the Memory Management

Unit (MMU).

3.1 Memory allocation techniques

The two fundamental methods of memory allocation

(a) static memory allocation.

(b) Dynamic memory allocation

Static method assigns the memory to a process, before its execution. On the other

hand, the dynamic memory allocation method assigns the memory to a process,

during its execution.

Memory allocation are of two types

A. Contiguous storage allocation

B. Non-Contiguous storage allocation

A. Contiguous memory allocation

Paging Segmentation

Non-Contiguous

Storage Allocation

Variable

Partitioned

Allocation

Fixed

Partitioned

Allocation

Contiguous

Storage

Allocation

In the Contiguous Memory Allocation, each process is contained in a single

contiguous section of memory. In this memory allocation, all the available memory

space remains together in one place which implies that the freely available memory

partitions are not spread over here and there across the whole memory space.

In Contiguous memory allocation which is a memory management technique,

whenever there is a request by the user process for the memory then a single section

of the contiguous memory block is given to that process according to its requirement.

Contiguous Memory allocation is achieved just by dividing the memory into blocks of

different sizes to accommodate programs. Partitioning is of two types

(a)Fixed partition allocation

(b)Variable partition allocation

(A) Fixed Partition Allocation Scheme

In a multiprogramming environment, several programs reside in primary memory
at a time and the CPU passes its control rapidly between these programs. There
are two types of partitioning when partitions are created.

(i) Static Partitioning

(ii)Dynamic Partitioning

In Static partitioning scheme, the system divides the memory into fixed-size

partitions. The partitions may or may not be the same size. The size of each partition

is fixed as indicated by the name of the technique and it cannot be changed.

In this partition scheme, each partition may contain exactly one process. There is a
problem that this technique will limit the degree of multiprogramming because the
number of partitions will basically decide the number of processes.

Whenever any process terminates then the partition becomes available for another
process. It is important to note that these partitions are allocated to the processes as
they arrive and the partition that is allocated to the arrived process basically depends
on the algorithm followed.

Example: In fixed size partition the memory is divided into 6 partitions. The 1st region
is reserved for OS. The rest 5 regions are for user programs. Three partitions are
occupied by P1,P2 and P3.The second and last partitions are free

Lower
memory
area

Operating System

(200K)

0

 FREE (200K) 200

 P1 (200K) 400

 P2 (300K) 600

 P3 (100K) 900

 FREE 1000

Fixed size partitions

Once the partitions are defined, the OS keeps track of status of the memory partitions
and this is done through a data structure called partition description table (PDT)

Partition number Starting Address of
Partition

Size of partition Partition status

1 0K 200K Allocated

2 200K 200K Free

3 400K 200K Allocated
4 600K 300K Allocated

5 900K 100K Allocated

6 1000K 100K Free

There are 03 most common strategies to allocate free partitions to the new processes.

(i) First-fit
(j) Best fit
(k) Worst fit

In Dynamic partitioning scheme, the size and the no. of partitions are decided during

the run time by the operating system.

Advantages of Fixed-size Partition Scheme

1. This scheme is simple and is easy to implement
2. It supports multiprogramming as multiple processes can be stored inside the

main memory.
3. Management is easy using this scheme.

4. It requires no special costly hardware.
5. It makes efficient utilisation of processor and I/O devices.

Disadvantages of Fixed-size Partition Scheme

1. Internal Fragmentation

Suppose the size of the process is lesser than the size of the partition in that case
some size of the partition gets wasted and remains unused. This wastage inside the
memory is generally termed as Internal fragmentation

2. Limitation on the size of the process

If in a case size of a process is more than that of a maximum-sized partition then that
process cannot be loaded into the memory. Due to this, a condition is imposed on the
size of the process and it is: the size of the process cannot be larger than the size of
the largest partition.

3. External Fragmentation

It is another drawback of the fixed-size partition scheme as total unused space by
various partitions cannot be used in order to load the processes even though there is
the availability of space but it is not in the contiguous fashion.

4. Degree of multiprogramming is less

In this partition scheme, as the size of the partition cannot change according to the

size of the process. Thus the degree of multiprogramming is very less and is fixed.

(B) Variable Partition Allocation Scheme

This scheme is also known as Dynamic partitioning and is came into
existence to overcome the drawback i.e internal fragmentation that is caused by Static
partitioning. In this partitioning, scheme allocation is done dynamically.

The size of the partition is not declared initially. Whenever any process arrives, a
partition of size equal to the size of the process is created and then allocated to the
process. Thus the size of each partition is equal to the size of the process.

As partition size varies according to the need of the process so in this partition scheme
there is no internal fragmentation.

Advantages of Variable-size Partition Scheme

Some Advantages of using this partition scheme are as follows:

1. No Internal Fragmentation As in this partition scheme space in the main

memory is allocated strictly according to the requirement of the process thus

there is no chance of internal fragmentation. Also, there will be no unused

space left in the partition.

2. Degree of Multiprogramming is Dynamic As there is no internal

fragmentation in this partition scheme due to which there is no unused space

in the memory. Thus more processes can be loaded into the memory at the

same time.

3. No Limitation on the Size of Process In this partition scheme as the partition

is allocated to the process dynamically thus the size of the process cannot be

restricted because the partition size is decided according to the process size.

Disadvantages of Variable-size Partition Scheme

Some Disadvantages of using this partition scheme are as follows:

1. External Fragmentation As there is no internal fragmentation which is an

advantage of using this partition scheme does not mean there will no external

fragmentation. Let us understand this with the help of an example: In the above

diagram- process P1(3MB) and process P3(8MB) completed their execution.

Hence there are two spaces left i.e. 3MB and 8MB. Let’s there is a Process P4

of size 15 MB comes. But the empty space in memory cannot be allocated as

no spanning is allowed in contiguous allocation. Because the rule says that

process must be continuously present in the main memory in order to get

executed. Thus it results in External Fragmentation.

2. Difficult Implementation The implementation of this partition scheme is

difficult as compared to the Fixed Partitioning scheme as it involves the

allocation of memory at run-time rather than during the system configuration.

As we know that OS keeps the track of all the partitions but here allocation and

deallocation are done very frequently and partition size will be changed at each

time so it will be difficult for the operating system to manage everything.

B. Non-Contiguous memory allocation

In the non-contiguous memory allocation the available free memory space

are scattered here and there and all the free memory space is not at one place. So

this is time-consuming. In the non-contiguous memory allocation, a process will

acquire the memory space but it is not at one place it is at the different locations

according to the process requirement. This technique of non-contiguous memory

allocation reduces the wastage of memory which leads to internal and external

fragmentation. This utilizes all the free memory space which is created by a different

process.

Non-contiguous memory allocation is of different types,

1. Paging

2. Segmentation

3. Segmentation with paging

i) Paging

A non-contiguous policy with a fixed size partition is called paging. Paging is a

memory management technique that permits a program’s memory to be non-contiguous

into the physical memory and thereby allowing program to be allocated physical memory

whenever it is possible.

A computer can address more memory than the amount of physically installed on

the system. These program generated address are called as logical or virtual address and

they form the virtual address space. This extra memory is actually called virtual memory.

Paging technique is very important in implementing virtual memory.

Secondary memory is divided into equal size partition (fixed) called pages. Every

process will have a separate page table. The entries in the page table are the number of

pages a process.

The physical memory is conceptually divided into no. of fixed size blocks called as

frames or page frames. At each entry either we have an invalid pointer which means the

page is not in main memory or we will get the corresponding frame number. When the

frame number is combined with instruction of set D than we will get the corresponding

physical address. Size of a page table is generally very large so cannot be accommodated

inside the PCB, therefore, PCB contains a register value PTBR(page table base register)

which leads to the page table.

• Paging is a fixed size partitioning scheme.

• In paging, secondary memory and main memory are divided into equal fixed
size partitions.

• The partitions of secondary memory are called as pages.

• The partitions of main memory are called as frames.

• Each process is divided into parts where size of each part is same as page

size.

• The size of the last part may be less than the page size.

• The pages of process are stored in the frames of main memory depending
upon their availability.

Example-

• Consider a process is divided into 4 pages P0, P1, P2 and P3.

• Depending upon the availability, these pages may be stored in the main memory
frames in a non-contiguous fashion as shown-

Translating Logical Address into Physical Address-

• CPU always generates a logical address.

• A physical address is needed to access the main memory.

Following steps are followed to translate logical address into physical address-

Step-01:

CPU generates a logical address consisting of two parts-

1. Page Number

2. Page Offset

• Page Number specifies the specific page of the process from which CPU wants to

read the data.

• Page Offset specifies the specific word on the page that CPU wants to read.

Step-02:

For the page number generated by the CPU,

• Page Table provides the corresponding frame number (base address of the frame)
where that page is stored in the main memory.

Step-03:

• The frame number combined with the page offset forms the required physical

address.

https://www.gatevidyalay.com/page-table-paging-in-operating-system/

• Frame number specifies the specific frame where the required page is stored.

• Page Offset specifies the specific word that has to be read from that page.

Diagram-

The following diagram illustrates the above steps of translating logical address into
physical address-

Advantages:

1. It is independent of external fragmentation.

2. It supports time sharing system.

3. It achieves a high degree of Multiprogramming.

Disadvantages:

1. It makes the translation very slow as main memory access two times.

2. A page table is a burden over the system which occupies considerable space.

ii) Segmentation

Segmentation is a memory management technique in which, the memory is divided

into the variable size parts. Each part is known as segment which can be allocated to a
process. The details about each segment are stored in a table called as segment table.

Segmentation is a programmer view of the memory where instead of dividing a

process into equal size partition we divided according to program into partition called

segments. A segment can be defined as a logical grouping of instructions such as

Subroutine, array or data area. Every program is a collection of these segments.

Segmentation is a memory management scheme which supports the

programmer’s view in memory. Programmers never think of their programs as a linear

array of words. Rather they think of their programs as a collection of logically related

entities such as subroutine, procedures ,functions, global or local data area, stack etc.

It is better to have segmentation which divides the process into the segments.

Each segment contains same type of functions such as main function can be included

in one segment and the library functions can be included in the other segment,

The translation is the same as paging but paging segmentation is independent of

internal fragmentation but suffers from external fragmentation. Reason of external

fragmentation is program can be divided into segments but segment must be contiguous

in nature.

CPU generates a logical/virtual address which contains two parts:

1. Segment Number

2. Offset

The Segment number is mapped to the segment table. A segment table is used by the
MMU. It contains an entry for each segment of a process. The limit of the respective
segment is compared with the offset. If the offset is less than the limit then the

address is valid otherwise it throws an error as the address is invalid.

In the case of valid address, the base address of the segment is added to the offset

to get the physical address of actual word in the main memory.

Advantages of Segmentation

1. No internal fragmentation

2. Average Segment Size is larger than the actual page size.

3. Less overhead

4. It is easier to relocate segments than entire address space.

5. The segment table is of lesser size as compare to the page table in paging.

Disadvantages

1. It can have external fragmentation.

2. it is difficult to allocate contiguous memory to variable sized partition.

3. Costly memory management algorithms.

iii) Segmentation with paging

In segmentation with paging, we take advantages of both segmentation as well as

paging. It is a kind of multilevel paging but in multilevel paging, we divide a page table

into equal size partition but here in segmentation with paging, we divide it according to

segments. All the properties are the same as that of paging because segments are divided

into pages. Each segment in this scheme is divided into pages and each segment maintains

a page table. The logical address is divided into 3 parts

i. Segment no S

ii. Page number P

iii. Offset or displacement D

3.2 Swapping

Swapping is a mechanism in which a process can be swapped temporarily out

of main memory (or move) to secondary storage (disk) and make that memory

available to other processes. At some later time, the system swaps back the process

from the secondary storage to main memory.

Swap space is the portion of virtual memory that is on the hard disk, used

when RAM is full. Swap space can be useful to computer in various ways: It can

be used as a single contiguous memory which reduces i/o operations to read or write

a file. Applications which are not used or are used less can be kept in swap file.

As additional RAM is required, the state of the physical memory page is

mapped to the swap space, enabling a form of virtual (non-physical

RAM) memory capacity. In other words, the main purpose of swapping in memory

management is to enable more usable memory than held by the computer hardware.

The concept of swapping has divided into two more concepts: Swap-in and Swap-out.

o Swap-out is a method of removing a process from RAM and adding it to the

hard disk.

o Swap-in is a method of removing a program from a hard disk and putting it

back into the main memory or RAM

The total time taken by swapping process includes the time it takes to move the entire

process to a secondary disk and then to copy the process back to memory, as well as

the time the process takes to regain main memory.

.

Advantages of Swapping

1. It helps the CPU to manage multiple processes within a single main memory.

2. It helps to create and use virtual memory.

3. Swapping allows the CPU to perform multiple tasks simultaneously. Therefore,

processes do not have to wait very long before they are executed.

4. It improves the main memory utilization.

Dis-Advantages of Swapping

1. If the computer system loses power, the user may lose all information related to

the program in case of substantial swapping activity.

2. If the swapping algorithm is not good, the composite method can increase the

number of Page Fault and decrease the overall processing performance.

3.3 Virtual Memory

Virtual memory is an area of a computer system’s secondary memory storage

space (such as a hard disk or solid state drive) which acts as if it were a part of the

system’s RAM or primary memory.

Virtual memory is a feature of an operating system that enables a computer to be able to

compensate shortages of physical memory by transferring pages of data from random

access memory to disk storage. This process is done temporarily and is designed to work as

a combination of RAM and space on the hard disk.

Virtual memory is an area of a computer system's secondary memory storage space

(such as a hard disk) which acts as if it were a part of the system's RAM or primary memory.

This frees up space in RAM, which can then be used to accommodate data which the system

needs to access imminently.

Virtual Memory is a storage allocation scheme in which secondary memory can be

addressed as though it were part of main memory. It maps memory addresses used by a

program, called virtual addresses, into physical addresses in computer memory.

Need for Virtual Memory

• Virtual memory was developed when physical RAM was very expensive, and
RAM is still more expensive per Gigabyte than storage media such as hard
disks and solid-state drives. For that reason, it is much less costly to use a

https://www.enterprisestorageforum.com/hardware/hdd/
https://www.enterprisestorageforum.com/backup/data-storage-2020-trends-in-data-storage/
https://www.enterprisestorageforum.com/hardware/sram-vs-dram/
https://www.enterprisestorageforum.com/hardware/ssd-vs-hdd/
https://www.enterprisestorageforum.com/hardware/ssd-vs-hdd/

combination of physical RAM and virtual memory than to equip a computer
system with more RAM.

• Since using virtual memory (or increasing virtual memory) has no extra financial
cost (because it uses existing storage space) it offers a way for a computer to
use more memory than is physically available on the system.

Types of virtual memory: Paging and Segmentation

Virtual memory can be managed in a number of different ways by a system’s operating

system, and the two most common approaches are paging and segmentation.

1. Virtual Memory Paging

In a system which uses paging, RAM is divided into a number of blocks – usually
4k in size – called pages. Processes are then allocated just enough pages to meet
their memory requirements. That means that there will always be a small amount of
memory wasted, except in the unusual case where a process requires exactly a whole
number of pages.

During the normal course of operations, pages (i.e. memory blocks of 4K in size) are

swapped between RAM and a page file, which represents the virtual memory.

2. Virtual Memory Segmentation

Segmentation is an alternative approach to memory management, where instead
of pages of a fixed size, processes are allocated segments of differing length to exactly
meet their requirements. That means that unlike in a paged system, no memory is
wasted in a segment.

Segmentation also allows applications to be split up into logically independent address
spaces, which can make them easier to share, and more secure.

Advantages of Virtual Memory

• Allows more applications to be run at the same time.

• Allows larger applications to run in systems that do not have enough physical
RAM alone to run them.

• Provides a way to increase memory which is less costly than buying more

RAM.

• Provides a way to increase memory in a system which has the maximum
amount of RAM that its hardware and operating system can support.

Disadvantages of Virtual Memory

• Does not offer the same performance as RAM.

• Can negatively affect the overall performance of a system.

• Takes up storage space which could otherwise be used for long term data
storage.

3.4 Demand paging

According to the concept of Virtual Memory, in order to execute some process, only a

part of the process needs to be present in the main memory which means that only a

few pages will only be present in the main memory at any time.

However, deciding, which pages need to be kept in the main memory and which need

to be kept in the secondary memory, is going to be difficult because we cannot say in

advance that a process will require a particular page at particular time.

Therefore, to overcome this problem, there is a concept called Demand Paging is

introduced. It suggests keeping all pages of the frames in the secondary memory until

they are required.

Demand paging is a technique used in virtual memory systems where the pages

are brought in the main memory only when required or demanded by the CPU.

A page fault occurs when a program attempts to access a block of memory that is not

stored in the physical memory, or RAM. The fault notifies the operating system that it

must locate the data in virtual memory, then transfer it from the storage device, such

as an HDD or SSD, to the system RAM.

Page fault is a type of exception raised by computer hardware when a running

program accesses a memory page that is not currently mapped by the memory

management unit (MMU) into the virtual address space of a process. Logically, the

page may be accessible to the process, but requires a mapping to be added to the

process page tables, and may additionally require the actual page contents to be

loaded from a backing store such as a disk.

How does demand paging work?

Lets us understand this with the help of an example. Suppose we have to execute a
process P having four pages as P0, P1, P2, and P3. Currently, in the page table, we
have page P1 and P3.

1. Now, if the CPU wants to access page P2 of a process P, first it will search

the page in the page table.

2. As the page table does not contain this page so it will be a trap or page fault.

As soon as the trap is generated and context switching happens and the

control goes to the operating system.

https://techterms.com/definition/program
https://techterms.com/definition/memory
https://techterms.com/definition/ram
https://techterms.com/definition/operating_system
https://techterms.com/definition/virtualmemory
https://techterms.com/definition/hdd
https://techterms.com/definition/ssd
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Memory_page
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Disk_storage

3. The OS system will put the process in a waiting/ blocked state. The OS system

will now search that page in the backing store or secondary memory.

4. The OS will then read the page from the backing store and load it to the main

memory.

5. Next, the OS system will update the page table entry accordingly.

6. Finally, the control is taken back from the OS and the execution of the process

is resumed.

Hence whenever a page fault occurs these steps are followed by the operating

system and the required page is brought into memory.

Page Fault Service time

So whenever a page fault occurs all the above steps(2–6) are performed. This time
taken to service the page fault is called the Page fault service time.

Effective Memory Access time

When the page fault rate is ‘p’ while executing any process then the effective

memory access time is calculated as follows:

Effective Memory Access time = (p)*(s) + (1-p)*(m)

where p is the page fault rate.

s is the page fault service time.

m is the main memory access time.

Page Replacement Algorithms

In an operating system that uses paging for memory management, a page
replacement algorithm is needed to decide which page needs to be replaced when
new page comes in.

Page Fault – A page fault happens when a running program accesses a memory page
that is mapped into the virtual address space, but not loaded in physical memory.
Since actual physical memory is much smaller than virtual memory, page faults
happen. In case of page fault, Operating System might have to replace one of the
existing pages with the newly needed page. Different page replacement algorithms
suggest different ways to decide which page to replace. The target for all algorithms
is to reduce the number of page faults.

There are three Page Replacement Algorithms:

1. First In First Out (FIFO) Algorithm

2. Optimal page replacement Algorithm

3. Least recently used (LRU) Algorithm

1. First In First Out (FIFO) –

This is the simplest page replacement algorithm. In this algorithm, the operating

system keeps track of all pages in the memory in a queue, the oldest page is in the

front of the queue. Here Replace a page that page is the oldest page of all the pages of

main memory.When a page needs to be replaced page in the front of the queue is

selected for removal.

Example-1Consider page reference string 1, 3, 0, 3, 5, 6, 3 with 3 page

frames. Find number of page faults.

Initially all slots are empty, so when 1, 3, 0 came they are allocated to the
empty slots —> 3 Page Faults.
when 3 comes, it is already in memory so —> 0 Page Faults.
Then 5 comes, it is not available in memory so it replaces the oldest page slot
i.e 1. —>1 Page Fault.
6 comes, it is also not available in memory so it replaces the oldest page slot
i.e 3 —>1 Page Fault.
Finally when 3 come it is not available so it replaces 0 1-page fault

Page fault rate = No. of page faults / No. of bits in the reference string.

= 6/7

Example 2:

The page reference string: 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 for a memory
with 3 frames.

Table FIFO Behaviour

Frame 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

0 0* 0 0 3* 3 3 2* 2 2 1* 1 1 4* 4 4 7*

1 1* 1 1 0* 0 0 3* 3 3 2* 2 2 5* 5 5

2 2* 2 2 1* 1 1 0* 0 0 3* 3 3 6* 6
 m m m m m m m m m m m m m m m m

It has 16-page faults. The symbol “*” indicates the new page in the memory. The
symbol “m” indicate page fault. Page fault ratio = 16/16=100%

2. Optimal Page replacement –
In this algorithm, pages are replaced which would not be used for the longest
duration of time in the future. Here Replace a page that will not be used for
longest period of time

Example-2:
Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 3 with 4 page
frame. Find number of page fault.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4
Page faults
0 is already there so —> 0 Page fault.
when 3 came it will take the place of 7 because it is not used for the longest
duration of time in the future.—>1 Page fault.
0 is already there so —> 0 Page fault..
4 will takes place of 1 —> 1 Page Fault.

Now for the further page reference string —> 0 Page fault because they are

already available in the memory. Optimal page replacement is perfect, but not
possible in practice as the operating system cannot know future requests. The
use of Optimal Page replacement is to set up a benchmark so that other
replacement algorithms can be analyzed against it.

Page fault rate = No. of page faults / No. of bits in the reference string.

= 6/14

Example-2
The page reference string: 1 2 3 2 5 6 3 4 6 3 7 3 1 5 3 6 3 4 2 4 3 4

5 1 for a memory with 3 frames.
Table FIFO Behaviour

Fram
e

1 2 3 2 5 6 3 4 6 3 7 3 1 5 3 6 3 4 2 4 3 4 5 1

0 *
1

1 1 1 1 1 1 1 1 1 1 1 *
1

1 1 1 1 1 *
2

2 2 2 2 *
1

1 *2 2 *
2

2 *
6

6 6 *
6

6 6 6 6 6 6 *
6

6 *
4

4 *
4

4 *
4

4 4

2 *
3

3 3 3 *
3

3 3 *
3

3 *
3

3 3 *
3

3 *
3

3 3 3 *
3

3 3 3

3 *
5

5 5 *
4

4 4 *
7

7 7 *
5

5 5 5 5 5 5 5 5 *
5

5

 m m m h m m h m h h m h h m h h h m m h h h h m

Here “m” is for miss and “h” for hit. Further “*” indicates a new page in memory.
Page fault = 11/24
3. Least Recently Used –
In this algorithm page will be replaced which is least recently used. Replace a
page that has not been used for the longest period of time.

Example-3Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0,

3, 2 with 4 page frames. Find number of page faults.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —
> 4 Page faults
0 is already their so —> 0 Page fault.

when 3 came it will take the place of 7 because it is least recently used —>1
Page fault
0 is already in memory so —> 0 Page fault.

4 will takes place of 1 —> 1 Page Fault
Now for the further page reference string —> 0 Page fault because they are
already available in the memory.
Page fault rate = No. of page faults / No. of bits in the reference string.

= 6/14
Example 2:
The page reference string: 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 for a memory

with 3 frames.
Table Behaviour

Frame 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

0 0* 0 0 3* 3 3 2* 2 2 1* 1 1 4* 4 4 7*

1 1* 1 1 0* 0 0 3* 3 3 2* 2 2 5* 5 5

2 2* 2 2 1* 1 1 0* 0 0 3* 3 3 6* 6

 m m m m m m m m m m m m m m m m

Page fault 16/16=100%

3.0 MEMORY MANAGEMENT

INTRODUCTION

Memory Management is the process of controlling and coordinating computer

memory, assigning portions known as blocks to various running programs to optimize

the overall performance of the system. It is the most important function of an operating

system that manages primary memory.

Memory management is the functionality of an operating system which

handles or manages primary memory and moves processes back and forth between

main memory and disk during execution.

Memory management keeps track of each and every memory location,

regardless of either it is allocated to some process or it is free. It checks how much

memory is to be allocated to processes. It decides which process will get memory at

what time. It tracks whenever some memory gets freed or unallocated and

correspondingly it updates the status.

To summarize the functions of memory management as follows:

• It allows you to check how much memory needs to be allocated to

processes that decide which processor should get memory at what time.

• Tracks whenever inventory gets freed or unallocated. According to it will
update the status.

• It allocates the space to application routines.

• It also makes sure that these applications do not interfere with each

other.

• Helps protect different processes from each other

• It places the programs in memory so that memory is utilized to its full

extent.

Logical and Physical Address

The physical address refers to a location in the memory. It allows access to data in

the main memory. A physical address is not directly accessible to the user program

hence, a logical address needs to be mapped to it to make the address accessible.

This mapping is done by the MMU. Memory Management Unit (MMU) is a hardware

component responsible for translating a logical address to a physical address.

Physical Address identifies a physical location of required data in a memory.

The user never directly deals with the physical address but can access by its

corresponding logical address. The user program generates the logical address and

thinks that the program is running in this logical address but the program needs

physical memory for its execution, therefore, the logical address must be mapped

to the physical address by MMU (Memory Management Unit) before they are

used. The term Physical Address Space is used for all physical addresses

corresponding to the logical addresses in a Logical address space.

A logical address or virtual address is an address that is generated by the

CPU during program execution. A logical address doesn't exist physically. The

logical address is used as a reference to access the physical address. A logical

address usually ranges from zero to maximum (max). The user program that

generates the logical address assumes that the process runs on locations between

0 to the max. The term Logical Address Space is used for the set of all logical

addresses generated by a program’s perspective. This logical address(generated

by CPU) combines with the base address generated by the MMU to form

the physical address.

The diagram below explains how the mapping between logical and physical

addresses is done.

(Fig Logical vs physical address space)

4. The CPU generates the logical address (here, 346).

5. The MMU will generate the base address (here, 14000) which is stored in the
Relocation Register.

6. The value of Relocation Register (here, 14000) is added to the logical address
to get the physical address. i.e. 14000+346= 14346(Physical Address).

Differences Between Logical and Physical Address in Operating System
6. The basic difference between Logical and physical address is that Logical

address is generated by CPU in perspective of a program whereas the

physical address is a location that exists in the memory unit.

7. Logical Address Space is the set of all logical addresses generated by

CPU for a program whereas the set of all physical address mapped to

corresponding logical addresses is called Physical Address Space.

8. The logical address does not exist physically in the memory whereas

physical address is a location in the memory that can be accessed

physically.

Memory Allocation

9. Identical logical addresses are generated by Compile-time and Load time

address binding methods whereas they differ from each other in run-time

address binding method.

10. The logical address is generated by the CPU while the program is running

whereas the physical address is computed by the Memory Management

Unit (MMU).

3.1 Memory allocation techniques

The two fundamental methods of memory allocation

(c) static memory allocation.

(d) Dynamic memory allocation

Static method assigns the memory to a process, before its execution. On the other

hand, the dynamic memory allocation method assigns the memory to a process,

during its execution.

Memory allocation are of two types

C. Contiguous storage allocation

D. Non-Contiguous storage allocation

A. Contiguous memory allocation

In the Contiguous Memory Allocation, each process is contained in a single

contiguous section of memory. In this memory allocation, all the available memory

Paging Segmentation

Non-Contiguous

Storage Allocation

Variable

Partitioned

Allocation

Fixed

Partitioned

Allocation

Contiguous

Storage

Allocation

space remains together in one place which implies that the freely available memory

partitions are not spread over here and there across the whole memory space.

In Contiguous memory allocation which is a memory management technique,

whenever there is a request by the user process for the memory then a single section

of the contiguous memory block is given to that process according to its requirement.

Contiguous Memory allocation is achieved just by dividing the memory into blocks of

different sizes to accommodate programs. Partitioning is of two types

(a)Fixed partition allocation

(b)Variable partition allocation

(A) Fixed Partition Allocation Scheme

In a multiprogramming environment, several programs reside in primary memory
at a time and the CPU passes its control rapidly between these programs. There
are two types of partitioning when partitions are created.

(j) Static Partitioning

(ii)Dynamic Partitioning

In Static partitioning scheme, the system divides the memory into fixed-size

partitions. The partitions may or may not be the same size. The size of each partition

is fixed as indicated by the name of the technique and it cannot be changed.

In this partition scheme, each partition may contain exactly one process. There is a
problem that this technique will limit the degree of multiprogramming because the
number of partitions will basically decide the number of processes.

Whenever any process terminates then the partition becomes available for another
process. It is important to note that these partitions are allocated to the processes as
they arrive and the partition that is allocated to the arrived process basically depends
on the algorithm followed.

Example: In fixed size partition the memory is divided into 6 partitions. The 1st region
is reserved for OS. The rest 5 regions are for user programs. Three partitions are
occupied by P1,P2 and P3.The second and last partitions are free

Lower
memory
area

Operating System

(200K)

0

 FREE (200K) 200

 P1 (200K) 400

 P2 (300K) 600

 P3 (100K) 900

 FREE 1000

Fixed size partitions

Once the partitions are defined, the OS keeps track of status of the memory partitions
and this is done through a data structure called partition description table (PDT)

Partition number Starting Address of
Partition

Size of partition Partition status

1 0K 200K Allocated

2 200K 200K Free

3 400K 200K Allocated
4 600K 300K Allocated

5 900K 100K Allocated

6 1000K 100K Free

There are 03 most common strategies to allocate free partitions to the new processes.

(l) First-fit
(m) Best fit
(n) Worst fit

In Dynamic partitioning scheme, the size and the no. of partitions are decided during

the run time by the operating system.

Advantages of Fixed-size Partition Scheme

6. This scheme is simple and is easy to implement
7. It supports multiprogramming as multiple processes can be stored inside the

main memory.
8. Management is easy using this scheme.

9. It requires no special costly hardware.
10. It makes efficient utilisation of processor and I/O devices.

Disadvantages of Fixed-size Partition Scheme

1. Internal Fragmentation

Suppose the size of the process is lesser than the size of the partition in that case
some size of the partition gets wasted and remains unused. This wastage inside the
memory is generally termed as Internal fragmentation

2. Limitation on the size of the process

If in a case size of a process is more than that of a maximum-sized partition then that
process cannot be loaded into the memory. Due to this, a condition is imposed on the
size of the process and it is: the size of the process cannot be larger than the size of
the largest partition.

3. External Fragmentation

It is another drawback of the fixed-size partition scheme as total unused space by
various partitions cannot be used in order to load the processes even though there is
the availability of space but it is not in the contiguous fashion.

4. Degree of multiprogramming is less

In this partition scheme, as the size of the partition cannot change according to the

size of the process. Thus the degree of multiprogramming is very less and is fixed.

(B) Variable Partition Allocation Scheme

This scheme is also known as Dynamic partitioning and is came into
existence to overcome the drawback i.e internal fragmentation that is caused by Static
partitioning. In this partitioning, scheme allocation is done dynamically.

The size of the partition is not declared initially. Whenever any process arrives, a
partition of size equal to the size of the process is created and then allocated to the
process. Thus the size of each partition is equal to the size of the process.

As partition size varies according to the need of the process so in this partition scheme
there is no internal fragmentation.

Advantages of Variable-size Partition Scheme

Some Advantages of using this partition scheme are as follows:

4. No Internal Fragmentation As in this partition scheme space in the main

memory is allocated strictly according to the requirement of the process thus

there is no chance of internal fragmentation. Also, there will be no unused

space left in the partition.

5. Degree of Multiprogramming is Dynamic As there is no internal

fragmentation in this partition scheme due to which there is no unused space

in the memory. Thus more processes can be loaded into the memory at the

same time.

6. No Limitation on the Size of Process In this partition scheme as the partition

is allocated to the process dynamically thus the size of the process cannot be

restricted because the partition size is decided according to the process size.

Disadvantages of Variable-size Partition Scheme

Some Disadvantages of using this partition scheme are as follows:

3. External Fragmentation As there is no internal fragmentation which is an

advantage of using this partition scheme does not mean there will no external

fragmentation. Let us understand this with the help of an example: In the above

diagram- process P1(3MB) and process P3(8MB) completed their execution.

Hence there are two spaces left i.e. 3MB and 8MB. Let’s there is a Process P4

of size 15 MB comes. But the empty space in memory cannot be allocated as

no spanning is allowed in contiguous allocation. Because the rule says that

process must be continuously present in the main memory in order to get

executed. Thus it results in External Fragmentation.

4. Difficult Implementation The implementation of this partition scheme is

difficult as compared to the Fixed Partitioning scheme as it involves the

allocation of memory at run-time rather than during the system configuration.

As we know that OS keeps the track of all the partitions but here allocation and

deallocation are done very frequently and partition size will be changed at each

time so it will be difficult for the operating system to manage everything.

B. Non-Contiguous memory allocation

In the non-contiguous memory allocation the available free memory space

are scattered here and there and all the free memory space is not at one place. So

this is time-consuming. In the non-contiguous memory allocation, a process will

acquire the memory space but it is not at one place it is at the different locations

according to the process requirement. This technique of non-contiguous memory

allocation reduces the wastage of memory which leads to internal and external

fragmentation. This utilizes all the free memory space which is created by a different

process.

Non-contiguous memory allocation is of different types,

4. Paging

5. Segmentation

6. Segmentation with paging

i) Paging

A non-contiguous policy with a fixed size partition is called paging. Paging is a

memory management technique that permits a program’s memory to be non-contiguous

into the physical memory and thereby allowing program to be allocated physical memory

whenever it is possible.

A computer can address more memory than the amount of physically installed on

the system. These program generated address are called as logical or virtual address and

they form the virtual address space. This extra memory is actually called virtual memory.

Paging technique is very important in implementing virtual memory.

Secondary memory is divided into equal size partition (fixed) called pages. Every

process will have a separate page table. The entries in the page table are the number of

pages a process.

The physical memory is conceptually divided into no. of fixed size blocks called as

frames or page frames. At each entry either we have an invalid pointer which means the

page is not in main memory or we will get the corresponding frame number. When the

frame number is combined with instruction of set D than we will get the corresponding

physical address. Size of a page table is generally very large so cannot be accommodated

inside the PCB, therefore, PCB contains a register value PTBR(page table base register)

which leads to the page table.

• Paging is a fixed size partitioning scheme.

• In paging, secondary memory and main memory are divided into equal fixed
size partitions.

• The partitions of secondary memory are called as pages.

• The partitions of main memory are called as frames.

• Each process is divided into parts where size of each part is same as page

size.

• The size of the last part may be less than the page size.

• The pages of process are stored in the frames of main memory depending
upon their availability.

Example-

• Consider a process is divided into 4 pages P0, P1, P2 and P3.

• Depending upon the availability, these pages may be stored in the main memory
frames in a non-contiguous fashion as shown-

Translating Logical Address into Physical Address-

• CPU always generates a logical address.

• A physical address is needed to access the main memory.

Following steps are followed to translate logical address into physical address-

Step-01:

CPU generates a logical address consisting of two parts-

3. Page Number

4. Page Offset

• Page Number specifies the specific page of the process from which CPU wants to

read the data.

• Page Offset specifies the specific word on the page that CPU wants to read.

Step-02:

For the page number generated by the CPU,

• Page Table provides the corresponding frame number (base address of the frame)
where that page is stored in the main memory.

Step-03:

• The frame number combined with the page offset forms the required physical

address.

https://www.gatevidyalay.com/page-table-paging-in-operating-system/

• Frame number specifies the specific frame where the required page is stored.

• Page Offset specifies the specific word that has to be read from that page.

Diagram-

The following diagram illustrates the above steps of translating logical address into
physical address-

Advantages:

1. It is independent of external fragmentation.

2. It supports time sharing system.

3. It achieves a high degree of Multiprogramming.

Disadvantages:

3. It makes the translation very slow as main memory access two times.

4. A page table is a burden over the system which occupies considerable space.

ii) Segmentation

Segmentation is a memory management technique in which, the memory is divided

into the variable size parts. Each part is known as segment which can be allocated to a
process. The details about each segment are stored in a table called as segment table.

Segmentation is a programmer view of the memory where instead of dividing a

process into equal size partition we divided according to program into partition called

segments. A segment can be defined as a logical grouping of instructions such as

Subroutine, array or data area. Every program is a collection of these segments.

Segmentation is a memory management scheme which supports the

programmer’s view in memory. Programmers never think of their programs as a linear

array of words. Rather they think of their programs as a collection of logically related

entities such as subroutine, procedures ,functions, global or local data area, stack etc.

It is better to have segmentation which divides the process into the segments.

Each segment contains same type of functions such as main function can be included

in one segment and the library functions can be included in the other segment,

The translation is the same as paging but paging segmentation is independent of

internal fragmentation but suffers from external fragmentation. Reason of external

fragmentation is program can be divided into segments but segment must be contiguous

in nature.

CPU generates a logical/virtual address which contains two parts:

3. Segment Number

4. Offset

The Segment number is mapped to the segment table. A segment table is used by the
MMU. It contains an entry for each segment of a process. The limit of the respective
segment is compared with the offset. If the offset is less than the limit then the

address is valid otherwise it throws an error as the address is invalid.

In the case of valid address, the base address of the segment is added to the offset

to get the physical address of actual word in the main memory.

Advantages of Segmentation

6. No internal fragmentation

7. Average Segment Size is larger than the actual page size.

8. Less overhead

9. It is easier to relocate segments than entire address space.

10. The segment table is of lesser size as compare to the page table in paging.

Disadvantages

4. It can have external fragmentation.

5. it is difficult to allocate contiguous memory to variable sized partition.

6. Costly memory management algorithms.

iii) Segmentation with paging

In segmentation with paging, we take advantages of both segmentation as well as

paging. It is a kind of multilevel paging but in multilevel paging, we divide a page table

into equal size partition but here in segmentation with paging, we divide it according to

segments. All the properties are the same as that of paging because segments are divided

into pages. Each segment in this scheme is divided into pages and each segment maintains

a page table. The logical address is divided into 3 parts

i. Segment no S

ii. Page number P

iii. Offset or displacement D

3.2 Swapping

Swapping is a mechanism in which a process can be swapped temporarily out

of main memory (or move) to secondary storage (disk) and make that memory

available to other processes. At some later time, the system swaps back the process

from the secondary storage to main memory.

Swap space is the portion of virtual memory that is on the hard disk, used

when RAM is full. Swap space can be useful to computer in various ways: It can

be used as a single contiguous memory which reduces i/o operations to read or write

a file. Applications which are not used or are used less can be kept in swap file.

As additional RAM is required, the state of the physical memory page is

mapped to the swap space, enabling a form of virtual (non-physical

RAM) memory capacity. In other words, the main purpose of swapping in memory

management is to enable more usable memory than held by the computer hardware.

The concept of swapping has divided into two more concepts: Swap-in and Swap-out.

o Swap-out is a method of removing a process from RAM and adding it to the

hard disk.

o Swap-in is a method of removing a program from a hard disk and putting it

back into the main memory or RAM

The total time taken by swapping process includes the time it takes to move the entire

process to a secondary disk and then to copy the process back to memory, as well as

the time the process takes to regain main memory.

.

Advantages of Swapping

5. It helps the CPU to manage multiple processes within a single main memory.

6. It helps to create and use virtual memory.

7. Swapping allows the CPU to perform multiple tasks simultaneously. Therefore,

processes do not have to wait very long before they are executed.

8. It improves the main memory utilization.

Dis-Advantages of Swapping

1. If the computer system loses power, the user may lose all information related to

the program in case of substantial swapping activity.

2. If the swapping algorithm is not good, the composite method can increase the

number of Page Fault and decrease the overall processing performance.

3.3 Virtual Memory

Virtual memory is an area of a computer system’s secondary memory storage

space (such as a hard disk or solid state drive) which acts as if it were a part of the

system’s RAM or primary memory.

Virtual memory is a feature of an operating system that enables a computer to be able to

compensate shortages of physical memory by transferring pages of data from random

access memory to disk storage. This process is done temporarily and is designed to work as

a combination of RAM and space on the hard disk.

Virtual memory is an area of a computer system's secondary memory storage space

(such as a hard disk) which acts as if it were a part of the system's RAM or primary memory.

This frees up space in RAM, which can then be used to accommodate data which the system

needs to access imminently.

Virtual Memory is a storage allocation scheme in which secondary memory can be

addressed as though it were part of main memory. It maps memory addresses used by a

program, called virtual addresses, into physical addresses in computer memory.

Need for Virtual Memory

• Virtual memory was developed when physical RAM was very expensive, and
RAM is still more expensive per Gigabyte than storage media such as hard
disks and solid-state drives. For that reason, it is much less costly to use a

https://www.enterprisestorageforum.com/hardware/hdd/
https://www.enterprisestorageforum.com/backup/data-storage-2020-trends-in-data-storage/
https://www.enterprisestorageforum.com/hardware/sram-vs-dram/
https://www.enterprisestorageforum.com/hardware/ssd-vs-hdd/
https://www.enterprisestorageforum.com/hardware/ssd-vs-hdd/

combination of physical RAM and virtual memory than to equip a computer
system with more RAM.

• Since using virtual memory (or increasing virtual memory) has no extra financial
cost (because it uses existing storage space) it offers a way for a computer to
use more memory than is physically available on the system.

Types of virtual memory: Paging and Segmentation

Virtual memory can be managed in a number of different ways by a system’s operating

system, and the two most common approaches are paging and segmentation.

3. Virtual Memory Paging

In a system which uses paging, RAM is divided into a number of blocks – usually
4k in size – called pages. Processes are then allocated just enough pages to meet
their memory requirements. That means that there will always be a small amount of
memory wasted, except in the unusual case where a process requires exactly a whole
number of pages.

During the normal course of operations, pages (i.e. memory blocks of 4K in size) are

swapped between RAM and a page file, which represents the virtual memory.

4. Virtual Memory Segmentation

Segmentation is an alternative approach to memory management, where instead
of pages of a fixed size, processes are allocated segments of differing length to exactly
meet their requirements. That means that unlike in a paged system, no memory is
wasted in a segment.

Segmentation also allows applications to be split up into logically independent address
spaces, which can make them easier to share, and more secure.

Advantages of Virtual Memory

• Allows more applications to be run at the same time.

• Allows larger applications to run in systems that do not have enough physical
RAM alone to run them.

• Provides a way to increase memory which is less costly than buying more

RAM.

• Provides a way to increase memory in a system which has the maximum
amount of RAM that its hardware and operating system can support.

Disadvantages of Virtual Memory

• Does not offer the same performance as RAM.

• Can negatively affect the overall performance of a system.

• Takes up storage space which could otherwise be used for long term data
storage.

3.4 Demand paging

According to the concept of Virtual Memory, in order to execute some process, only a

part of the process needs to be present in the main memory which means that only a

few pages will only be present in the main memory at any time.

However, deciding, which pages need to be kept in the main memory and which need

to be kept in the secondary memory, is going to be difficult because we cannot say in

advance that a process will require a particular page at particular time.

Therefore, to overcome this problem, there is a concept called Demand Paging is

introduced. It suggests keeping all pages of the frames in the secondary memory until

they are required.

Demand paging is a technique used in virtual memory systems where the pages

are brought in the main memory only when required or demanded by the CPU.

A page fault occurs when a program attempts to access a block of memory that is not

stored in the physical memory, or RAM. The fault notifies the operating system that it

must locate the data in virtual memory, then transfer it from the storage device, such

as an HDD or SSD, to the system RAM.

Page fault is a type of exception raised by computer hardware when a running

program accesses a memory page that is not currently mapped by the memory

management unit (MMU) into the virtual address space of a process. Logically, the

page may be accessible to the process, but requires a mapping to be added to the

process page tables, and may additionally require the actual page contents to be

loaded from a backing store such as a disk.

How does demand paging work?

Lets us understand this with the help of an example. Suppose we have to execute a
process P having four pages as P0, P1, P2, and P3. Currently, in the page table, we
have page P1 and P3.

7. Now, if the CPU wants to access page P2 of a process P, first it will search

the page in the page table.

8. As the page table does not contain this page so it will be a trap or page fault.

As soon as the trap is generated and context switching happens and the

control goes to the operating system.

https://techterms.com/definition/program
https://techterms.com/definition/memory
https://techterms.com/definition/ram
https://techterms.com/definition/operating_system
https://techterms.com/definition/virtualmemory
https://techterms.com/definition/hdd
https://techterms.com/definition/ssd
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Memory_page
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Disk_storage

9. The OS system will put the process in a waiting/ blocked state. The OS system

will now search that page in the backing store or secondary memory.

10. The OS will then read the page from the backing store and load it to the main

memory.

11. Next, the OS system will update the page table entry accordingly.

12. Finally, the control is taken back from the OS and the execution of the process

is resumed.

Hence whenever a page fault occurs these steps are followed by the operating

system and the required page is brought into memory.

Page Fault Service time

So whenever a page fault occurs all the above steps(2–6) are performed. This time
taken to service the page fault is called the Page fault service time.

Effective Memory Access time

When the page fault rate is ‘p’ while executing any process then the effective

memory access time is calculated as follows:

Effective Memory Access time = (p)*(s) + (1-p)*(m)

where p is the page fault rate.

s is the page fault service time.

m is the main memory access time.

Page Replacement Algorithms

In an operating system that uses paging for memory management, a page
replacement algorithm is needed to decide which page needs to be replaced when
new page comes in.

Page Fault – A page fault happens when a running program accesses a memory page
that is mapped into the virtual address space, but not loaded in physical memory.
Since actual physical memory is much smaller than virtual memory, page faults
happen. In case of page fault, Operating System might have to replace one of the
existing pages with the newly needed page. Different page replacement algorithms
suggest different ways to decide which page to replace. The target for all algorithms
is to reduce the number of page faults.

There are three Page Replacement Algorithms:

1. First In First Out (FIFO) Algorithm

2. Optimal page replacement Algorithm

3. Least recently used (LRU) Algorithm

1. First In First Out (FIFO) –

This is the simplest page replacement algorithm. In this algorithm, the operating

system keeps track of all pages in the memory in a queue, the oldest page is in the

front of the queue. Here Replace a page that page is the oldest page of all the pages of

main memory.When a page needs to be replaced page in the front of the queue is

selected for removal.

Example-1Consider page reference string 1, 3, 0, 3, 5, 6, 3 with 3 page

frames. Find number of page faults.

Initially all slots are empty, so when 1, 3, 0 came they are allocated to the
empty slots —> 3 Page Faults.
when 3 comes, it is already in memory so —> 0 Page Faults.
Then 5 comes, it is not available in memory so it replaces the oldest page slot
i.e 1. —>1 Page Fault.
6 comes, it is also not available in memory so it replaces the oldest page slot
i.e 3 —>1 Page Fault.
Finally when 3 come it is not available so it replaces 0 1-page fault

Page fault rate = No. of page faults / No. of bits in the reference string.

= 6/7

Example 2:

The page reference string: 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 for a memory
with 3 frames.

Table FIFO Behaviour

Frame 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

0 0* 0 0 3* 3 3 2* 2 2 1* 1 1 4* 4 4 7*

1 1* 1 1 0* 0 0 3* 3 3 2* 2 2 5* 5 5

2 2* 2 2 1* 1 1 0* 0 0 3* 3 3 6* 6
 m m m m m m m m m m m m m m m m

It has 16-page faults. The symbol “*” indicates the new page in the memory. The
symbol “m” indicate page fault. Page fault ratio = 16/16=100%

2. Optimal Page replacement –
In this algorithm, pages are replaced which would not be used for the longest
duration of time in the future. Here Replace a page that will not be used for
longest period of time

Example-2:
Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 3 with 4 page
frame. Find number of page fault.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4
Page faults
0 is already there so —> 0 Page fault.
when 3 came it will take the place of 7 because it is not used for the longest
duration of time in the future.—>1 Page fault.
0 is already there so —> 0 Page fault..
4 will takes place of 1 —> 1 Page Fault.

Now for the further page reference string —> 0 Page fault because they are

already available in the memory. Optimal page replacement is perfect, but not
possible in practice as the operating system cannot know future requests. The
use of Optimal Page replacement is to set up a benchmark so that other
replacement algorithms can be analyzed against it.

Page fault rate = No. of page faults / No. of bits in the reference string.

= 6/14

Example-2
The page reference string: 1 2 3 2 5 6 3 4 6 3 7 3 1 5 3 6 3 4 2 4 3 4

5 1 for a memory with 3 frames.
Table FIFO Behaviour

Fram
e

1 2 3 2 5 6 3 4 6 3 7 3 1 5 3 6 3 4 2 4 3 4 5 1

0 *
1

1 1 1 1 1 1 1 1 1 1 1 *
1

1 1 1 1 1 *
2

2 2 2 2 *
1

1 *2 2 *
2

2 *
6

6 6 *
6

6 6 6 6 6 6 *
6

6 *
4

4 *
4

4 *
4

4 4

2 *
3

3 3 3 *
3

3 3 *
3

3 *
3

3 3 *
3

3 *
3

3 3 3 *
3

3 3 3

3 *
5

5 5 *
4

4 4 *
7

7 7 *
5

5 5 5 5 5 5 5 5 *
5

5

 m m m h m m h m h h m h h m h h h m m h h h h m

Here “m” is for miss and “h” for hit. Further “*” indicates a new page in memory.
Page fault = 11/24
3. Least Recently Used –
In this algorithm page will be replaced which is least recently used. Replace a
page that has not been used for the longest period of time.

Example-3Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0,

3, 2 with 4 page frames. Find number of page faults.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —
> 4 Page faults
0 is already their so —> 0 Page fault.

when 3 came it will take the place of 7 because it is least recently used —>1
Page fault
0 is already in memory so —> 0 Page fault.

4 will takes place of 1 —> 1 Page Fault
Now for the further page reference string —> 0 Page fault because they are
already available in the memory.
Page fault rate = No. of page faults / No. of bits in the reference string.

= 6/14
Example 2:
The page reference string: 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 for a memory

with 3 frames.
Table Behaviour

Frame 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

0 0* 0 0 3* 3 3 2* 2 2 1* 1 1 4* 4 4 7*

1 1* 1 1 0* 0 0 3* 3 3 2* 2 2 5* 5 5

2 2* 2 2 1* 1 1 0* 0 0 3* 3 3 6* 6

 m m m m m m m m m m m m m m m m

Page fault 16/16=100%

Unit-5 Deadlock

In concurrent computing, a deadlock is a state in which each member of a group waits

for another member, including itself, to take action, such as sending a message or

more commonly releasing a lock. Deadlocks are a common problem

in multiprocessing systems, parallel computing, and distributed systems, where

software and hardware locks are used to arbitrate shared resources and

implement process synchronization.

A process in operating systems uses different resources and uses resources

in the following way.

1) Requests a resource

2) Use the resource

3) Releases the resource

Deadlock is a situation where a set of processes are blocked because each process

is holding a resource and waiting for another resource acquired by some other

process.

In an operating system, a deadlock occurs when a process or thread enters a

waiting state because a requested system resource is held by another waiting

process, which in turn is waiting for another resource held by another waiting process.

Example of Deadlock

• A real-world example would be traffic, which is going only in one
direction.

• Here, a bridge is considered a resource.

• So, when Deadlock happens, it can be easily resolved if one car backs up

(Preempt resources and rollback).

• Several cars may have to be backed up if a deadlock situation occurs.

• So starvation is possible.

A similar situation occurs in operating systems when there are two or more
processes that hold some resources and wait for resources held by other(s).

For example: in the below diagram, Process 1 is holding Resource 1 and
waiting for resource 2 which is acquired by process 2, and process 2 is waiting
for resource 1.

https://www.guru99.com/images/1/122319_0715_Introductio1.png
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Synchronization_(computer_science)

5.2 SYSTEM MODEL

Let the resource types be R1,R2,R3……Rm (like CPU cycles, memory space, I/O

devices etc.) Each resource type Ri has Wi instances. Each process utilizes a resource

as follows-

1. Request: A process needing a resource will request the OS for assignment of

the needed resource. Then the process waits , till OS assigns it an instance of

the requested resource.

2. Assignment: The OS will assign to the requesting process an instance of the

requested resource, whenever it is available. Then the process comes out from

its waiting state.

3. Use: The process will use the assigned resource. In case the resource is non-

shareable, the process will have exclusive access to it.

4. Release: After the process finished with the use of the assigned resource, it will

return the resource to the system pool. The released resource can now be

assigned to another waiting process.

The resources are of two types (a) logical resource (b) physical resource. The

Request and Release resources are called system calls, it can be accomplished

by (a) Wait and (b) Signal

Necessary conditions for occurring deadlock

A deadlock situation on a resource can arise if and only if all of the following conditions

hold simultaneously in a system:

1. Mutual exclusion: A resource can be used by only one process at a time. If another

process requests for that resource, then the requesting process must be delayed until

the resource has been released. At least one resource must be held in a non-

shareable mode. Otherwise, the processes would not be prevented from using the

resource when necessary. Only one process can use the resource at any given instant

of time.

https://en.wikipedia.org/wiki/Mutual_exclusion

It means whatever resource we are using it must be used in a mutually exclusive way.

Where only one processes use one resource at a time only. For example, the printing

process is going on and all sudden another process tries to interrupt the printing

process. So here in mutual exclusion situation, only after the printing task is completed

then only the next task is processed. Mutual exclusion can be eliminated by sharing

resources simultaneously, which is not possible practically.

2. Hold and wait or resource holding: a process is currently holding at least one
resource and requesting additional resources which are being held by other
processes.

A process is holding some resources and is waiting for additional resources but those
resources are acquired by some other process. From the above example, P1 is
holding R1 and waiting for R2, where R2 is acquired by P2, and P2 is holding R2 and
waiting for R1, where R1 is acquired by P1 is a hold and wait situation deadlock may
occur in the system.

3. No preemption: Resources granted to a process can be released back to the
system only as a result of the voluntarily action of that process, after the process has
completed its task .

According to pre-emptive based algorithms, if there is a priority task
trying to interrupt the current task. The pre-emptive algorithm it holds the
current task and firstly executes priority task and get backs to its first task. A
situation explained as per the above example where a process holds the
resource as long as it gets executed, that is P1 can release R1 only after
executing, similarly P2 release R2 only after execution. If there is no pre-
emption the deadlock may occur.

https://en.wikipedia.org/wiki/Preemption_(computing)
https://www.elprocus.com/real-time-operating-system-rtos-and-how-it-works/

no-preemption-example

4. Circular wait: Each process must be waiting for a resource which is being held by

another process, which in turn is waiting for the first process to release the resource.

In general, there is a set of waiting processes, P = {P1, P2, …, PN}, such that P1 is

waiting for a resource held by P2, P2 is waiting for a resource held by P3 and so on

until PN is waiting for a resource held by P1.

A set of processes are said to be in deadlock if one process is waiting for a

resource that is allocated to another process and that process is waiting for a resource,

it is similar to the above-explained example where it is in loop form. Where P1 is

waiting for R2 and R2 is allocated for P2 and P2 is waiting for R1 and R1 allocated for

P1 which is a circular wait form if this condition satisfies deadlock occurs.

These four conditions are known as the Coffman conditions

While these conditions are sufficient to produce a deadlock on single-instance

resource systems, they only indicate the possibility of deadlock on systems having

multiple instances of resources.

Dead-Lock Detection Algorithm

Resource Allocation Graph

The cases where we allocate resources to processes, and operating system rechecks
if a deadlock has occurred in the system or no using 2 main deadlock detection
algorithms, they are

• Single instance
• Multiple instances of resource type

https://en.wikipedia.org/wiki/Set_(mathematics)

Single Instance

A single instance is a situation where a system is having single instances of
all the resources. It is also known as wait for graph algorithm or resource
allocation graph.

The resource allocation graph is consisting of a set of (i) processes and

set of (ii) resources which are represented as two different vertices. The
resources in the resource allocation graph are modified and are represented
as wait for graph form. Where wait for graph form has only processes which
are represented as vertices as shown below wherein,

• Resource allocation graph: Processes P1, P2, P3 and resources

R1, R2, R3 are represented in the resource-allocation graph.
(a) A directed edge from the process Pi to the resource type Rj and

denoted by Pi --> Rj. It signifies that ith process is requesting one
unit of the resource type j.(request edge)

(b) A directed edge from the resource Ri to the process Pj and
denoted by Ri --> Pj. It signifies that one unit of ith resource is
held by the process j. (allocation/assignment edge)

• Wait for Graph: Only Processes P1, P2, P3 are mentioned in wait

for the graph.
• If there is a cycle condition, that if there is a continuous flow of a

process in one direction it means cycle condition exits and wait for
the graph is in a deadlock condition.

Example 1: The below example shows there is no deadlock state because
there is no continuous flow observed in wait for the graph.

single-instance-example1

Example 2: Deadlock condition has occurred because there is a continuous
flow of cycle from P1 to P4.

R1
.

R2
.

P
1 P

2
P
3

.

.

.R4

.

.

single-instance-example2

(RAG with DEADLOCK)

Here 2 dots means that there are two instances of the resource type R3.If a
cycle exists in the RAG there may or may not be a deadlock. However it is
sure that no cycle exists i.e if the graph is acyclic then deadlock will not exist.

Multiple Instances of Resource Type

Multiple instances of the resource type is a situation where a system is
having multiple instances of all resources, it is also known as Bankers
algorithm. According to the Bankers algorithm, as soon as the process gets
all its required resources, then it releases its resources.

Let us consider the following example, assume there are 5 processes P0,
P1, P2,P3,P4 and resource type A, B, C where A can be CPU, B can be
printer and C can be the keyboard.
Case (i): Suppose if we take the condition request is “000” condition which is
present in P0 and P2, we should check which request is fulfilled, the
processes P0 release the processes after getting allocated, i.e Available
<0,1,0>, then next P2 processes releases after getting allocated and
Available <3,1,3>,. Like this, in a sequence, one by one process releases
P0, P2, P3, P1, P4 in a sequence. The sequence may also be
P0,P2,P3,P4,P1.The available sequence is a condition where there is no
deadlock.

Process Allocation Request Available

 A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2 0 1 0

P2 3 0 3 0 0 0 3 1 3

P3 2 1 1 1 0 0 5 2 4

P4 0 0 2 0 0 2 7 2 4

 7 2 6

Case(ii): Suppose if P2 is 001 instead of 000, now apply the banker’s
algorithm to check for deadlock condition, where the only P0 gets executed
among all 5 processes. Hence P1, P2, P3, P4 are in deadlock state except
for P0.

Process Allocation Request Available

 A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2 0 1 0

P2 3 0 3 0 0 1

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

https://www.elprocus.com/evolution-of-microprocessor-with-applications/

Strategies for handling Deadlock

1. Deadlock Ignorance/Allow deadlock to occur

Deadlock Ignorance is the most widely used approach among all the
mechanism. This is being used by many operating systems mainly for end user uses.
In this approach, the Operating system assumes that deadlock never occurs. It simply
ignores deadlock. This approach is best suitable for a single end user system where
User uses the system only for browsing and all other normal stuff. Let the deadlocks
occur in the system and deteriorate the system performance. When deadlock
occurs, system will finally stop functioning. Just reboot the system.

In these types of systems, the user has to simply restart the computer in the

case of deadlock. Windows and Linux are mainly using this approach.

2. Deadlock prevention

Deadlock happens only when Mutual Exclusion, hold and wait, No pre-emption
and circular wait holds simultaneously. If it is possible to violate one of the four
conditions at any time then the deadlock can never occur in the system.

The idea behind the approach is very simple that we have to fail one of the four
conditions but there can be a big argument on its physical implementation in the
system.

3. Deadlock avoidance

In deadlock avoidance, the operating system checks whether the system is in
safe state or in unsafe state at every step which the operating system performs. The
process continues until the system is in safe state. Once the system moves to unsafe
state, the OS has to backtrack one step.

In simple words, The OS reviews each allocation so that the allocation doesn't cause

the deadlock in the system.

4. Deadlock detection and recovery

This approach let the processes fall in deadlock and then periodically check
whether deadlock occur in the system or not. If it occurs then it applies some of the
recovery methods to the system to get rid of deadlock.

2.Deadlock Prevention

If we simulate deadlock with a table which is standing on its four legs then we
can also simulate four legs with the four conditions which when occurs simultaneously,
cause the deadlock.

However, if we break one of the legs of the table then the table will fall definitely. The
same happens with deadlock, if we can be able to violate one of the four necessary
conditions and don't let them occur together then we can prevent the deadlock.

Let's see how we can prevent each of the conditions.

1. Mutual Exclusion

Mutual section from the resource point of view is the fact that a resource can
never be used by more than one process simultaneously which is fair enough but that

is the main reason behind the deadlock. If a resource could have been used by more

than one process at the same time then the process would have never been waiting

for any resource.

However, if we can be able to violate resources behaving in the mutually exclusive

manner then the deadlock can be prevented.

Spooling

For a device like printer, spooling can work. There is a memory associated with
the printer which stores jobs from each of the process into it. Later, Printer collects all

the jobs and print each one of them according to FCFS. By using this mechanism, the
process doesn't have to wait for the printer and it can continue whatever it was doing.
Later, it collects the output when it is produced.

Although, Spooling can be an effective approach to violate mutual exclusion but it

suffers from two kinds of problems.

1. This cannot be applied to every resource.

2. After some point of time, there may arise a race condition between the

processes to get space in that spool.

We cannot force a resource to be used by more than one process at the same time

since it will not be fair enough and some serious problems may arise in the

performance. Therefore, we cannot violate mutual exclusion for a process practically.

2. Hold and Wait

Hold and wait condition lies when a process holds a resource and waiting for some
other resource to complete its task. Deadlock occurs because there can be more
than one process which are holding one resource and waiting for other in the cyclic
order.

However, we have to find out some mechanism by which a process either
doesn't hold any resource or doesn't wait. That means, a process must be
assigned all the necessary resources before the execution starts. A process must not
wait for any resource once the execution has been started.

!(Hold and wait) = !hold or !wait (negation of hold and wait is, either you don't
hold or you don't wait)

This can be implemented practically if a process declares all the resources initially.
However, this sounds very practical but can't be done in the computer system because
a process can't determine necessary resources initially.

Process is the set of instructions which are executed by the CPU. Each of the
instruction may demand multiple resources at the multiple times. The need cannot be
fixed by the OS.

The problem with the approach is:

1. Practically not possible.

2. Possibility of getting starved will be increases due to the fact that some process

may hold a resource for a very long time.

3. No Preemption

Deadlock arises due to the fact that a process can't be stopped once it starts. However,
if we take the resource away from the process which is causing deadlock then we can
prevent deadlock.

This is not a good approach at all since if we take a resource away which is being
used by the process then all the work which it has done till now can become
inconsistent.

Consider a printer is being used by any process. If we take the printer away from that
process and assign it to some other process then all the data which has been printed
can become inconsistent and ineffective and also the fact that the process can't start
printing again from where it has left which causes performance inefficiency.

4. Circular Wait

To violate circular wait, we can assign a priority number to each of the resource. A
process can't request for a lesser priority resource. This ensures that not a single
process can request a resource which is being utilized by some other process and no
cycle will be formed.

Among all the methods, violating Circular wait is the only approach that can be
implemented practically.

3. Deadlock avoidance

In deadlock avoidance, the request for any resource will be granted if the

resulting state of the system doesn't cause deadlock in the system. The state of the

system will continuously be checked for safe and unsafe states.

In order to avoid deadlocks, the process must tell OS, the maximum number of

resources a process can request to complete its execution.

The simplest and most useful approach states that the process should declare the

maximum number of resources of each type it may ever need. The Deadlock

avoidance algorithm examines the resource allocations so that there can never be a

circular wait condition.

Safe and Unsafe States:

A state of the system is called safe if the system can allocate all the resources

requested by all the processes without entering into deadlock.

If the system cannot fulfil the request of all processes, then the state of the
system is called unsafe.

A safe state is not a deadlock state. Conversely, a deadlock state is an unsafe state.

The resource allocation state of a system can be defined by the instances of available

and allocated resources, and the maximum instance of the resources demanded by

the processes.

A state of a system recorded at some random time is shown below.

Resources Assigned

Process Type 1 Type 2 Type 3 Type 4

A 3 0 2 2

B 0 0 1 1

C 1 1 1 0

D 2 1 4 0

Resources still needed

Process Type 1 Type 2 Type 3 Type 4

A 1 1 0 0

B

0

1

1

2

C 1 2 1 0

D 2 1 1 2

1. E = (7 6 8 4) Total instances of the resources in system

2. P = (6 2 8 3) Resources already allocated

3. A = (1 4 0 1) Resources not in use

Above tables and vector E, P and A describes the resource allocation state of a
system. There are 4 processes and 4 types of the resources in a system. Table 1
shows the instances of each resource assigned to each process.

Table 2 shows the instances of the resources, each process still needs. Vector E is

the representation of total instances of each resource in the system.

Vector P represents the instances of resources that have been assigned to processes.

Vector A represents the number of resources that are not in use.

E UNSAF

SAFE

Deadlock

The key of Deadlock avoidance approach is when the request is made for resources
then the request must only be approved in the case if the resulting state is also a safe
state. The followings are the requirements of deadlock avoidance-

1. the maximum resource requirement must be stated in advance.

2. The process under consideration must be independent. i.e no synchronization

3. There must be a fixed no. of resources to allocate.

4. No process may exist till it releases the resources it is holding.

Example: Consider that there are total 10 magnetic tapes. There are 04 processes in

the system, in which process P1 may need maximum 04 tapes, P2 may need

maximum 03 tapes, P3 may need maximum 05 tapes and P4 may need maximum 07

tape drives. The matrix is as follows:

Process Max. Need Allocated Current Need

P1 4 2 2

P2 3 2 1

P3 5 3 2

P4 7 1 6

Is the system SAFE or UNSAFE?

Solution: Tape drives allocated = 2+2+3+1=8

Left over drives = 10-8=2 Available

The safe sequence <P1,P2,P3,P4>

Banker’s Algorithm

This algorithm is used with resource allocation system with multiple instances of each

resource type.

(A) Deadlock Detection

1. If resources have single instance:

In this case for Deadlock detection we can run an algorithm to check for cycle

in the Resource Allocation Graph. Presence of cycle in the graph is the

Safe sequence is < P1, P3, P4, P2, P0 >.

4.Deadlock Detection & Recovery

2. If there are multiple instances of resources:

Detection of the cycle is necessary but not sufficient condition for deadlock

detection, in this case, the system may or may not be in deadlock varies

according to different situations.

(B)Deadlock Recovery

A traditional operating system such as Windows doesn’t deal with deadlock recovery

as it is time and space consuming process. Real-time operating systems use Deadlock

recovery. Deadlock recovery performs when a deadlock is detected.

When deadlock detected, then our system stops working, and after the recovery of the

deadlock, our system starts working again.

Therefore, after the detection of deadlock, a method/way must require to recover that

deadlock to run the system again. The method/way is called as deadlock recovery.

• Deadlock recovery through preemption

• Deadlock recovery through rollback

• Deadlock recovery through killing processes

Let's discuss about all the above three ways of deadlock recovery one by one.

(A) Deadlock Recovery through Preemption

The ability to take a resource away from a process, have another process use
it, and then give it back without the process noticing. It is highly dependent on the
nature of the resource.

Deadlock recovery through preemption is too difficult or sometime impossible.

sufficient condition for deadlock.

In the above diagram, resource 1 and resource 2 have single instances. There
is a cycle R1 → P1 → R2 → P2. So, deadlock is Confirmed.

https://codescracker.com/operating-system/deadlocks.htm
https://codescracker.com/operating-system/deadlock-detection.htm
https://tutorialspoint.dev/image/deadlock.png

(B) Deadlock Recovery through Rollback

In this case of deadlock recovery through rollback, whenever a deadlock is
detected, it is easy to see which resources are needed.

To do the recovery of deadlock, a process that owns a needed resource is rolled back
to a point in time before it acquired some other resource just by starting one of its
earlier checkpoints.

© Deadlock Recovery through Killing Processes

This method of deadlock recovery through killing processes is the simplest way
of deadlock recovery.

Sometime it is best to kill a process that can be return from the beginning with no ill
effects.

