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Circuit Elements and Laws

Yoltage
Energy is required for the movement of charge from one point to another. Let W Joules of
energy be required to move positive charge Q columbs from a point a to point b in a circuit.
We say that a voltage exists between the two points. The voltage V between two points may be
defined in terms of energy that would be required if a charge were transferred from one point
to the other. Thus, there can be a voltage between two points even if no charge is actually
moving from one to the other. Voltage between a and b is given by
W
v=—1J]/C
Q
Worked are (W) in Joules
Hence Electric Potential (V) =
Charge (Q)in columbs
Current :

An electric current is the movement of electric charges along a definite path. In case of a

conductor the moving charges are electrons.

The unit of current is the ampere. The ampere is defined as that current which when flowing in
two infinitely long parallel conductors of negligible cross section, situated 1 meter apart in Vacuum,

produces between the conductors a force of 2 x 10”7 Newton per metre length.

Power : Power is defined as the work done per unit time. If a field F newton acts for t seconds
through a distance d metres along a straight line, work done W = Fxd N.m. or J.

The power P, either generated or dissipated by the circuit element.

W FxdP-=

t  tWork
Power can also be written as Power =

time




Work  Ch arge
=_ X = Voltage x Current
Charge Time

P=V x1I watt.

Energy : Electric energy W is defined as the Power Consumed in a given time. Hence, if current [A
flows in an element over a time period t second, when a voltage V volts is applied across it, the

energy consumed is given by

W=Pxt=VxIxtlJor watt. second.

The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of energy is

kilowatt. hour (Kwh)

Resistance : According to Ohm's law potential difference (V) across the ends of a conductor is
proportional to the current (I) flowing through the conductor at a constant temperature.

Mathematically Ohm's law is expressed as

VOIlorV=RxI

A%

Or R = __ where R is the proportionality constant and is designated as the conductor
I

resistance and has the unit of Ohm (0).

Conductance : Voltage is induced in a stationary conductor when placed in a varying

magnetic field. The induced voltage (e) is proportional to the time rate of change of current,

di/dt producing the magnetic field.

di
Therefore e O
dt
di
Or e=L __
dt

e and 1 are both function of time. The proportionality constant L is called inductance. The Unit

of inductance is Henery (H).



Capacitance : A capacitor is a Physical device, which when polarized by an electric field by

applying a suitable voltage across it, stores energy in the form of a charge separation.

The ability of the capacitor to store charge is measured in terms of capacitance. Capacitence of

a capacitor is defined as the charge stored per Volt applied.

q Coulomb
C= = _=Faradv Volt

Active and passive Branch :

A branch is said to be active when it contains one or more energy sources. A passive branch

does not contain an energy source.

Branch : A branch is an element of the network having only two terminals.
Bilateral and unilateral element :

A bilateral element conducts equally well in either direction. Resistors and inductors are
examples of bilateral elements. When the current voltage relations are different for the two

directions of current flow, the element is said to be unilateral. Diode is an unilateral element.

Linear Elements : When the current and voltage relationship in an element can be simulated

by a linear equation either algebraic, differential or integral type, the element is said to be

linear element.

Non Linear Elements : When the current and voltage relationship in an element can not be

simulated by a linear equation, the element is said to be non linear elements.

Kirchhoff's Voltage Law (KVL) :

The algebraic sum of Voltages (or voltage drops) in any closed path or loop is Zero.
Application of KVL with series connected voltage source.
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Fig. 1.1

Vi+V,—IRi —IR, =0

=Vi+V2=1(R;+Ro)

1=Vi + V2

Ri+ R

Application of KVL while voltage sources are connected in opposite polarity.

AW

R,
Fig. 1.2
Vi—-IRi - V2-1IR,-1IR3=0
O Vi—V,=1IR; +IR; +1IR3
O Vi -V,=1(R;+1IR2 +1R3)
I= — Vi—- V2



Ri+R,+R;

Kirchaoff's Current Law (KCL) :

The algebraic sum of currents meeting at a junction or mode is zero.

Fig. 1.3

Considering five conductors, carrying currents 11, I, I3, Is and Is meeting at a point O.
Assuming the incoming currents to be positive and outgoing currents negative.

I +(-Iz)+I3+(-I4)+IsZO
L-L+Ii-I4+1Is=0

L+Lh+ILs=L+14

Thus above Law can also be stated as the sum of currents flowing towards any junction in an
electric circuit is equal to the sum of the currents flowing away from that junction.

Voltage Division (Series Circuit)

Considering a voltage source (E) with resistors Ri and R in series across it.

R,

E = :D § .

Fig. 1.4

I=Ri+ R
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Voltage drop across Ri=1.Ri=___ E.R;
Ri+R;

Similarly voltage drop across R> =1.R2 =

Current Division :

A parallel circuit acts as a current divider as the current divides in all branches in a

parallel circuit.

v ~

AAA
vy

Fig. 1.5

Fig. shown the current I has been divided into I; and I» in two parallel branches with resistances R

and R> while V is the voltage drop across Ri and Ro.

Vv Vv
L= andL=__
Ri R

Let R = Total resistance of the circuit.



RiR>

OR=
R,+ R,
A% A% VRi+R>
I= = =
R RR, RiR >
R,+ R,

But=V=LRi =LR,

ORR,0O
O
ORi+ R0

O0I=LR:1 O

I= TLi(Ri+R2)

0
R
Therefore IR
L= ———
R+ R,

Similarly it can be derived that

IR
L= —7

Ri+ R




Magnetic Circuits :

Introduction : Magnetic flux lines always form closed loops. The closed path followed by the
flux lines is called a magnetic circuit. Thus, a magnetic circuit provides a path for magnetic
flux, just as an electric circuit provides a path for the flow of electric current. In general, the
term magnetic circuit applies to any closed path in space, but in the analysis of electro-
mechanical and electronic system this term is specifically used for circuits containing a major
portion of ferromagnetic materials. The study of magnetic circuit concepts is essential in the
design, analysis and application of electromagnetic devices like transformers, rotating

machines, electromagnetic relays etc.

Magnetomotive Force (M.M.F) :

Flux is produced round any current — carrying coil. In order to produce the required flux
density, the coil should have the correct number of turns. The product of the current and the

number of turns is defined as the coil magneto motive force (m.m.f).

If I = Current through the coil (A) N =

Number of turns in the coil.

Magnetomotive force = Current x turns

So MM.F=1IXN

The unit of M.M.F. is ampere—turn (AT) but it is taken as Ampere(A) since N has no

dimensions.

Magnetic Field Intensity

Magnetic Field Intensity is defined as the magneto-motive force per unit length of the
magnetic flux path. Its symbol is H.

Magnetic field Intensity (H) = Magnetomotive force
Mean length of the magnetic path

UH=F=1 N-Am



Where / is the mean length of the magnetic circuit in meters. Magnetic field intensity is also called

magnetic field strength or magnetizing force.

Permeability :-
Every substance possesses a certain power of conducting magnetic lines of force.

For example, iron is better conductor for magnetic lines of force than air (vaccum) .
Permeability of a material (O) is its conducting power for magnetic lines of force. It is

the ratio of the flux density. (B) Produced in a material to the magnetic filed strength
(H)ie.O=BH /

Reluctance :

Reluctance (s) is akin to resistance (which limits the electric Current). Flux in a
magnetic circuit is limited by reluctance. Thus reluctance(s) is a measure of the
opposition offered by a magnetic circuit to the setting up of the flux.

Reluctance is the ratio of magneto motive force to the flux. Thus

S=Mmf/
O

Its unit is ampere turns per webber (or AT/wb)
Permeance:-
The reciprocal of reluctance is called the permeance (symbol A).

Permeance (A)=1/S  wb/AT

Turn T has no unit.

Hence permeance is expressed in wb/A or Henerys(H).
Electric Field versus Magentic Field.
Similarities
Electric Field Magnetic Field
1) Flow of Current (I) 1) Flow of flux (O)
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2)

3)

4)

5)

6)

D

2)

Emf is the cause of 2)  MMTf is the cause of flow of

current flow of flux

Resistance offered

3) Resistance offered to to the flow

of the flow of flux, is Current, is called called reluctance

(S) resistance (R)

Conductance 4)

IS

(0)=
R

Permitivity(O) = 1/

Current density is 5)  Flux density is number amperes per

square of lines per square meter. meter.

Current (I) - EMF 6)  MMF

Flux (O0) =——

Dissimilarities

Current actually

electric Circuit. flow

Energy is needed as

flows needed to

flows 1) Flux does not actually in an

in a magnetic circuit.

2)  Energy is initially long as current

create the

magnetic flux, but not
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to maintain it.

3) Conductance is 3) Permeability (or constant and magnetic
independent of current conductance ) strength at a particular depends on the

total temperature. flux for a particular temperature.

B.H. Curve :

Place a piece of an unmagnetised iron bar AB within the field of a solenoid to
magnetise it. The field H produced by the solenoid, is called magnetising field, whose
value can be altered (increased or decreased) by changing (increasing or decreasing) the
current through the solenoid. If we increase slowly the value of magnetic field (H) from
zero to maximum value, the value of flux density (B) varies along 1 to 2 as shown in
the figure and the magnetic materials (i.e iron bar) finally attains the maximum value of

flux density (Bm) at point 2 and thus becomes magnetically saturated.

rIr-‘m bar  Solenoid
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Now if value of H is decreased slowly (by decreasing the current in the solenoid)
the corresponding value of flux density (B) does not decreases along 2-1 but decreases
some what less rapidly along 2 to 3. Consequently during the reversal of magnetization,
the value of B is not zero, but is '13' at H= 0. In other wards, during the period of

removal of magnetization force (H), the iron bar is not completely demagnetized.

In order to demagnetise the iron bar completely, we have to supply the
demagnetisastion force (H) in the opposite direction (i.e. by reserving the direction of
current in the solenoid). The value of B is reduced to zero at point 4, when H='14". This
value of H required to clear off the residual magnetisation, is known as coercive force

1.e. the tenacity with which the material holds to its magnetism.

If after obtaining zero value of magnetism, the value of H is made more negative,
the iron bar again reaches, finally a state of magnetic saturation at the point 5, which
represents negative saturation. Now if the value of H is increased from negative
saturation (= '45") to positive saturation ( ="'12") a curve '5,6,7,2' is obtained. The closed
loop "2,3,4,5,6,7,2" thus represents one complete cycle of magnetisation and is known

as hysteresis loop.

NETWORK ANALYSIS
Different terms are defined below:

1. Circuit: A circuit is a closed conducting path through which an electric current either . flow or is
intended flow

2. Network: A combination of various electric elements, connected in any manner. Whatsoever, is
called an electric network 3. Node: it is an equipotential point at which two or more circuit elements

are joined.

4. Junction: it is that point of a network where three or more circuit elements are joined.
5. Branch: it is a part of a network which lies between junction points.

6. Loop: It is a closed path in a circuit in which no element or node is accounted more than once.

7. Mesh: It is a loop that contains no other loop within it.

13



Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of i) circuit elements ii) nodes iii)
junction points iv) branches and v) meshes.

R7

R3 Ry V
Solution: i) no. of circuit elements = 12 (9 resistors + 3 voltage sources)

i1) no. of nodes =10 (a, b, ¢, d, ¢, f, g, h, k, p)
ii1) no. of junction points =3 (b, e, h)

iv) no. of branches = 5 (bcde, be, bh, befgh, bakh)
v) no. of meshes = 3 (abhk, bcde, beth)
MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding solutions for a
network. The suitability of either mesh or nodal analysis to a particular problem depends mainly on
the number of voltage sources or current sources .If a network has a large number of voltage sources,
it is useful to use mesh analysis; as this analysis requires that all the sources in a circuit be voltage
sources. Therefore, if there are any current sources in a circuit they are to be converted into equivalent
voltage sources,if, on the other hand, the network has more current sources,nodal analysis is more
useful.

Mesh analysis is applicable only for planar networks. For non-planar circuits mesh analysis is not
applicable .A circuit is said to be planar, if it can be drawn on a plane surface without crossovers. A
non-planar circuit cannot be drawn on a plane surface without a crossover.

14



Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a planar
circuit which looks like a non-planar circuit. It has already been discussed that a loop is a closed path.
A mesh is defined as a loop which does not contain any other loops within it. To apply mesh analysis,
our first step is to check whether the circuit is planar or not and the second is to select mesh currents.
Finally, writing Kirchhoff's voltage law equations in terms of unknowns and solving them leads to the
final solution.

¢ @
(a) (b) ()

Figure 3.2

Observation of the Fig.3.2 indicates that there are two loops abefa,and bcdeb in the network
.Let us assume loop currents [; and [owith directions as indicated in the figure.
Considering the loop abefa alone, we observe that current I; is passing through Ri, and (I4-12) is
passing through R>. By applying Kirchhoff’s voltage law, we can write

Vs =LiR1#+Rx(11-12) (3.1)
R1 R3
a —/\/\/\/ b /\/\/\/ C
Vs R
R4
G) I I
f e d

Figure 3.3
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Similarly, if we consider the second mesh bcdeb, the current I is passing through R; and Ry,

and (I2 — I1) is passing through R>. By applying Kirchhoff’s voltage law around the second mesh, we

have

R> (I>-11) + R3lx +R4l> =0 (3.2)

By rearranging the above equations,the corresponding mesh current equations are
I (Ri+R2) - LR> =Vi

-[1R2 H(R2+R3+R4) =0 (3.3)

By solving the above equations, we can find the currents 11 and > If we observe Fig.3.3, the

circuit consists of five branches and four nodes, including the reference node.The number of mesh
currents is equal to the number of mesh equations.

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of mesh

current would be 5-(4-1)=2.

In general we have B number of branches and N number of nodes including the reference node

than number of linearly independent mesh equations M=B-(N-1).

Example 3.2 Write the mesh —AAAN

current equations in the circuit shown 10V

5Q 10Q2

50v —|—

in fig 3.4 and determine the currents.

Figure 3.4

Solution: Assume two mesh currents in the direction as indicated in fig.
3.5. The mesh current equations are

16



5Q

—VV\
Shi + 2(1hi-1p) = EX I I 10Q 10
DN —  [s0v
1012 + 2(12-11) —|— +50=0 (3.4)
We can rearrange the above equations as
Figure 3.5
711 -21, =10
2114121 =-50 (3.5)

By solving the above equations, we have [1=0.25 A, and I, =-4.125
Here the current in the second mesh I, is negative; that is the actual current 1> flows opposite to the

assumed direction of current in the circuit of fig .3.5. Example 3.3 Determine the mesh current I; in

the circuit shown in fig.3.6.

10 L 2
5 ' + | 10V
|1 ] —
50 - |
3 5V
_ Q
Figure 3.6

Solution: From the circuit, we can from the following three mesh equations

101+5(51+12) +3(11-53) = 50 (3.6)
20 +5(+1) +1(L+5) =10 (3.7)
3(I-I) +1(Ith) = -5 (3.8)
Rearranging the above equations we get
1811+512-313=50 (3.9
5Ii+81 + =10 (3.10)
311 + It 413=-5 (3.11)

According to the Cramer’s rule

17



0505 -30

D10 8 10
O 1 .
40 1175
Li=0 5 =
-18 5 _39 356
|
|
o5 8 10
O0-3 1 400
|

Or I1= 3.3 A Similarly,

018 50 -30

g5 10 1"

0-3 -5 40 -355
I: =

2> OO0 18 5-300 356

o s 8 10

O O

oO-3 1 4[
Or [,=-0.997A

0185 500

os 8100

O O

[=0-3—"~——50=-525

3 00 18 5 -300356

Oos 8 10

O O

o-3 1 4
Or 5=1.47A

O0,=3.3A, L=-0.997A, I;=1.47A

(3.12)

(3.13)



MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be written by inspection without
going through the detailed steps. Consider a three mesh networks as shown in figure 3.7

The loop equation are [iR1+ Rao(Ii-12))  =Vi Ri1

Figure 3.7
Ro( L-I)+2R3=-V» 3.14
Ral3+RsI=V> 315
Reordering the above equations, we have
(Ri+R2)11-Ra1r=V) 3.16
-Roli+(R2+R3)[h=-V» 3.17
3.18

(R4+R5)[3=V>
The general mesh equations for three mesh resistive network can be written as

Ruli O Ri2l2 O Ri3l3=Va 3.19

O Roili+R2212 O R23Ils= Vb 3.20

O R3:1I1 O Raz22+R3313= Ve 3.21

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 3.21 respectively, the
following observations can be taken into account.

1. The self-resistance in each mesh

2. The mutual resistances between all pairs of meshes and 3. The algebraic sum of

the voltages in each mesh.

The self-resistance of loop 1, R11=Ri+R, is the sum of the resistances through which I;

passes.

The mutual resistance of loop 1, Ri2=-Ry, is the sum of the resistances common to loop currents I;
and D>, If the directions of the currents passing through the common resistances are the same, the
mutual resistance will have a positive sign; and if the directions of the currents passing through the
common resistance are opposite then the mutual resistance will have a negative sign.

V.=V is the voltage which drives the loop 1. Here the positive sign is used if the
direction of the currents is the same as the direction of the source. If the current direction is
opposite to the direction of the source, then the negative sign is used.

Similarly R22=R>+R3; and R33=R4+Rs are the self-resistances of loops 2 and 3
respectively. The mutual resistances R13=0, R21= -R2, R23=0, R31=0, R3,=0 are the sums of the

resistances common to the mesh currents indicated in their subscripts.
19



V= -V, V= V; are the sum of the voltages driving their respective loops.

Example 3.4 write the mesh equation for the circuit shown in fig. 3.8

10V -

Ty

Solution : the genera

Ruli O Ri2l2 O Ri3[3=Va (3.22)

O R21l1+R2212 O R2313=Vb (3.23)
O R3il1 O R3212+R3313=V¢ (3.24)

Consider equation 3.22

Rui=self resistance of loop 1=(1Q+ 3 Q +6 Q) =10 Q

Ri,= the mutual resistance common to loop 1 and loop 2 =-3 Q

Here the negative sign indicates that the currents are in opposite direction .
Ri3= the mutual resistance common to loop 1 & 3= -6 Q V= +10V,

the voltage the driving the loop 1.

Here he positive sign indicates the loop current I; is in the same direction as the source
element.

Therefore equation 3.22 can be written as
10 I1- 3-613=10 V (3.25)

Consider Eq. 3.23

R21= the mutual resistance common to loop 1 and loop 2 =-3 Q

R22= self resistance of loop 2=(3Q+ 2 Q +5 Q) =10 Q R23=0, there is
no common resistance between loop 2 and 3.
Vi, =-5V, the voltage driving the loop 2.

20



Therefore Eq. 3.23 can be written as
-3I1 + 10L= -5V (3.26)
Consider Eq. 3.24
R31= the mutual resistance common to loop 1 and loop 3 =-6 Q
R3,= the mutual resistance common to loop 3 and loop 2 =0
Rs3= self resistance of loop 3=(6Q2+ 4 Q) =10 Q
V= the algebraic sum of the voltage driving loop 3
=(5 V+20V)=25 V (3.27)
Therefore, Eq3.24can be written as -61; + 10I3= 25V
-61;-3-61:= 10V
-31+101,=-5V
-61;1+1013=25V

SUPERMESH ANALYSIS

Suppose any of the branches in the network has a current source, then it is slightly difficult to apply
mesh analysis straight forward because first we should assume an unknown voltage across the current
source, writing mesh equation as before, and then relate the source current to the assigned mesh
currents. This is generally a difficult approach. On way to overcome this difficulty is by applying the
supermesh technique. Here we have to choose the kind of supermesh. A supermesh is constituted by
two adjacent loops that have a common current source. As an example, consider the network shown in
the figure 3.9.

R, |
+ VvV I I Ry Iz R4
O
«— < <
1 I 2 3

Figure 3.9
Here the current source I is in the common boundary for the two meshes 1 and 2. This current source

creates a supermesh, which is nothing but a combination of meshes 1 and 2.
Rili + R3(I>-3)=V

Or Rili+Rskb-Ri=V

Considering mesh 3, we have

R3(I3-12)+ Ral3=0

Finally the current I from current source is equal to the difference between two mesh currents i.e.
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I1-I,=I we have thus formed three mesh equations which we can solve for the three unknown

currents in the network.

Example 3.5. Determine the current in the 5Q resistor in the network given in Fig. 3.10

Q

Figure 3.10
Solution: - From the first mesh, i.e. abcda, we have

50 =10(Ii-12) + 5(11-13)

Or 151;-101, -513 =50 (3.28)

From the second and third meshes. we can form a super mesh

10(I2-11)+21> +I3+5(13-11)=0

Or -15I1+12L +613 =0 (3.29)
The current source is equal to the difference between II and III mesh currents

ie. Lrh=2A (3.30)

Solving 3.28.,3.29 and 3.30. we have

I1 =19.99A,1,=17.33 A, and I3 = 15.33 A

The current in the 5Q resistor =11 -13

=19.99 -15.33=4.66A

The current in the 5Q resistor is 4.66A.

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the currents,
I 1, I and 1.
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10V

s N

I (e
Iz I3

3
(Mioa 30 10
Pl «— 2Q
<—

I IT I11

Figure 3.11

Solution ; In fig 3.11, the current source lies on the perimeter of the circuit, and the first mesh
is ignored. Kirchhoff's voltage law is applied only for second and third meshes .

From the second mesh, we have

3(1>-11)+2(I>-13)+10 =0
Or =31 +51-213 = -10 (3.31)

From the third mesh, we have

I3+2((I3-12) =10

Or -21+313 =10 (3.32)
From the first mesh, I =10A (3.33)

From the abovethree equations, we get

[i=10A, I, =7.27, I; =8.18A

NODALANALYSIS

In the chapter I we discussed simple circuits containing only two nodes, including the reference node.
In general, in a N node circuit, one of the nodes is chosen as the reference or datum node, then it is possible to
write N -Inodal equations by assuming N-1 node voltages. For example,al0 node circuit requires nine
unknown voltages and nine equations. Each node in a circuit can be assigned a number or a letter. The node
voltage is the voltage of a given node with respect to one particular node, called the reference node, which we
assume at zero potential. In the circuit shown in fig. 3.12, node 3 is assumed as the Reference node. The
voltage at node 1 is the voltage at that node with respect to node 3. Similarly, the voltage at node 2 is the
voltage at that node with respect to node 3. Applying Kirchhoff’s current law at node 1, the current entering is
the current leaving (See Fig.3.13)
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R» R4
ﬁt“‘.
I] L Rl R3 RS
3 Figure 3.12
R>
A R,
Figure 3.13

Ii=Vi/Ri + (Vi-V2)/R2
Where V1 and V> are the voltages at node 1 and 2, respectively. Similarly, at node
2.the current entering is equal to the current leaving as shown in fig. 3.14

Ro R4

Figure 3.14

(V2-V1)/R2 + V2/R3 + V2/(R4+Rs) =0
Rearranging the above equations, we have
Vi[1/R1+1/R2]-V2(1/R2)=14

-Vi(1/R2) + V[ 1/R2+1/R3+1/(R4+R5)]=0

From the above equations we can find the voltages at each node.
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Example 3.7 Determine the voltages at each node for the circuit shown in fig 3.15

100 J\/\/\/\j 20
VWS AN AN

o )
10V 50 SA 1Q 6Q

3Q

P

Figure 3.15

Solution : At node 1, assuming that all currents are leaving, we have
(Vi-10)/10 + (Vi-V2)/3 +Vi/5 + (Vi-V2)/3 =0 Or
Vi[1/10 +1/3+1/5+1/3]-Vo[ 1/3+1/3]=1

0.96V1-0.66V2 =1 (3.36)
At node 2, assuming that all currents are leaving except the current from current source, we have

(V2-V1)/3+ (V2-V1)/3+ (V2-V3)/2 =5

-Vi[2/3]+V2o[1/3 +1/3 + 1/2]-V3(1/2) =5

-0.66V1+1.16V»-0.5V3= 5 (3.37)
At node 3 assuming all currents are leaving, we have

(V3-V2)/2 + V3/1 + V3/6 =0
-0.5V, + 1.66V3=0 (3.38)

Applying Cramer’s rule we get

o1 -066 0 O
g g

gd 05 1.16 =05 0Opg 7.154

V= - 0.5 1.66 = = 8.06
! DD 096 -0.66 0 . 0.887
O
O0-0.66 1.16 -0.50
a O
o o - 0.5 l.660

Similarly,
o 0% 1 0 O

vol? Z0.660 50 -1.66 0.5 gO° 9.06 = 10.2
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2=0 096 - 0.66 0 0=0.887

O O
0-0.66 1.16 -0.50
O 0
o O -05 1.66[

o 09 -06610

v=00Y T 0660 -1.160.5 05 Og0 2.73 = 3.07

soY 096 -066 08 =0.887
O
0-0.66 1.16 - 0.50
0 O
00 -05 1660

NODAL EQUATIONS BY INSPECTION METHOD The nodal equations for a general planar network can also be written by inspection without going
through the detailed steps. Consider a three node resistive network, including the reference node, as shown in fig 3.16

R R3 Rs

p— Figure 3.16
In fig. 3.16 the points a and b are the actual nodes and c is the reference node.

Now consider the nodes a and b separately as shown in fig 3.17(a) and (b)

Ri Va R3 R3 Vb Rs
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Vb Va

Figure 3.17 —

In fig 3.17 (a), according to Kirchhoff’s current law we have
11+ +13=0
(Va-V1)/R1 +Va/Ro+ (Va-Vu)/R3=0 (3.39)

In fig 3.17 (b) , if we apply Kirchhoff’s current law
Ii+1Is=15

O(Vy-Va)/R3 + V/R4+(Vp-V2)/R5=0 (3.40)

Rearranging the above equations we get

(1/R1+1/Ro+1/R3)Va-(1/R3) Ve=(1/R1) V1 (3.41)
(-1/R3)Vat+ (1/R3+1/R4+1/R5)Ve=V2/Rs (3.42)

In general, the above equation can be written as

(3.43)
GaaVa+ Gab V=11

GbaVa+ Gbb V=12 (3.44)
By comparing Eqs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node a,

Gaa=(1/R1 + 1/R2 + 1/R3) is the sum of the conductances connected to node a. Similarly, Gu,= (1/R3 +
1/R4 +1/R5) is the sum of the conductances connected to node b. Gap=(-1/R3) is the sum of the mutual
conductances connected to node a and node b. Here all the mutual conductances have negative signs.
Similarly, Gp.= (-1/R3) is also a mutual conductance connected between nodes b and a. I; and L are
the sum of the source currents at node a and node b, respectively. The current which drives into the
node has positive sign, while the current that drives away from the node has negative sign.

Example 3.8 for the circuit shown in the figure 3.18 write the node equations by the
inspection method.
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Fig 3.18

Solution:-
The general equations are
GaaVatGa V=1 (3.45)

GvaVa + G V=12 (3.46)

Consider equation 3.45

Gaa=(1+ 1/2 +1/3) mho. The self conductance at node « is the sum of the conductances connected to
node a.

Gob = (1/6 + 1/5 + 1/3) mho the self conductance at node b is the sum of conductances connected to
node b.

Gab =-(1/3) mho, the mutual conductances between nodes a and b is the sum of the conductances
connected between node a and b.

Similarly Gpa = -(1/3), the sum of the mutual conductances between nodes b and a.

[,=10/1 =10 A, the source current at node a,
1,=(2/5 +5/6) = 1.23A, the source current at node b.

Therefore, the nodal equations are

1.83V,-0.33Vy=10 (3.47)
-0.33V,+0.7V= 1.23 (3.48)
SUPERNODE ANALYSIS

Suppose any of the branches in the network has a voltage source, then it is slightly difficult to apply
nodal analysis. One way to overcome this difficulty is to apply the supernode technique. In this
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method, the two adjacent nodes that are connected by a voltage source are reduced to a single node
and then the equations are formed by applying Kirchhoft’s current law as usual. This is explained with
the help of fig. 3.19

Vi Va2 + _ V3
W (2 \/ 3]
:RQ ‘/X
I {jﬁ R, Rs R4 Rs
— Vv
4
FIG 3.19

It is clear from the fig.3.19, that node 4 is the reference node. Applying Kirchhoft’s current law at
node 1, we get

I=(Vi/R1) + (Vi-V2)/R2

Due to the presence of voltage source V, in between nodes 2 and 3 , it is slightly difficult to
find out the current. The supernode technique can be conveniently applied in this

casc.

Accordingly, we can write the combined equation for nodes 2 and 3 as under.
(V2-V1)/R2 + V2/R3 + (V3-Vy)/R4 +V3/Rs= 0

The other equation is

V2-V3 =Vx From the above three equations, we can find the three unknown

voltages.

Example 3.9 Determine the current in the 5 Q resistor for the circuit shown in fig.
3.20
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2Q
Vi Vs 4= Vs

20V

#10A3Q

10V fig. 3.20

Solution. At node 1

10=V1/3 +(Vi-V2)/2
Or  Vi[1/3 +1/2]-(V2/2)-10=0

0.83V1-0.5V2-10=10 (3.49)

At node 2 and 3, the supernode equation is
(V2-V1)/2 + Vo/1 +(V3-10)/5 +V3/2 =0
Or —Vi/2 +Vo[(172)+1]+ V3[1/5 + 1/2]=2
Or -0.5Vi+ 1.5V,+0.7V3-2=0 (2.50)
The voltage between nodes 2 and 3 is given by

V2-V3=20 (3.51)
The current in 5Q resistor Is =(V3-10)/5

Solving equation 3.49, 3.50 and 3.51, we obtain

V;=-8.42V

O Currents [5=(-8.42-10)/5 = -3.68 A (current towards node 3 ) i.e the current flows towards
node 3.
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SOURCE TRANSFORMATION TECHNIQUE

In solving networks to find solutions one may have to deal with energy sources. It has already
been discussed in chapter 1 that basically, energy sources are either voltage sources or current sources.
Sometimes it is necessary to convert a voltage source to a current source or vice-versa. Any practical
voltage source consists of an ideal voltage source in series with an internal resistance. Similarly, a
practical current source consists of an ideal current source in parallel with an internal resistance as

shown in figure3.21. Ry and R; represent the internal resistances of the voltage source Vs, and current
source I respectively.

® 1
Rv
smAVAYAYAR
Vs _/'3:2;, Is

ab fig. 321 b
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Any source, be it a current source or a voltage source, drives current through its load resistance,
and the magnitude of the current depends on the value of the load resistance. Fig 3.22 represents a
practical voltage source and a practical current source connected to the same load resistance R.

Ry

a a

vV V V —>

I l I

Vs I {EE’ Ry
Rp Is | Rr
b b
(a) (b)

Figure 3.22

From fig 3.22 (a) the load voltage can be calculated by using Kirchhoff’s voltage law as Vab=Vs-ILRv

The open circuit voltage Vo=V

5 The short
circuit current Isc—=

R,

from fig 3.22 (b)
IL:Is‘I:Is‘(Vab/Rl)
The open circuit voltage Vo= IsR1

The short circuit current Is=I

The above two sources are said to be equal, if they produce equal amounts of current and
voltage when they are connected to identical load resistances. Therefore, by equating the open circuit
votages and short circuit currents of the above two sources we obtain

Voc=IsR1=Vs
Lse=Is=Vs/Ry
It follows that
Ri=R\=Rs; V&=IRs

where Rs is the internal resistance of the voltage or current source. Therefore, any
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practical voltage source, having an ideal voltage V; and internal series resistance Rs can be replaced
by a current source [=Vy/R; in parallel with an internal resistance Rs. The reverse tansformation is
also possible. Thus, a practical current source in parallel with an internal resistance R can be replaced
by a voltage source V=IsR; in series with an internal resistance Rs.

Example 3.10 Determine the equivalent voltage source for the
current  source shown in fig 3.23
A
P 5Q A
> ®
B
Figure 3.23

Solution: The voltage across terminals A and B is equal to 25 V. since the internal resistance for the
current source is 5 €2, the internal resistance of the voltage source is also 5 Q. The equivalent voltage
source is shown in fig. 3.24.

5Q

25V

o
A

Fig 3.24

Example 3.11 Determine the equivalent current source for the voltage source shown in fig. 3.25

W A
1X

30 Q

50V
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Solution : the short circuit current at terminals A and B is equal to

I=50/30=1.66 A

1.66 A <3
30Q

Fig 3.26

Since the internal resistance for the voltage source is 30Q2, the internal resistance of the
current source is also 30 Q. The equivalent current source is shown in fig. 3.26.
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NETWORK THEOREMS

Before start the theorem we should know the basic terms of the network. Circuit:
It is the combination of electrical elements through which current passes is called
circuit.
Network: It is the combination of circuits and elements is called network. Unilateral
:It is the circuit whose parameter and characteristics change with change in the
direction of the supply application.
Bilateral: It is the circuit whose parameter and characteristics do not change with the
supply in either side of the network.
Node: It is the inter connection point of two or more than two elements is called node.
Branch: It is the interconnection point of three or more than three elements is called
branch.
Loop: It is a complete closed path in a circuit and no element or node is taken more
than once.
Super-Position Theorem :
Statement :" It states that in a network of linear resistances containing more than one
source the current which flows at any point is the sum of all the currents which would
flow at that point if each source were considered separately and all other sources

replaced for time being leaving its internal resistances if any".
R, R+

Explanation :
Considering E; source

Step 1.
Ry&r are in series and parallel with R3 and again series with R;
(Rotr2) [ R3
= Re++)Rs=m (say)
R+ 1+ Rs
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Rth=m+R+n
E'] =

1 Rt

I= I]DR3

2

R>+1r +Rs
I 5= _  Lh(R+nr)

Ry +1r + Rs
Step — 2
Considering E2 source,R&r; are series and Rs3 parallel and R; in series

(Ri+1)) || R3
= Ri+rR=n (say)
Ri+r+ Rs

Rb=n+R+n t,

I =
2 Rt

I3 =IR 2 (+Rr1++_rR1)

! U = RuT+>0r1 + R3R

1 1 3

Step — 3

Current in Ry branch=7_-1’

Current in R, branch = 7'— I' Current in

R; branch=71%- 17

3 3

The direction of the branch current will be in the direction of the greater value current.

Thevenin’s Theorem :
The current flowing through the load resistance R; connected across any two terminals
A and B of a linear active bilateral network is given by

Vi RV+ocR-[1= R+

th L i L
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Where Vi, = Vi is the open. circuit voltage across A and B terminal when Ry is
removed.

Ri =Ry 1s the internal resistances of the network as viewed back into the open circuit
network from terminals A & B with all sources replaced by their internal resistances if
any.

Explanation :

Wv B

Step _ 1 for finding Vo
Remove Ry temporarily to find V..

R,
—‘Wv
E—— [
G o R J'}c
ik
R, R, 7
Voc :IRZ

Step — 2 finding R
Remove all the sources leaving their internal resistances if any and viewed from open
circuit side to find out R; or R.

R

T R h
B
Ri= (R1 + I") ||R2
Ri=— (Ri+7rk
Ri+r+ R,
Step — 3
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Connect internal resistances and Thevenin’s voltage in series with load resistance Ry.
Where Ry=thevenin resistance Vgp=thevenin

voltage

Iis»=thevenin current
Ri=Ri+7r)|| R

Vin Voc

[L: =
R+ Re Ri+ Re

Example 01- Applying thevenin theorem find the following from given figure
(1)  the Current in the load resistance Ry of 15 0

3Q A
4¢JV? -
<>
212Q >
7 2150
-~
4V "
r=1Q
w
B

Solution : (1) Fi-nding Voc
— Remove 150 resistance and find the Voltage across A and B

3Q

AAAA
\AAAS

=
24v L $12Q

r=1Q

V.. 1S the voltage across 12 g resister

Voc= 24012 = 18V
12 +3 +1

(i)  Finding Ry,
Ry, 1s calculated from the terminal A & B into the network.

The 1 O resisterand 3 0 in are series and then
parallel 30

AAAA
AAAA

.
2120

Ran=3+1//12

=__ 4012=3016




(i) Tn= = Joc =18 =1A.
R,+R 15+3

Example 02: Determine the current in 1Q resistor across AB of the network shown in
fig(a) using thevenin theorem.

Solution: The circuirt can be redrawn as in
P
--———J“‘\ fig (b).

= :E £33 ;_ﬁ:*l:_;;:' ]_~,‘\-X -__)’
\ LB é
Q> s
TR o it N
S\‘L .%' e | fig (a),(b),(c),(d) respectively
= -~ Step-1 remove the 1Q resistor and

keeping open circuit .The current source is

converted to the equivalent voltage source as shown in fig (c) Step-02 for finding
the Vi, we'll apply KVL law in fig (¢) then 3-(3+2)x-1=0 x=0.4A
Vin=Vap =3-3*0.4=1.8V
Step03-for finding the Ri,all sources are set be zero
Rin=2//3=(2*3)/(2+3)=1.2Q
Step04- Then current Ix,=1.8/(12.1+1)=0.82A
Example03: The four arms of a wheatstone bridge have the following resistances .

AB=100Q,BC=10Q,CD=4Q,DA=50Q2.AA  galvanometer of 20Q
resistance is connected across BD. Use thevenin theorem to compute the current
through the galvanometer when the potential differencel0V is maintained across AC.
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Solution:

N =
| S,
l S&J{A ,/‘; Ty |'
{
\ i
-— —1 Y —— ———
c
S 1
= y
: \' J‘:(/' \ as %,
\&.t;,( ‘. 200 “ ‘»’;\ o en
o o z‘\ 0 o P
i e | / e
e T %
-3 \ ’X:L:'n_

step 01- Galvanometer is removed. step02-finding the Vi, between B&D.ABC is
a potential divider on which a voltage drop of 10vtakes place.
Potential of B w.r.t C=10*10/110=0.909V Potential

of D w.r.t C=10%*4/54=.741V then,

p.d between B&D i1s Viy=0.909-.741=0.168V Step03-finding

R remove all sources to zero keeping their internal resistances.
Rin =Rpp=10//100+50//4=12.79Q

Step04; lastly Iin=Vun/RintR1=0.168/(12.79+20)=5mA

Norton's Theorem

Statement : In any two terminal active network containing voltage sources and
resistances when viewed from its output terminals in equivalent to a constant current
source and a parallel resistance. The constant current source is equal to the current
which would flow in a short circuit placed across the terminals and parallel resistance is
the resistance of the network when viewed from the open circuit side after replacing

their internal resistances and removing all the sources.
OR

In any two terminal active network the current flowing through the load resistance Ry is

given by
40



I« OR
I;= i

RiORL
Where R; is the internal resistance of the network as viewed from the open ckt side A &
B with all sources being replaced by leaving their internal resistances if any.

I 1s the short ckt current between the two terminals of the load resistance when
it is shorted Explanation :
R,

A ” h" A

E b

' R, R,

B

Step — 1

A &B are shorted by a thick copper wire to find out I
Le=E/Ri+7r)

—AW ,

R v Isc

]
L
|

Step — 2
Remove all the source leaving its internal resistance if any and viewed from open

circuit side A and B into the network to find R; .
A

R,‘z (Rl + l") ||R2
Ri= (R1 + I’)Rz/(Rl + 7+ R2)
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MY
w
e

Step — 3
Connect I;c & R; in parallel with Ry,

I;= T OR:

Ri + R:
Example 01:Using norton's theorem find the current that would flow through the
resistor R, whenit takes the values of 12€Q,24Q&36Q respectively in the fig shown
below.
Solution:

Step Ol-remove the load resistance by making short circuit. now terminal AB short
circuited.
Step 02-Finding the short circuit current I
First the current due to E; is =120/40=3A,and due to E; is 180/60=3A. then
I=3+3=6A
Step 03-finding resistance Ry

It is calculated by by open circuit the load resistance and viewed from open circuit and
into the network and all sources are taken zero.

Ra=40//60=(40*60)/(40+60)=24Q

i) when R =12Q, [;=6*24/(24+36)=4A ii) when
Ri=24Q,1,=6/2=3A

iii) when R;=36Q,1;=6*24/(24+36)=2.4A
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Maximum PowerTransfer Theorem
Statement : A resistive load will abstract maximum power from a network when the
load resistance is equal to the resistance of the network as viewed from the output

terminals(Open circuit) with all sources removed leaving their internal resistances if
any Proof :

Vin A
IL = \/IL
Ri+ R R,
Power delivered to the load resistance is given by g RL
Pr=12uR 1 > 9
Oy  O0=00"0R. Vin
V2R

=_O(Ruwi +1 Rr ) »

Power delivered to the load resistance Ry will be maximum

When dP.= 0
dR;
d OV?R |

OdRO(ROs + R.)20=0
L0 .0
VEZR+RY-V?RO2(R+R)0O_mir(Ri+

m Ri) 4i=00V*(R+R)-V?RO2R+R

)=0

th i L th L i L
OV2(R+R) -2V’ R(R+R)=0

th i L th L i L
OV2(R+R) =2V’ R(R+R)

th i L th L i L

OR +R.=2R:0R: =
2RL - RLD Ri= RL
o V2 0O
(P)ymax =0 ~» ORL
2
D(Ri'i‘ RL) O
Orzod
= 0ux-0R,
04Rr. 0
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=4V 0O2R2 ¢

4R |
V2
(P.) max =" ,
4R |

COUPLED CIRCUITS

It is defined as the interconnected loops of an electric network through the magnetic
circuit.
There are two types of induced emf.

(1)  Statically Induced emf.

(2) Dynamically Induced emf.

Faraday’s Laws of Electro-Magnetic :

Introduction — First Law :—

Whenever the magnetic flux linked with a circuit changes, an emf is induced in it.
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OR
Whenever a conductor cuts magnetic flux an emf is induced in it.
Second Law :—
It states that the magnitude of induced emf is equal to the rate of change of flux
linkages.
OR
The emf induced is directly proportional to the rate of change of flux and
number of turns Mathematically : O

e O
dt

edN

d

Or e=_y Q
dt
Where e = induced emf

N = No. of turns
O = flux

‘- ve’ sign is due to Lenz’s Law
Inductance : —

It is defined as the property of the substance which opposes any change in
Current & flux. Unit :— Henry

Fleming’s Right Hand Rule: —

It states that “hold your right hand with fore-finger, middle finger and thumb at
right angles to each other. If the fore-finger represents the direction of field, thumb
represents the direction of motion of the conductor, then the middle finger represents
the direction of induced emf.”

Lenz’s Law : —

It states that electromagnetically induced current always flows in such a direction
that the action of magnetic field set up by it tends to oppose the vary cause which
produces it.

OR

It states that the direction of the induced current (emf) is such that it

opposes the change of magnetic flux. (2) Dynamically Induced emf : —

- B
N AV AV AN NNNNININ
A A%
'l > A
™
]
e\
0
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In this case the field is stationary and the conductors are rotating in an uniform
magnetic field at flux density ‘B” Wb/mt? and the conductor is lying perpendicular to
the magnetic field. Let ‘I’ is the length of the conductor and it moves a distance of ‘dx’
nt in time ‘dt’ second. The area swept by the conductor = /. dx

Hence the flux cut = ldx. B

Change in flux in time ‘dt’ second = _ Bldx
dt
E = Bly
dx
Where V' =
dt

If the conductor is making an angle ‘00’ with the magnetic field, then

e = Blv sind

(1) Statically Induced emf :—
Here the conductors are remain in stationary and flux linked with it changes by
increasing or decreasing.
It is divided into two types .
(1)  Self-induced emf.
(i)  Mutually-induced emf.

(i) Self-induced emf : — It is defined as the emf induced in a coil due to the change of

its own flux linked with the coil.
L

(00000

"
If current through the coil is changed then the flux linked with its own turn will
also change which will produce an emf is called self-induced emf.

Self-Inductance : —
It is defined as the property of the coil due to which it opposes any change
(increase or decrease) of current or flux through it.

Co-efficient of Self-Inductance (L) :—
It is defined as the ratio of weber turns per ampere of current in the coil.
OR
It is the ratio of flux linked per ampere of current in the coil
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1st Method for ‘L’ :—

L=
I
Where L = Co-efficient of self-induction
N = Number of turns
O = flux
I = Current

2nd Method for L :—
We know that

L =
1
0L/ =NOO-LI=-
yn|
dl dD
O0-L=-Ndt dtdl
dl:l
O0-L—=-N
dt dtdl
O-L =e
d *
dl
DL_=—€L
dt
OL=-e —
dl —
dt

Where L = Inductance e = -N £ is known as self-

induced emf.
L drdl

When __= lamp / sec.
dt
e=1voltL=1
Henry A coil is
said to be a self-
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inductance of 1

Henry if 1 volt is

induced in it.
When the current through it changes at the rate of 1 amp/ sec.
3rd Method for L : —

MoM . AN >
L =
[

Where A = Area of x-section of the coil

N = Number of turns

L = Length of the coil

(i) Mutually Induced emf :—

It is defined as the emf induced in one coil due to change in current in other coil.
Consider two coils ‘A’ and ‘B’ lying close to each other. An emf will be induced in coil
‘B’ due to change of current in coil ‘A’ by changlng the posmon of the rheostat.

o,

It is defined as the emf induced in coil ‘B’ due to change of current in coil

Mutual Inductance : —

‘A’ is the ratio of flux linkage in coil ‘B’ to 1 amp. Of current in coil ‘A’.
Co-efficient of Mutual Inductance (M)

Coefficient of mutual inductance between the two coils is defined as the weber-
turns in one coil due to one ampere current in the other.

1st Method for ‘M’ :—
N[
M=___
I
N, = Number of turns
M = Mutual Inductance
0, = flux linkage
I, = Current in ampere

2nd Method for M :— We know
that

N2
M=-___
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I

O M1, = N>
O -MI, = N>
ar -y N,
O-M = __dt *dt
O-Mdh=e¢e
da M
OMdL=-e
dt M
OM-=-
em
dl
dt

Where  eny=-M _dD' 1s known as mutually induced emf.
dt
en= —1volt
Then M =1 Henry
A coil is said to be a mutual inductance of 1 Henry when 1 volt is induced when
the current of 1 amp/sec. is changed in its neighbouring coil.

3rd Method for M :—
Mo M-ANIN2M =

/
Co-efficient of Coupling :
Consider two magnetically coupled coils having N; and N, turns
respectively. Their individual co-efficient of self-inductances are M M AN?

lenor 2
[

M M AN?
L2:Dor 2

[

The flux O1 produced in coil ‘A’ due to a current of I 7 1 ampere is 1 1 i

M AN

Dl = 11=Lor 1O 1
N 1 | Ni
MoMrANl[l
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Suppose a fraction of this flux i.e. K0, is linked with coil ‘B’ Kll:|1 N

= KiNi1N p======mmmmmmmmmmmmmmmmee e (1) ThenM: O

I, 2 [/IMMA, r

Similarly the flux O, produced in coil ‘B’ due to I, amp. Is
MM, AN> I

Dzz—l

Suppose a fraction of this flux i.e. K,[, is linked with coil ‘A’
Then M = KO ON = K2Nai Ni===m=====mmm=mmmmmm - (2)

]2 1 I/MMA() r

Multiplying equation (1) & (2)
2 KKN:2:N2

M=0ln /M _ 1Mz» A0 le

0 r

2OMMAN?OO0MMAN?O=K0O
Oor v DD&DD. b0 O

0
Dok =k=x0 m?2=
K2L.L
2=M»>. 12
1 2
M.
K_ -
O %=y\r1L
1 2
KL .L

Where ‘K’ is known as the co-efficient of coupling.
Co-efficient of coupling is defined as the ratio of mutual inductance between two
coils to the square root of their self- inductances.

Inductances In Series (Additive) : —
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Fluxes are in the same durection

Let M = Co-efficient of mutual inductance
L; = Co-efficient of self-inductance of first coil.

L, = Co-efficient of self-inductance of second coil.

EMF induced in first coil due to self-inductance dI

en=-L __
dt
Mutually induced emf in first coil df
emi= —M ___
dt
EMEF induced in second coil due to self induction df
er.=— L,
dt
Mutually induced emf in second coil d7
em:= - M ___

dt
Total induced emf

e=enteptrey + e
If ‘L’ is the equivalent inductance, then

- L__dl=-Ldl - M -L, - Mdl dl
dl
dt dt dt dt dtdl dI
O-L =- (L-L-2M)
dt dt! 2

DL=L1+L2+2M

Inductances In Series (Substnactive) : —

1{ ||5| >‘

(Fluxes are opposite in direction)

7

Let M = Co-efficient of mutual inductance L; = Co-

efficient of self-inductance of first coil
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L, -= Co-efficient of self-inductance of second coil Emf
induced 1n first coil due to self induction, dfe = -L

L 1 dt

Mutually induced emf in first coile = -0- MdI0 =M dl

w00 400 dt

Emf induced in second coil due to self-induction d/ e =
—L L2 2 dt

Mutually induced emf in second coile =-0-MdIO=Mdl

v. 00 400 dr Total induced
emf

e = eL L2 eM 1 ee M2

Then - L dldt dl = - Lidtdl — L. __dldt + Mdldt + Mdl

dl

0-L =— (L +L -2M) OL=L+L-2Mdt dt
2 1 2

Inductances In Parallel : —
L

? Ly )
12 -

Let two inductances of L & L.are connected in parallel
Let the co-efficent of mutual inductance between them 1s M.

I=i+1
dl  di dix (1)
e e e e = +
dt dt dt
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e=L" didn + M didn

di> Mdi
=L 2dt+ dt

OLdi+ Mdi=Ldio+ Mdin
U dt dt *dt dt

dit¢ (L-M)di
oL -M) =
L ar
odi. 1= (L2= M) dir-—----=--=m=mmmmm -

-—-—-(2) dt(Li=M) dtdl =di dix
+
dt dt dt
(L2 = M) di> diz
=+
(Li- M) dtdtdiOL,- M
O di,
Odt= 0L~ M +10-dfmmmrnmmmmremmmmeeammmnean (3)
[ O
If ‘L’ is the equivalent inductance
di divn Mdi-
e=L=L __+
dt dt dt

Ldi=Ldi+ Mdi>
dt 'dt dt
Odi=10L dir + M di»00(4)

_D 15 cﬂ]l]

dt L0O

f_a’i1
dt

Substituting the value o

di=10L Lo= M+ MO di>- (5)

de LoO:1L.-M 00 dt
Equating equation (3) & (5)
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Opd L,-MpO + 10di

0 O2=10L00 gO L, - MpO + MO dix

L-M dt L L-MdeOO ]
O o 0. a a

L,-mM100L,-MOO00OL-M

Li-M++ 1L =- LMOOL 001 L.O0-LLMOO- +LMM
o0+ LM-M-20

O _ 2 1 = O 2
Li—-M La Li—-M ]
L+L-2M 10LL-M?0
O _ 12 = O'2 0O
Li—-M L0 Li-MmM O
1 g (]
OL+L-2M= LL - M 2
12
L
OL=_12-M?LL
Li+ L,-2M
When mutual field assist.
LL-M?

L = DLll +2 L2+ 2M
When mutual field opposes.

CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS

Ty
-
L, 1VL
- 3 ~0
O The Loop equation are from fig(a)
Vi= L'didt + M didt
V=L di+ Mdi 3 Jnm_:._._q
2 2 dt dt i ) 4
Q~.‘“) )
\ by
54 q ) gm ~N
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a The loop equation are from fig(b)

—div Md (ir+&) Vi= (L M) dt +
dt

— di> Md (i1 +2) Vo= (L2 M) dt +
dt

Which, on simplification become

yvi=L" __didnh + M didt

V=17 did + M didt

So called conductively equivalent of the magnetic circuit . Here we may represent
ZA = L1-M .
ZB = (Lz-M) and ZC =M
In case M is + ve and both the currents then Z, = L;-M , Zg = L,-M and Z¢c = M, also ,
if is — ve and currents in the common branch opposite to each other
Za=Li+M, Zg=1,+M and Z¢c = - M.
Similarly, if M is —ve but the two currents in the common branch are additive, then also.
Za=L+M, Zg=L1,+M and Z¢c = - M.
Further Z4 , Zg and Z¢ may also be assumed to be the T equivalent of the circuit.
Exp. -01:

Two coupled cols have self inductances L= 10010°H and L,= 20010 3H. The
coefficient of coupling (K) being 0.75 in the air, find voltage in the second coil and the
flux of first coil provided the second coils has 500 turns and the circuit current is given
by i; = 2sin 314.1A. Solution :

M =KL,

M = 0.75\/10 010302001073
OM=10.6010"°H

The voltage induced in second coil is
di di

D=M_=M
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2 dt dt
d
=10.6010-3  (2sin3145)dr = 10.6
01073 02 0314 cos 314t.
The magnetic CKt being linear,

M = NZDZ = ﬂﬂ_(ﬁ[ll)

i i

0= M §=1060107302sin314¢

5000 K 500 00.75
=5.66 010 sin 314t
0, =5.66 0107 sins 314z.

Exp. 02
Find the total inductance of the three series connected coupled coils.Where the

self and mutual inductances are L, = 1H, L, = 2H, L; = 5SH
M12: O.SH, M23 = 1H, M13 =1H
Solution:

La =Li+Mip+Mis
=1+20.5+1
=2.5H

Lg =L+ My+ M

=2+1+0.5
=3.5H
Lc =L+ My +Mis
—541+1
="TH

Total inductances are

Lea = La+Lg+ L¢

=25+35+7
= 13H (Ans) Example 03:

Two identical 750 turn coils A and B lie in parallel planes. A current changing at
the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate the mutual
inductance of the arrangement .If the self inductance of each coil is 15mH, calculate the
flux produced in coil A per ampere and the percentage of this flux which links the turns
of B.
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Solution: We know that

o = Mdl,
M e
11.23
M="f, ="—=75md
1 1H00
/ Yt
now,
Ly="tr o fr 2 5 =7 41073
I Lo My 75
M 7.5+1077
- e = 0.5 = 50%
yLala ’ Wh/A
A.C FUNDAMENTAL
Direct Current Alternating Current
\Y% Vv
N "
IT g il N
P t —
t—>
(1)| D.C. always flow in one|(1)|A.C. is one which reverse
direction and whose magnitude periodically in
remains constant. o )
direction and whose magnitude
undergoes a definite cycle changes
in definite intervals of time.
(2) High cost of production. (2) | Low cost of production
(3)| It is not possible by D.C.|(3) | By using transformer A.C. voltage
@ Because D.C. is dangerous to the @ can be decreased or increased.
transf : .
ranstormet A.C. can be transmitted to a long
Its transmission cost is too high. distance economically.

57




Definition of A.C. terms :-
Cycle : It is one complete set of +ve and —ve values of alternating quality spread over
3600 or 20 radan.
Time Period : It is defined as the time required to complete one cycle.
Frequency : It is defined as the reciprocal of time period. i.e. f=1/T
Or
It is defined as the number of cycles completed per second.
Amplitude : It is defined as the maximum value of either +ve half cycle or —ve half

cycle.
Phase : It is defined as the angular displacement between two haves is zero.
OR
Two alternating quantity are in phase v when
each pass through their zero value at the same I
instant and also attain their maximum value at VT : the

same instant in a given cycle.
iT t—y

V=V,sinwti=1,
sin wt

Phase Difference :- It is defined as the angular displacement between two alternating
quantities.
OR
If the angular displacement between two waves are not zero, then that is known
as phase difference. i.e. at a particular time they attain unequal distance.

v

b o— NS

OR

Two quantities are out of phase if they reach their maximum value or minimum
value at different times but always have an equal phase angle between them.

Here V = V,, sin wt i = I, sin (wt-0) In this case
current lags voltage by an angle ‘00’. Phasor Diagram :
Generation of Alternating emf :-

Consider a rectangular coil of ‘N” turns, area of cross-section is ‘A’ nt? is placed

in x-axis in an uniform magnetic field of maximum flux density Bm web/nt’. The

coil is rotating in the magnetic field with a velocity of w radian / second. At time t = 0,
the coil 1s in x-axis. After interval of time ‘dt’ second the coil make rotating in anti-
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clockwise direction and makes an angle ‘0’ with x-direction.

component of the magnetic field is 0 = On cos wt
According to Faraday’s Laws of electro-magnetic Induction

e -N
dt
d

= -N (O cos wr)dt"™
= =N (=0uw cos wr)
= Nwll,, sin wt

= 20/N0,, sin wt(Q w = 20f)

= 20fNB, Asin wt e = E, sin wt
Where E, = 20fNB, A
f —frequency in Hz

Bn— Maximum flux density in Wb/mt?
Now when O or wt =900 ¢ = E,,

re. En=20NBnhA

Root Mean Square (R.M.S) Value : —

The perpendicular

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which when
flowing through a given circuit for a given time produces same heat as produced by the
alternating current when flowing through the same circuit for the same time.

10, 20 - 0)

The square root of thi e 1s
2 nojd0H—
= 1)o 2020 wsin

O (1

- [, 20 40
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Sinuscdial alternating current is 1 = I

sin wt = [ sin O
The mean of squares of the instantaneous values of current over one

complete cycle: oi2.d0
I22m

= O sin 200 .40
20 6

/ 1220
= m \/DD O 1-cos2 20000 d0O

206——

:‘L’”Dz 0[], (1 -cos20)d O

\/uz OO0 - sin 20 O2o
= O 2 0O0o
40 0

220

= », U0 pb 20-5sin24 0000 40
/ 40
e

Average Value :—
The average value of an alternating current is expressed by that steady

current (d.c.) which transfers across any circuit the same charge as it transferred

by that alternating current during the sae time.
The equation of the alternating current is 1 = I, sin O
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0 ;.40

Lo = s @ - o)

= oo 7 m.sinB-0 40 =l Osin. 0. a0

0

= - cosO O° = L= cosO - (cos0® [

T 0 T

ai-
o-nl ==
%Iav

2 0O Maximum Current

Lav

Hence, 1., = 0.6371,
The average value over a complete cycle is zero
Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of
maximum value to r.m.s value.

MaximumValue  I"
Ka= = = r=1414
R.M .S.Value \I/E
2

Form factor : - It is defined as the ratio of r.m.s value to average value.

_rmsValue  0.7071" /2 =1.414
Kf: = =
Average.Value  0.6371,

Kf=1.11
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Phasor or Vector Representation of Alternating Quantity : —
. Ay

(R P
i T P
J8
0

An alternating current or voltage, (quantity) in a vector quantity which
has magnitude as well as direction. Let the alternating value of current be
represented by the equation e = E,, Sin wt. The projection of E, on Y-axis at
any instant gives the instantaneous value of alternating current. Since the
instantaneous values are continuously changing, so they are represented by a

rotating vector or phasor. A phasor is a vector rotating at a constant angular
velocity

At h,ei=FE, Sin wt
At 2, e2= Ensin.wt

Addition of two alternating Current : —

Let e, = E,, sin wte2 = EnsinGewt — )

The sum of two sine waves of the same frequency is g, B
another sine wave of same frequency but of a
different maximum value and Phase. ¢

Y

e:¢12+ e +2 2eel 2cosl <

Phasor Algebra :—
A vector quantity can be expressed in terms of
(i)  Rectangular or Cartesian form
(i)  Trigonometric form
(ii1)) Exponential form
(iv) Polar form

Esin g
E=a+jb
= E(cos 0 +jsin0)
Where a = E cos 0O is the active part b = E

Ecos g
sin [ is the reactive part

0 = tan-:00 «» OO0 = Phase angle
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ooj
= ~(90)
= —1(180°)
= - jei0r
)

=1 (360°)

(i) Rectangular for :-
E=al;b
tand =b/a
(ii) Trigonometric form :-
E = E(cosd O,sin0)
(iii) Exponential form :-
E = Ee" /P
(iv) Polar form :-
E=E/Oe (E =Na* + b?)
Addition or Subtration :-
Eiv=a+ jb
Ex=ax+ jb
EiO0FE: = (a1 +a) 0 (b1 + b2
-100 b1+ b20O0O
O=tan a+a
o. -0
Multiplication : -
E\OFE,= (a+ ja)) O (a+ jby)
= (maz2— bib2) + j(amaz + bib2)
-100 aib2 + bia0:20
O=tan aa-bb
O:2 120

E = E:O0
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E>= E-00>
Ei0E:=EE: OO+ [
Division :-

Ei= E:O0

E>= E-00>

El:ElE]D:ElDD—D

1

E2 EQD DZ E2 1 2

A.C. through Pure Resistance : —
Let the resistance of R ohm is connected across to A.C supply of applied

voltage
[

é \f
Jsi
s
e = Emsin Wt or v = Vpsin wt
e = E,Sin Wi =====-=mmmmmmmmmmeneee (1) Let ‘I’ is the instantaneous current
. Here e = iR
Oi=e/R
i = Epusin Wt/ R -===-==-mmmmmmmmmee e (2)

By comparing equation (1) and equation (2) we get alternating voltage
and current in a pure resistive circuit are in phase

Instantaneous power is given by

P=ei

= En sin wt . I, sin wt e = Emsin Wt
I = Imsin wt

= E, Iy sin® wt
Em " 2sin®* wt T

2 T t—>

Em. I" (1 = cos 2wr)

En.In — En- Im.COS 2wt
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N
PR 2
i.e.Pziflﬁ— -F\/% IjL—.cos 2wt
2-2 2

2

Where 7, ., is called constant part of power.

NENE

Yuln. .cos 2wt 1s called fluctuating part of power.

V2 V2
The fluctuating part V' wlu cos 2wt of frequency double that of voltage and
current

2

waves.

Hence power for the whole cycle is P = Vo L = L

V2 V2
0P = VI watts

A.C through Pure Inductance : —
Let inductance of ‘L’ henry is connected across the A.C. supply

v = Vmsin wt

V = V) SIN Wt ===mmmmmmmmmmmmm e e (1)

According to Faraday’s laws of electromagnetic inductance the emf
induced across the inductance di

V =1L_dt
di v = Vmsin wt
__is the rate of change of current dr i =, sin(wt~/2)
di

V sinwt =L " dtdi V,sin wt M

. 65 —ni—y T2




dt L

Fsin we.dt
Odi=

L
Integrating both sides,

O a= DVL’” sin

wt.dt i = Vm O — cos wt

O
-0 O
La w 0O
Vrcos wrt

1= -

wL
Vmcos wt
i=—1i=-VwLnsin
Owr—-00
O O

= — VowLsinOwD - 002 0[QX =20/ = wi]

X: 00 200 L

Maximum value of ¥, when 0Oiis- 0O 0Ois unity.
] =
m sin0 wt O
X1 O 20

Hence the equation of current becomes i = I,,sin(wt — 0/ 2)

So we find that if applied voltage is rep[resented by v = V,,sin wr , then current
flowing in a purely inductive circuit is given by
i =ILysin(wt — 0/2)

Here current lags voltage by an angle 0/2 Radian. 1
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Power factor =cos O

= cos 900

= (0 Power Consumed = VI cos O

=VvIiOo

=0

Hence, the power consumed by a purely Inductive circuit is zero.
A.C. Through Pure Capacitance : —

s @

)
=/

v = Vmsin wt

i=I_ sn(wt—mi2)
v = Vmsin wt

— 7 22—

NS

t—

Let a capacitance of ‘C” farad is connected across the A.C. supply of applied
voltage

Let

V = ViuSI W =mmmmmmmmmmmmem e

(4

q=cvq=cly,sinwt
dg d
= ¢ (V' sin wr)

dt dt "

1 =cV, sin wt =
weV,, cos wt

W cos wt

1/ we

V= cos wt

Xc ¢ we
= [,,cos wt

= Lysin(wt + 0/2)

[Qx=1=1

20fc in ohm. ]

q’ = change on plates when p.d. between two plates of capacitor is ‘v’

is known as capacitive reactance

Here current leads the supply voltage by an angle [/2 radian.

Power factor

=cos O
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=cos 900 =0
Power Consumed = VI cos
=viOo0o =0
The power consumed by a pure capacitive circuit is zero.
A.C. Through R-L Series Circuit : —

L
" (00000 ___
W
< Vr 34 VI —a
a4
N/

e=FE_sn wi

The resistance of R-ohm and inductance of L-henry are connected in

series across the A.C. supply of applied voltage e = E,, sin wt ----------

V. =V VPr++ VjV*:00=tan-'0X .0
R L oo

2+ (X)*00=0tanR-0'0X,0

\/— _

0 ]
]TWLD =tan-'~ X,000 RO
L 0o_0
V=100 =tan-:0X.:00RDO
o_ 0
ORrRO \%

Where Z = \&2 + X2

= R + jX, i1s known as impedance of R-L series

Circuit.
V E™sin wt

/= =
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z0o0O z0o0O
I = I,sin(wt = 0)
Here current lags the supply voltage by an angle 0.
Power Factor :— It is the cosine of the angle between the voltage and current.
OR
It is the ratio of active power to apparent power.
OR
It is the ratio of resistance to inpedence .
Power :—
=i

Vausin wt.1,, sin(wt — [)

= V, L, sin wt.sin(wt — [)
1

- _me ! 2 sin we.sin(wt — [)

2
1

_Vlm m [cosd = cos 2(wt — O)]
2

Obviously the power consists of two parts.
1

(1) a constant part _ VI cos[] which contributes to real power.
2 mm
1
(i)  a pulsating component _VI coswt — O0) which has a frequency
twice
2 mm

that of the voltage and current. It does not contribute to actual power since its

average value over a complete cycle is zero. Hence average power consumed
1

=_VIcosl
2 mm

Vin In
= . cosO
V2 V2
= VI cosl
Where V & I represents the r.m.s value.
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A.C. Through R-C Series Circuit : —
The resistance of ‘R’-ohm and capacitance of ‘C’ farad is connected across the

A.C. supply of applied voltage

e=E,sinwt e (1)
C
AAAA 1 1
\AAAL LI |
< Vr: - Vc >
L and
=/
V="Vet+ (= jVc)
= IR + (- jIX¢)
= I (R - jX¢)
V=1I1Z
Where Z _R _jX._+ * ¢
Z_R_jX,
= V§2 +‘XvC2
0 -0 _tan-'07¢0O
OO R+ X is I known as
impedance of R-C series Circuit. b
OrQO
V=170 - 0 w
vV
Or7=
zO0 -0

Ensmwt=__ 7O -0O

Ensin(wt + 0)
=70
O 7 = I,sin(wt + 0) Here current leads the supply
voltage by an angle ‘00°.
A.C. Through R-L-C Series Circuit : —
Let a resistance of ‘R’-ohm inductance of ‘L.’ henry and a capacitance of ‘C’
farad are connected across the A.C. supply in series of applied voltage
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T Y (1)
e=Vr+ V, + Vc
=Vr + jVL—-jVc

= Ve + j(Vo = Vc)
= Iz + (X1 - IX¢)

== II[R+ j(X,-Xc)]0O0O 0 =tan-10 X, - Xc0O

\/R2+(XL—XC)2 o0
o R O

=/z000
Where Z-= 1\/8 +(X.-Xc)* 1s known as the impedance of R-L-C Series

Circuit.
If X, 0 Xc, then the angle is +ve.
If X .0 X¢, then the angle is -ve.
Impedance is defined as the phasor sum of resistance and net reactance

e=1z000
e E™sin wrt

zood= = 1I,sin(we00) Z0O
o0 zooO

(1) Ifx.0Xc, then P.f will be lagging.
(2) Ifx.0Xxc, then, P.f will be leading.

(3) If x .= Xc, then, the circuit will be resistive one. The p.f. becomes
unity and the resonance occurs.
REASONANCE
_It is defined as the resonance in electrical circuit having passive or active
elements represents a particular state when the current and the voltage in the

or7=

71



circuit is maximum and minimum with respect to the magnitude of excitation at
a particular frequency and the impedances being either minimum or maximum
at unity power factor

Resonance are classified into two types.

(1)  Series Resonance

(2)  Parallel Resonance

(1) Series Resonance :- Let a resistance of ‘R’ ohm, inductance of ‘L’

henry and capacitance of ‘C’ farad are connected in series across A.C. supply

e = E, sin wt

The impedance of the circuit
Z=R+j(X.~Xc)]

Z=\/R2+(XL—Xc)2

The condition of series resonance:
The resonance will occur when the reactive part of the line current is zero

The p.f. becomes unity. 0f=
The net reactance will be zero. 20 LC
The current becomes maximum. Resona
At resonance net reactance is zero nt
X1=Xc=0 frequen
O0X.=Xc cy (/)
! 1
OQw.L= __ = -
W,COW,2LC=10W2=" 20
Imp
LC ’ _ edan
1aw,=LC ce at
J Res
! onan
0207 = Ly’= 1 ce
- Zo=R
v
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Current at Resonance
V

I =_,R (El
Power factor at resonance 7
R R
pf.= = =1 =
Zo R R
Jrc O

Resonance Curve :-

Unity p.f.(u.p.f)

Lagging
Bf

fo

At low frequency the X is greater and the circuit behaves leading and
at high frequency the Xp becomes high and the circuit behaves
lagging circuit.
If the resistance will be low the curve will be stiff (peak).
» If the resistance will go oh increasing the current goes on decreasing and the

curve become flat.
Band Width : —

At point ‘A’ the power loss is 7 o°R.

The frequency is fo which is at resonance.
I°R
0

At point ‘B’ the power lossis 2 .
The power loss is 50% of the power loss at point

‘A”/ Io / \
= H




Hence the frequencies

corresponding to point ‘B’ is known as half power frequencies f; & f>. f
= Lower half power frequency

Rfi

= fo-
40L

F> = Upper half power frequency

Rf2

:ﬁ)+

40L
Band width (B.W.) is defined as the difference between upper half power frequency
ad lower half power frequency.

BW.=f-fi= __R

20L
Selectivity : —

Selectivity is defined as the ratio of Band width to resonant frequency
Selectivity = BW.=R _Selectivity= ____R
£200 20f4L

Quality Factor (Q-factor) :—
It is defined as the ratio of 20 0 Maximum energy stored to energy dissipated

per cycle 120
0L~
Q-factor = —T2RT2

-

‘oz 1)

= [2RT
0L.272

=__ IRT

=0__ [I»2RTI»
20L.

=RT
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Quality factor = = 2L, 000Q = 1.1 = £, 000
L.

R

Quality factor is defined as the reciprocal of power factor.

Q factor==___

I.
cos

O
It is the reciprocal of selectivity.

Q-factor Or Magnification factor = Voltage across Inductor. Voltage across

resistor
X .
=IoR
Xt
R
=204 L = WL
R R
Q_
factor
_ W
B 0
L
R
Q- Voltage across Capacotor.
factor =
factor Voltage across resistor
ToXe
IoR
Xc
R
1 1
200 C  20f¢CR
Q-factor = !

WoCR
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o
R W,CR
1

2

Q:RQC
1

Q- 72
1 |L

Q: -
R\NC

Graphical Method : -

(1) Resistance is independent of frequency It represents a straight line.
(2) Inductive Reactance Xy =20fL

It 1s directly proportional to frequency. As the frequency increases , X,
increases (3) Capacitive Reactance Xc¢ = = 1

20fC

It is inversely proportional to frequency. As the frequency increases, Xc decreases

When frequency increases, X increases and X¢ decreases from the
higher value.
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Xu XL

fo

-Xc

2
-Xc

At a certain frequency. X = Xc

That particular frequency is known as Resonant frequency.
Variation of circuit parameter in series resonance:

(2) Parallel Resonance :- Resonance will occur when the reactive part of the line

current is zero.

> 11
£ iC Lo
—
. S o
At resonance,
Ic—ILSinDZO
IC:ILsinD
4 4
o — TSinD
Xe R +XL
v
0 —= o &
lXC \/R2 +XL2 \/R2 +XL2
O = X,
—_— 2
Xc R* X,
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Ic

ILcos ¢
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OR2+Xi12=CL

OR?+ (20f LY = _L
C

OR2+402f02L2 =L
C

n4d-fo a2 =_L - p

f2= 1C=0L-R0

O —4f*; 2L~ 00 C 00

2

- ‘_ _RL >

Ofo= -
20LC
/o= Resonant frequency in parallel circuit.

Current at Resonance = 7 ;cosld
V R

_\/Rz +XL2‘\/R2 + XL 2
VR

R+ X2
VR
=_ 7>

VR V

L/C L/RC
= \%

Dynamic Impedence

L/RC — Dynamic Impedance of the circuit. or, dynamic impedances is defined
as the impedance at resonance frequency in parallel circuit.
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Parallel Circuit :—

The parallel resonance condition:
When the reactive part of the line current is zero.
The net reactance is zero.
The line current will be minimum.
The power factor will be unity

Impedance Z =R+ X,

Z>= R - jXc
. 1
Admittance
le— =
Zi Ri+jX1i
= 1+jX1) (R
(Ri+ X )R = jX 1)
R
= 1+jXL Y ]
- 1=
Ri2+Xn -
2+
R J Xiyxy,,
Ri2+ X2 R
Admittance Y>2=1 = 1
Z2 Ri+jXc

(R2+ jXc)

(R21 —ch)(Rz + ]Xc)
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R +X
Y 2=R2+Xc2 R2 +Xc

2

Total Admittance Admittance 000 Z1 OO0 =Z11 + 1Z=

]
DY=YI+Y2

OY=Ri2R+1 X2—j X1 +2+R2X c2+j R 2 X+ X

a2+ Xn R

R
R R2 | Xt Xc O OY=R2+X2 +R2+X2
-;00_0R -2 +X 20R2+X20
1 L 2 c 0. L 2 cO

At Resonance,
XL - Xc =0
Ri2+X12R»2 + X
OR2X+:1X2=R2X+cX 2

1 L 2 C

DXL(Rzz +XC2)=XC(R12 +XL2)

020200 R2+ 1 DI]=1(R2+4D2szz)

0 2 40-fC-0 Qg 20/C

02 R 2
L

O020/R. 20/C2=2_0fC:+
o—— -
20/C L2 2R 0 0OfCxn = 20 L - 20/LR:2 »

dcyL »
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O 10L-R.0=C20/0L-R20

20/C gO-CcL O0- 2 oo-c 2 00
R 2

O0402f2LC =€t R12=LL=CR-CR 122

c
10L-CR?0O
040°f2=__0 'O

2= 1LC 0Opg LL- CRCR:12 000
o -

of
40,LCm OL - CR:0O

Of= 1 OO0 L-CR .00

%E#QL_ CR -0

1 L - CR?
oo f= 00, 000 L
C2 - LCRO: 220 O

2
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fis called Resonant frequency.

IfR?_0
2
Then le— L_CR
2|] L*C
1 |L_cr?
=2DL C
_L £ R2
_2DL C— 1
1 [ L R’
= 1
_2n LZCV_L2
RZ
p_o
- LC - D
If R1 and R2 = 0, then
1 L
- on V1

1 1 1
2o VLC pVLC

Comparison of Series and Parallel Resonant Circuit : —

Item Series ckt (R-L-C) |Parallel ckt (R- L and C)
0 Impedance at Resonance Minimum Maximum
0 Current at Resonance 14 V
Maximum= R Minimum= (L / CR)
0 Effective Impedance R L
CR
0 P.f. at Resonance Unity Unity
[0 Resonant Frequency 1 . 2
Ve N
20'LC 17
0 1t Magnifies Voltage Current
[0 Magnification factor WL WL
R R
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Parallel circuit :—

I1 Ri mmL

Z 1

Here Y; — Admittance of the circuit

Admittance is defined as the reciprocal of impedence.
\%

L=V1-=
R+ X,
V V
I,=_ = 00: = V.00 = 72002
Z,0-02 Z,
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I _NI? (12 201, cos@ )

I=hp - +home
A T;;,in@,_

The resultant current “I” is the vector sum of the branch currents I; & I can
be found by using parallelogram low of vectors or resolving I into their X — and
Y- components ( or active and reactive components respectively) and then by
combining these components.

Sum of active components of I; and I, = I; cos O+ I, cos [
Sum of the reactive components of I} and I, = I sin O - I; sin
uf
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EXP—-01:
A 60Hz voltage of 230 V effective value is impressed on an inductance of

0.265 H

(1)  Write the time equation for the voltage and the resulting current. Let the zero axis
of the voltage wave be at t = 0.

(i)  Show the voltage and current on a phasor diagram.

(111) Find the maximum energy stored in the inductance.

Solution :-

Vew =2 = $.0 2300 f = 60Hz, W = 200f =
20060 =377rad / s. x1 = wl = 377 0
0.265 = 1000 .

(1)  The time equation for voltage is V' (¢) = 230 QF

sin 377¢.
2/_

L owc= Vewd x1= 230 2 /100, = 2.3 30 = 90° (lag ).

QCurrente quation is.

(1) =233 sin(377t - 0 /2)
or = 2.3 ¥cos 3771
Gi) It
(iii) orE =1 LI %= 1 00.2650¢232)2 = 1.4J
2 2

Example -02 :

The potential difference measured across a coil is 4.5 v, when it carries a
direct current of 9 A. The same coil when carries an alternating current of 9A at
25 Hz, the potential difference is 24 v. Find the power and the power factor
when it is supplied by 50 v, 50 Hz supply.

Solution :
Let R be the d.c. resistance and L be inductance of the coil.
R=V/I=45/9=0.50
With a.c. current of 25Hz, z = V/1.
24 =2.6609x,=Z*
- R?=2.66%- 0.5

Vo sden
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x=2002501L
x;=0.01670
At50Hz x,=2.6202 =
5.240
Z = V;.Sz +5.24% =
5.060
[=50/526=9.5A
P=1>/R=9.5200.5 =45 watt.
Example — 03 :

A 50- Of capacitor is connected across a 230-v, 50 — Hz supply. Calculate (a)
The reactance offered by the capacitor.
(b)  The maximum current and
(c)  The r.m.s value of the current drawn by the capacitor.
Solution :

(a) xw=we =2nfel =200500" 50 010 = 63.60

(¢)  Since 230 v represents the r.m.s value
Qms=230/x=230/63.6=3.624

(b I.= Im‘/a 2= 3.62‘52 =5.114 Example — 04 :

In a particular R — L series circuit a voltage of 10v at 50 Hz produces a
current of 700 mA. What are the values of R and L in the circuit ? Solution :

(i) Z= R*+(Q 050L)2
='R% + 98696 L

V=1z
10 = 700 D10"\(R? + 98696L2)

\IQ 2 +98696L%) = 10/700 01073 = 100/ 7
R? + 9869612 = 10000/ 49 ==nrnnnnnmmmmmmmm- )

(i1)  In the second case Z = VR + (20075L0)*
Q10 =500 I:IIO_Q/R2 + 222066L% ) = 20

\/R 2+ 222066L% ) = 20

D) () e ) —— (ID)
Subtracting Ea.(I) from (ii), we get,

222066L* — 98696L* = 400 — (10000 / 49)
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o 123370L% = 196

196
OL2= 123370
0L = -1J 0.0398H = 40 mH.
123370

Substituting this value of L in equation (ii) we get R ? + 222066L? (0.398)* = 400 O

R=690.

Example — 04 :

A 200 resistor is connected in series with an inductor, a capacitor and an
ammeter across a 25 —v, variable frequency supply. When the frequency is
400Hz, the current is at its Max™ value of 0.5 A and the potential difference
across the capacitor is 150v. Calculate (a) The capacitance of the capacitor.

(b) The resistance and inductance of the inductor.

Solution :
Since current is maximum, the circuit is in resonance. x;
= Ve/1 =150/0.5 = 3000

(@) x=1/20/0300=1/2004000c0c=1.325010"%f= 1.3250f.
(b)  x=x=150/0.5=3000
20 0400 x L=300

OL = 0.49H
(c)  Atresonance,
Circuit resistance = 20+R

OV/Z=2510.5
O0R =300
Exp.-05

An R-L-C series circuits consists of a resistance of 10000, an

inductance of 100MH an a capacitance of wl Of or 10PK (ii) The half power
points. Solution

1 0-1010-4 = = 159KHz
D1£ —+ 0-40—15/1400-1) = R C

1000 10 n
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1000

iii) fi=fo-4%07=150010° - 40'%%% 10 -, = 1582k

fo=fo-__R=159010-3 +
401 ao

41000 10 -1 = 159.8KHz.

Exp. -06
Calculate the impedance of the parallel —turned circuit as shown in fig.
14.52 at a frequency of 500 KHz and for band width of operation equal to 20 KHz.
The resistance of the coil is 50.
Solution :
At resonance, circuit impedance is L/CR. We have been given the value
of R but that of L and C has to be found from the given the value of R but that
of L and C has to be found from the given data.

BW=R20010°= ° orl=390H

201 200!
1l fo420-= Ld1 - RL?*» = 210 39

0101 =6 C - (39 0510276 )2

C=2.6010"
Z=L/CR=39010°/2.6 010”05
=3 010°0

Example: A coil of resistance 20Q2 and inductance of 200uH is in parallel with
a variable capacitor. This combination is series with a resistor of 8000€2.The
voltage of the supply is 200V at a frequency of 10°Hz.Calculate i) the value of
C to give resonance

i1) the Q of the coil iii) the current in each branch of the

circuit at resonance Solution:

-
BE"
o

X =2nfL=2n*10%%200*10°=1256Q

The coil 1s negligible resistance in comparison to reactance.
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il
‘200~ C » 100

2w

||_..
I

-
=]
=

I'=

2Ty

2L _ 2= 10° = 200 = 2
R 2 i) Q==62.8

iii) dynamic impedance of the circuit Z=L/CR=200*10"°/(125*10

12%20)=80000Q2

total Z=80000+8000=88000C2

[=200/88000=2.27mA

p.d across tuned o1

.. ) &

s i - s
=161.6V current WV C

through inductive branch=

current through capacitor branch=
=181.6*21*10°*125*10712=142.7mA

POLY-PHASE CIRCUIT

Three-phase circuits consists of three windings i.e. R.Y.B

N =

Er=E,sinwt = E, 00
Ey= E,sin(wt — 120) = E,,0 - 120
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Ep= E,sin(wt - 240) = E, 0 - 240 = E,, 0120
3 - O Circuit are divided into two types
* Star Connection
* Delta Connection

Star Connection :—

S Neutral

VN

If three similar ends connected at one point, then it is known as star connected
system.

The common point is known as neutral point and the wire taken from the neutral
point is known as Neutral wire.
Phase Voltage : —

It is the potential difference between phase and Neutral.
Line Voltage : —

It is It is the potential difference between two phases.

Relation Between Phase Voltage and Line Voltage : —
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VBN - VN

VolatageVey= Vav— Vv

v, = \/VRN +VYN —2VR%)§05600
2

1

AR
VL: \/;VPh =

Since in a balanced B —phase circuit Vrn= Vyn = Ven=Vpn
Relation Between Line current and Phase Current :-

In case of star connection system the leads are connected in series with
each phase

Hence the line current is equal to phase current

IL= Iph
Power in 3- Phase circuit:- P=T1
ph I ph cos O per phase

= 3V ph I ph cos U for 3 phase

y

-3 Ly cosd@QV = \/;V
\/_3L L ph

P={I;deosl:|

Summaries in star connection:
i) The line voltages are120” apart from each other.

ii) Line voltages are 30%head of their respective phase voltage.

111) The angle between line currents and the corresponding line voltage is 30+[] iv) The
current in line and phase are same.
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Delta Connection :-

If the dissimilar ends of the closed mesh then it is called a Delta
Connected system
Relation Between Line Current and Phase Current :-

— —

Line Currentinwire — 1 = ‘R-'Y

1

Line Current in wire -2="'Y _'B

Line Current in wire _ 3 ='B_'R
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Relation Between Line Voltage & Phase Voltage : —
V.= Vo Power =

= 3V I‘/_ ; cos

Summaries in delta:

i) Line currents are 1207 apart from each other.

ii) Line currents are 30 behind the respective phase current.
111) The angle between the line currents and corresponding line voltages is 30+[]
Measurement of Power : —
(1) By single watt-meter method
(2) By Two-watt meter Method
(3) By Three-watt meter Method
Measurement of power By Two Watt Meter Method :-

Phasor Diagram :-
Let Vg, Vy, Vg are the r.m.s value of 3-0 voltages and I,Iv,Is are the r.m.s. values

of the currents respectively.
Current in R-phase which flows through the current coil of watt-meter

Wi=1Ir
And Wz = IY

- - -

Potential difference across the voltage coil of W, = Vg = Va— Vs

- - -

And Wa=Vw =Vy- Vs
Assuming the load is inductive type watt-meter W, reads.
Wy = Vrslrcos(30 — O0)
Wi = Vil,cos(30 — O) --mmmmmmmmmmmmmmmommmeeee (1)
Wattmeter W, reads
W>= Vyslycos(30 + )
Wa = Vi1 cos(30 + O) --nmmmmmmmmmmmmmmmmmeeaeee (2)

Wi+ Wy = Vilcos(30 = O) + Vi I.cos(30 + 0O)
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= Vi1, [cos(30 - O) + ViI.cos(30 + O)]

= V1..(2 cos 30° cosl)
V3
= V(20 2 cosO)
Wi+ W :‘/3_VLILcosE|EI(3)
Wi— Wy= Vil [cos(30 = O) = cos(30 + 0O)
=VI..(2sin30%sin0)
1
— Vi (200sin0)
2
Wi — Wa= Vilsin
Wi— Wa= Vilsin O

Wi+ W> \/;VL]LCOSD

1 =tan0
\/g tan 0 =30

\/_D Wi+ —
w 1\/2 wi. O
w - 2

=

1 >0

DD W, - WzDD
O0=tan W+ W
0. 20

Variation in wattmeter reading with respect to p.f:

Pf W reading W reading
[1=0,cos [1=1 +ve equal +ve equal
1=60,cos [1=0.5 0 +ve
1=90,cos [1=0 -ve, equal +ve equal
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Exp. : 01
A balanced star — connected load of (8+56). Per phase is connected to a

balanced 3-phase 100-v supply. Find the cone current power factor, power and
total volt-amperes. Solution :

Za=%+6 =100
A

Vor=400/"3 =23 /v
Ion= Vo Zp=231/10 = 23.14

1) I = Zpn=23.1A 11) P.f. = cosO = Ryn/zph =
8/10 = 0.8 (lag) \1/1_1) PowerP = 3V, I, cos[]

-~ 0400 O 23.10 0.8 = 12,
800 watt. iv) Total volt ampere s

=03 Vi I, = 03 0 4000 23.1 = 16,
000 VA.

Exp. -02

Phase voltage and current of a star-connected inductive load is 150V and
25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3-wire and
power is measured using two watt meters, find the readings of watt meters.
Solution :

Vo = 150V
V. =030150
In =1 = 25A

Total power = 03 VI cos 0=03 0 1500 O3 025 0 0.707 = 7954 watt.
Wi + W, =7954.00, cos 0= 0.707
0= cos™ (0.707) =450, tan 450 = 1
Now for a lagging power factor,
tan [ :&Wl - W) (W + W) O

1 = %=

oo 7954 00

QW - Wwy) = 4592w
From (i) and (i1) above, we get
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W, = 6273w W2 = 1681w
TRANSIENTS

Whenever a network containing energy storage elements such as inductor or
capacitor is switched from one condition to another,either by change in applied
source or change in network elements,the response current and voltage change
from one state to the other state.The time taken to change from an initial steady
state to the final steady state is known as the transient period.This response is
known as transient response or transients.The response of the network after it
attains a final steady value is independent of time and is called the steady-state
response.The complete response of the network is determined with the help of a
differential equation.

STEADY STATE AND TRANSIENT RESPONSE

In a network containing energy storage elements, with change in excitation, the
currents and voltages in the circuit change from one state to other state. The
behaviour of the voltage or current when it is changed from one state to another is
called the transient state. The time taken for the circuit to change from one steady
state to another steady state is called the transient time. The application of KVL and
KCL to circuits containing energy storage elements results in differential, rather than
algebraic equations. when we consider a circuit containing storage elements which
are independent of the sources, the response depends upon the nature of the circuit
and is called natural response. Storage elements deliver their energy to the
resistances. Hence, the response changes, gets saturated after some time,and is
referred to as the transient response. When we consider a source acting on a circuit,
the response depends on the nature of the source or sources.This response is called
forced response. In other words,the complete response of a circuit consists of two
parts; the forced response and the transient response. When we consider a
differential equation, the complete solution consists of two parts: the complementary
function and the particular solution. The complementary function dies out after short
interval, and is referred to as the transient response or source free response. The
particular solution is the steady state response, or the forced response. The first step
in finding the complete solution of a circuit is to form a differential equation for the
circuit. By obtaining the differential equation, several methods can be used to find
out the complete solution.

DC RESPONSE OF AN R-L CIRCUIT

Consider a circuit consisting of a resistance and inductance as shown in
figure.The inductor in the circuit is initially uncharged and is in series with the
resistor.When the switch S is closed ,we can find the complete solution for the
current.Application of kirchoff’'s voltage law to the circuit results in the following
differential equation.
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1|
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| +
OREr
r~-

Figure 1.1
V=Ri+L§
Ry i
........... Lo, 1,1 OF R =
1.2

In the above equation , the current | is the solution to be found and V is the applied
constant voltage. The voltage V is applied to the circuit only when the switch S is closed.
The above equation is a linear differential equation of first order.comparing it with a non-
homogenious differential equation

whose solution is
X = €7FF [EE™F gt 4ot 1.4

Where c is an arbitrary constant. In a similar way , we can write the current equation as

_ I| H |'1=- _|"1ﬂ~|f 'I__l Il"E |-'.
£ + & W | =gt
i=c L dt
2% w
. g LLJ
Hence,1=C e P 1.5

To determine the value of ¢ in equation ¢ , we use the initial conditions .In the circuit
shown in Fig.1.1, the switch s is closed at t=0.at t=0-,i.e. just before closing the switch s,
the current in the inductor is zero. Since the inductor does not allow sudden changes in
currents, at t=o0+ just after the switch is closed,the current remains zero.

Thus att =0, i=0

Substituting the above condition in equation c , we have

v v ZB
. - gL
1=r R
v iy
k
i=y (1295
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J = -]

i .=
i=I; (1-¢ L ) (where '®~ &°

. . L
= T i o —
i= (1- ) ( where ¢ = Timeconstant T 1.6

0 1 2 3 4 5§ & TC
Figure 1.2
Equation d consists of two parts, the steady state part L =V/R) and the transient part

=As

r
o @ L,

When switch S is closed , the response reaches a steady state value after a time interval
as shown in figure 1.2.

Here the transition period is defined as the time taken for the current to reach its
final or stedy state value from its initial value.In the transient part of the
solution, the quantity L/R is important in describing the curve since L/R is the

time period required for the current to reach its initial value of zero to the final
=fz

value I —V/R. The time constant of a function iz €T is the time at which the
exponent of e is unity, where e is the base of the natural logarithms.The term L/R
is called the time constant and is denoted by T .

L
So, T = sec

T

Hence, the transient part of the solution is

p —RE r It
. —— gL - @t
1= R i

At one Time constant , the transient term reaches 36.8 percent of its initial value.

LE 1 =--I—.&f-'jl

i(t) = -7 5% -.0.3687%
Similarly,

iU =-F  =-0.135%
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¥ oo

i(31) = -5°  =-0.0498 7

ot

i(51) = -& -0.0067 &

After 5 TC the transient part reaches more than 99 percent of its final value.
In figure A we can find out the voltages and powers across each element by using the
current.

Voltage across the resistor is

1] i‘
va=Ri=R"3; (1" 5%

|—_|

Hence , V& =V (1- ot )

Similarly, the voltage across the inductance is

The responses are shown in Figure 1.3.

Figure 1.3

Power in the resistor is

Fr=lzj=V(1-¥%)(l— ¢t

Power in the inductor is
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The responses are shown in figure 1.4 .
F .

Figure 1.4

Problem : 1.1

XS

w
§o
(@)

60 V 7

'
RS

Figure 1.5

A series R-L circuit with R = 30Q and L = 15 H has a constant voltage V = 50 V applied at

t=0 as shown in Fig. 1.5 . determine the current i, the voltage across resistor and across
inductor.

Solution :

By applying Kirchoff’s voltage Law, we get

di

15 =: +30i =60

. di
==

ae +2i=4

The general solution for a linear differential equation is
j=c& Ty @7F [ K& g¢
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where P=2,K=4 putting
the values
].=Cc_—:l: + @—ot ._[' st dt

=>j=ce”+2
At t=0, the switch s is closed.

Since the inductor never allows sudden change in currents. At t=07 the current in the
circuit is zero. Therefore at t=0+, i =0

==0=c+2
=>C=-2

Substituting the value of c in the current equation, we have

i=2(1- 72%) A
voltage across V) =iR=2(1- €77%) x 30=60(1-¢"") v resistor (
voltage across 't % =15 §2(1- e™7%) = 30 287 y= 80" jinductor () =L

DC RESPONSE OF AN R-C CIRCUIT

Consider a circuit consisting of a resistance and capacitance as shown in figure.The
capacitor in the circuit is initially uncharged and is in series with the resistor.When the
switch S is closed at t=0 , we can find the complete solution for the current.Application of
kirchoff’s voltage law to the circuit results in the following differential equation.

g £
o ' My

E(D)

Figure 1.6
1p.,
. =]idt
V=Ri+¢
....................................................................... 1.7 By
differentiating the above equation, we get
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Or dt RC [ =0

...... 1.9

Equation c¢ is a linear differential equation with only the complementary function. The
particular

solution for the above equation is zero. The solution for this type of differential equation is

To determine the value of c in equation ¢ , we use the initial conditions .In the circuit
shown in Fig. the switch s is closed at t=0. Since the capacitor does not allow sudden
changes in voltage, it will act as a short circuit at t=o+ just after the switch is closed.

So the current in the circuit at t = 0+ -is
Thus at t = 0, the current 1:i
Substituting the above condition in equation c , we have
“=C

Substituting the value of ¢ in equation c , we get

r E-.f_'ﬂiﬂ‘]
i=n e eesvess s s s s ess s s s s 1.11
i
v
R

Figure 1.7
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When switch S is closed , the response decays as shown in figurre.
The term RC is called the time constant and is denoted by T .

So, T = RC sec
After 5 TC the curve reaches 99 percent of its final value.

In figure A we can find out the voltage across each element by using the current equation.

Voltage across the resistor is

A
'==Ri=R &

Hence , tvz=V #i¢

Similarly, voltage across the capacitor is

=-V &R +¢

At t=0,voltage across capacitor is zero
So,c=V

And

-

I-':r,_' =V :]. — gRL)

The responses are shown in Figure1.8.
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Pr

TR

0 1 2 3 4 § 6 TC

Figure 1.8

Power in the resistor is

4

‘E“.,"“‘ =:1E 'i = v ﬁ‘m bl _; g

=1

-3

1=
=5

w7y

Power in the capacitor i

o oRC)  eRC
Fe=tci=V(1-° ‘&

Lra ol it 1

" gRC.@RC

== ()

The responses are shown in figure 1.9.

P ..

ol

Figure 1.9

Problem : 1.2

A series R-C circuit with R = 10Q and C =0.1 F has a constant voltage V = 20 V applied at
t=0 as shown in Fig. determine the current i, the voltage across resistor and across
capacitor.
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20 e =01 F

i

Figure 1.10

Solution :

By applying Kirchoff’s voltage Law, we get
1 l" 14
10i + o1+ F95220
Differentiating w.r.t. t we get
@t
10 z¢ o0:+=0
= Z+i=0

The solution for above equation is
i=ce™"

At t=0, the switch s is closed.

Since the capacitor never allows sudden change in voltages. At t=07 the current in the
circuit is i = V/R=20/10 =2 A

. Thereforeat t=0, i =2 A

== the current equation is i=2e7*
voltage across resistor (VR) =iR=2 e™*x 10=20 e™* v

voltage across capacitor (Ve (1= &%)y =y =
20(1- &%) V

DC RESPONSE OF AN R-L-C CIRCUIT
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Consider a circuit consisting of a resistance, inductance and capacitance as shown in
figure.The capacitor and inductor in the circuit is initially uncharged and are in series with
the resistor.When the switch S is closed at t=0 , we can find the complete solution for the
current.Application of kirchoff’s voltage law to the circuit results in the following differential
equation.

. QR

¥ L
T . . .
i) -— €
Figure 1.11
i L,
L= 5
V=Ri+Lz *=° +
....................................................................... 1.12 By
differentiating the above equation, we get

0=R & Latart + - 2 e 1.13
Or
ditfdrd +Rdiy 1 =0 e 1.14

Lo oo The above equation c is a second order linear differential

equation with only the complementary
function. The particular solution for the above equation is zero. The characteristics equation
for this type of differential equation is

B 0 R 1.15
L L
The roots of equation 1.15 are
0,0, =
Eys 1
_i E"“:[ _E i —

By assuming *"'1 = E, and K== \ (E”T -

=
nl"‘

Oy=fy~ K: and D2 = _ K:

Here &z may be positive,negative or zero .

s E 1
Casel: J-:'I*: fx Ftr'ﬁ'-“h‘l. -4 [:.‘_,':[ > I

Then , the roots are Real and Unequal and give an over damped Response as shown in
figure 1.12.

The solution for the above equation is : i = Ci g™, €, glisfias
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A

Figure 1.12

kK, ts Negativg (3 | =
- &

-

| 52
I~

[
™

Case ll :

Then , the roots are Complex Conjugate, and give an under-damped Response as shown in
figure 1.13.

Figure 1.13

The solution for the above equation is : i = € < (% eogKat +C; sinKyt)

K,tg Zerg [11 =1

Case lll : Lc

Then , the roots are Equal and give an Critically-damped Response as shown in figure 1.14.

if

Figure 1.14

F ot ¢
The solution for the above equation is : i = &% (Cy + Cat)

Problem : 1.3
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A series R-L-C circuit with R =20Q , L = 0.05H and C = 20 pF has a constant voltage V = 100
V applied at t=0 as shown in Fig. determine the transient currenti .

s R
X 8
- Lo 298 ' 13 o0sH
100V 7
CT 20 uF
Figure 1.15
Solution :

By applying Kirchoff’s voltage Law, we get
+ B _ T [ide
100=30i ~ = ZezeE ©70.05

Differentiating w.r.t. t we get

8y ranr+208 + 1
Q05e"¥/de g 2E<1emE i =0

== lﬁiszﬂ:?: +400? + 1% i=0

== (pe t400D + 105 =0
The roots of equation are

I3

nrTen L .El:_\_
E'I.ID“.:-& i.\:[‘TT - 10%

- -200%+/ 120007 — 107
0y = .200+j979.8
I2=.200-j979.8

Therefore the current

j =8 5[0 cosKy r+ CocosKt]

j =€ 29 [C) cog97E + Cyaln 979.88] 5
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At t=0, the switch s is closed.

Since the inductor never allows sudden change in currents. At t=07 the current in the
circuit is zero. Therefore at t=07, i =0

= §=0=(1) [T, coz 0+ C; =in ]

—=

== G- 0and =8 ", 2n979.8¢ ] o

Differentiating w.r.t. t we get
i i 2pEsr .
T C [ 079 B cop97 28 T+ o288 = 2000 8in 972.8¢ ]

At t=0, the voltage across the inductor is 100 V

o dl

gt ;
= [ — —_
gt =100 or &t = 2000

&

At t=0, F = 2000=C2979.8 co20

2000
Cr =59 22,04

The current equation is
j= @202 04sin 979.68) A

ANALYSIS OF CIRCUITS USING LAPLACE TRANSFORM TECHNIQUE

The Laplace transform is a powerful Analytical Technique that is widely used to study
the behavior of Linear,Lumped parameter circuits. Laplace Transform converts a
time domain function f(t) to a frequency domain function F(s) and also Inverse
Laplace transformation converts the frequency domain function F(s) back to a time
domain function f(t).

7 e

LLF()] = F(S) =t T F(E) A veeeeeeee e e LT 1

_ = Fis) =~
—1{ F(s)} = f(t) =2ms*—F " S e LT 2

DC RESPONSE OF AN R-L CIRCUIT (LT Method)

Let us determine the solution i of the first order differential equation given by equation A
which is for the DC response of a R-L Circuit under the zero initial condition i.e. current is

zello, i=0 at t= and hence i=0 at t=0" in the circuit in figure A by the property of
Inductance not allowing the current to change as switch is closed at t=0.
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=RI(S) + L[ SI(S) -1(0) Jouverreerniiiiiiiiiiiiine, LT 1.2
= 3 =R I(s) +L[sI(s) ] ( 1(0) =0 : zero initial current )
= ?'3' = I(s)[R +L s]
=1(s) = ﬂ ................................... LT 1.3

Taking the Laplace Inverse Transform of both sides we get,

ELE""EEJ}

== IH|(5)} = #8) = &7

- Vi
i(t) = . {EER-‘E—E]} ( Dividing the numerator and denominator by L )

putting % = F/L we get

—1p P pegpr 1 1
i i T GTER
gl ot ok )
i(t) = : (57 Tam &} ( again putting back the value of
-1 Pl 1 "L v :ll‘E I :lli W
ity =" FGE mandmR(1- e )=k 85 ) (where #TF
i)=Te(1- €7)  (where FT=Timeconstany=", LT 1.4

It can be observed that solution for i(t) as obtained by Laplace Transform technique is
same as that obtained by standard differential method .

DC RESPONSE OF AN R-C CIRCUIT(L.T.Method)

Similarly ,

Let us determine the solution i of the first order differential equation given by equation A
which is for the DC response of a R-C Circuit under the zero initial condition i.e. voltage
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across capacitor is zero, ¥z =0 at t=0~ and hence V- =0 at t===in the circuit in figure A by
the property of capacitance not allowing the voltage across it to change as switch is
closed at t=0.

Figure LT 1.2
=1 dt
V= R+ LT1.5
Taking the Laplace Transform of both sides we get,

‘_ 1 e

Z T =R I(s) + [ +(0)]..........
=215 = - [ LT 1.7
=7ls) = [ T pa T G . =RI(s) + [ (10

le.|§lﬁg tpe L[ﬂplattj In}/(S e?'EEansform of bothsideswe get,

=2 L‘1{|( s)} = #eh = L""{ v -1

(EC=ath

i
i(t)y= £~ H sy 3 ( Dividing the numerator and denominator by RC)

putting .. _ 1 weget
HC

( ) L-I{E_:... "]J =é E'_."C:

i(t) =:| 32 ( putting back the value of* )

i(t) =fo¢™ (where I, = %)

. s LT 1.8
i(t)= . E%) (where T=Timeconstant=
RC)

It can be observed that solution for i(t) as obtained by Laplace Transform technique in q is
same as that obtained by standard differential method in d.

DC RESPONSE OF AN R-L-C CIRCUIT ( L.T. Method)
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ﬂ-
——
ws - we]

v R Wl
< =RI(s) ++ L[sI(s) -1(0) ]+ Z[ ‘T'E"+I(O)] ......................... LT 1.10
=::=§ =R I(s) + L[=1¢ s,t]-f-—[ —] (10) = Q:zero initial cwrrent & |(0) =0: zero initial V|
charge)
L 1 SRt
=# 3 =I6)R+L=TZ]=1(s)[ —]
— ¥ Cs Ve
- I(S) = [':f-':f“"mE""l:'] =':|‘.CE=“E'CE“'1:' ..................................... LT 1.11
Taking the Laplace Inverse Transform of both sides we get, ig
P i = -1 L ur
== [ 'l{l(s)} = ) = L { ICreRCTL) } e
LT
i(ty= L * } (Dividing the numerator and denominator by LC 1.
i(t) '[_‘Ff"'_" ( g yLC) 3
i(t)= & g : S
[essted] ;
e new B , o m
putting™™" 7p Ana ai= T weget il
¥ ar
i(t)= L7 [_:_aw,c_u_.:]} ly
The denominator polynomialbecomes = [#2 -2

M

Let us determine the solution i of the first order differential equation given by equation A
which is for the DC response of a R-L-C Circuit under the zero initial condition i.e. the
switch s is closed at t=0.at t=0-,i.e. just before closing the switch s , the current in the
inductor is zero. Since the inductor does not allow sudden changes in currents, at t=o0+
just after the switch is closed,the current remains zero. also the voltage across capacitor
is zero i.e. ¥z =0 at t= 0~ and hence !z =0 at t=07 in the circuit in figure by the property of
capacitance not allowing the voltage across it

1% to suddenly change as switch is closed at t=0.

V=Ri+ E"—F'if?"ﬁ'? .................................... LT 1.9

ar L

e T Taking the Laplace Transform
of % .9 = Z— - —®EVET—w® % £ 8 poth sides we get,
i . — II-Z and - = 2

& _‘—r’m_.\.ec J'?_ o
where,
where, =

By partial Fraction expansion , of I(s) ,
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I(s) =
Taking the Inverse Laplace Transform
i(t) = 4 gif Aot

Where %1

atd are constants to be determined and fz2 and
equation.

aren the roots of the
Now depending upon the values of <1 and =; we have three cases of the response.

CASE | : When the roots are Real and Unequal, it gives an over-damped response.

: "T i = 4w
ar e or ; In this case, the solution is given by

or j(t) =41 #274 Ae®F fort =

E 0

CASE Il : When the roots are Real and Equal, it gives an Critically-damped response.

& Wil or = = w ; In this case, the solution is given by or

i(t)y=¢"" fu+ &l ) fort=0

CASE Il : When the roots are Complex Conjugate, it gives an under-damped response.
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or "=

L sEC
i(ty=4 44 &8 fort .
Iy P oy o ) .
1 g =M =—Ni'ﬁ"F—u.T'
; In this case, the solution is given
by 0
where,
o 3 | |— . ) . _ )
Let Vo —w® _AFTAWT -6 -j wsiwhere j = V=1 and wa= V0F —x*
Hence , j(t) =57 A glwar | A, E--fwd.r)

glidl ag=fagt

o (i + a0 T s, - a0

gl g o g =i gl H

i(t) = 2

-

i(t) _ET 64 4+ Apdcoswgt 4] (8 — &) einowgt ]

j(t) =¢~ "By coswgt +Basinwat) AT 1.14

))))))))))))))))))))))))))))))))))))))))))))))))))))))}))})})}}))})})))X)(X)(X)(X)(X)(X)(X)O(X)g)))))))))))))))}

999999999999999999999993939%))

TWO PORT NETWORKS

Generally, any network may be represented schematically by a rectangular box. A network
may be used for representing either Source or Load , or for a variety of purposes. A pair of
terminals at which a signal may enter or leave a network is called a port. A port is defined
as any pair of terminals into which energy is withdrawn ,or where the network variables
may be measured .One such network having only one pair of terminals (1-1’)is shown
figure 1.1.
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Network

1 - ,
Il Iz
+o——> | 4g b= i'z
[nput v V. Oulput
port "1 2 port
. _1' _ o’ b :2‘.
Figure 1.1

A two-port network is simply a network a network inside a black box, and the network has
only two pairs of accessible terminals; usually one one pairs represents the input and the
other represents the output. Such a building block is very common in electronic systems,
communication system, transmission and distribution system. fig 1.1 shows a two-port
network,or two terminal pair network,in which the four terminals have been paired into ports
1-1" and 2-2".The terminals 1-1" together constitug,e 3 port, Similarly, the termilials -2’
constitute @nother port. Two ports containing no sourtes’in their branches are called passive
ports ; among them are power transmission lines and transformers. Two ports containing
source in their branches are called active ports. A voltage and current assigned to each of
the two ports. The voltage and current at the input terminals are and ; where as and are
entering into the network are , ,and , . Two of these are dependent variable, the other two
are indepent variable. The number of possible combinations generated by four variable,
taken two at time, is six. Thus, there are six possible sets of equations describing a two-port
network.

OPEN CIRCUIT IMPEDANCE (Z) PARAMETERS

A general linear two-port network is shown below in figure 1.2.

The z parameters of a two-port network for the positive direction of voltages and ¢ rrentﬁ

defined by expressing the port oIta%?andTr in terms of the currentdy andeHere-
are twodependentvarlablesan are two independent variables.

1

Mabarork

may be
and

Figure 1.2

The voltage at port 1-1’ is the response produced by the two &urren{s and
. thus
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L L T s P 1.1

Vo =24y + 2530
2,85, 85 and Zg; are the network functions, and are called impedance(Z)
parameters, and are

defined by equations 1.1 and 1.2..
These parameters also can be represented by

Matrices . We may write the matrlx equation [V] =
[Z][1] where V is the column m@lrlx =[]

Z is a square matrix[%i%ndé\&d may write in the

K
column matrix = =[ /-]
] _ [2'1'1 2’1:] "E'.
Thus, [Pﬂ da1 Ex7 h []

The individual Z parameters for a given network can be defined by setting each of the port
currents equal to zero. suppose port 2-2’ is left open circuited, then =0.

2y =1k
Thus ke
where

=1

E’H] {4z Griving polnt lmpedance at port 1 - 1'with port 2 =
Z ope—n c‘ircuited It iz called the open clroult nput Impedance.

i'i.
where:

Z;q 1z thetransfer Impedanceat port1l — 1'withport 2 —
2'open clreunited. It iz called the open clrenit forward transfer Impedance

}[:=ﬂ
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Suppose port 1-1’ is left open circuited, then /1 =0.
f=hlp =0
Thus, &

where

&7 lathe transfer Impedanceatport 2 — 2" withport 1 -
ﬁ'mwaﬂ)qircuited. [t 1z called the open clreult reverse fransier Impedance

=
an = F§

i

f‘l =
where

Z;; 12 the open clronitdriving point impedance at port 2 — 2'withport 1 —

Theeuialant grevibel tebwomRrtashieis dayemnsd RuiheLquations 1.1 and 1.2 ie.

open circuit impedance parameters as shown below in fig 1.3.

_’.."1

’ e a— 2‘1
T Z1t 2y T
V1 Vz
l Zizby AN Zwh
1 >
Eiex 182
Figure 1.3

If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

Srp=0 Sp=0
o, = 4

or

Zp = dy

It is observed that all the parameters have the dimensions of impedance. Moreover,
individual parameters are specified only when the current in one of the ports is zero. This
corresponds to one of the ports being open circuited from which the Z parameters also
derive the name open circuit impedance parameters.

Problem 1.1

Find the Z parameters for the circuit shown in Figure 1.4
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Solution The circuit in the problem is a T network. From Eqgs 16.1 and 16.2 we have

V= + 40 and Vz = Zz3ly +Iz;07

When port b-p’ is open circuited,

¥
o e -
Wherely =1,{z, + =)

a Iy =2+ -"i-a.v)

22 =[_| =0
o
Where I-": = f-l 2;, W 2;:1 = 2;,

Whenporta.g’is opencircuited, [1=0

“=z |
where ¥; = Lidy+ L;)

}:-1='~:[

Zpp = (2, +2,)
Z‘l: =%‘ f’l =
where Vi =1:Z; andZy; =25

ltcanbeobservedthat z,. = z., , sothenetworkis abilateralnetworkwhichsatisfiesthe

principle of reciprocity.

SHORT-CIRCUIT ADMITTANCE (Y) PARAMETERS

—4 T b -
+

1 .

Linaer
Vi network Ve

¥

Figure 1.5

A general two- port network which is considered in Section 16.2 is shown in Fig 16.5The Y
parameters of a two- pori for the positive directions ofj;voltages ang!l gurrents may abrz

defined by expressing the bort cdrrents and; in terms of the voltages and . Here ,
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dependent variables and and are independent variables. may be considered to be the
superposition of two components, one caused by and the other by .

Thus,
h =T W+ 112V 1.3

Similarly, 2 =¥aaVatYaaVa 1.4

Y11, T1zx¥21 and Yzare the network network functions and are also called the admittance
(Y) parameters. They are defined by Eqs 16.3 and 16.4. These parameters can be
represented by matrices as follows

[1=[YIV]
L 1 T LA
= Y=[ e b=
where I=[ 1z E [‘121 2] andV=[ "
] Thus,

L, T, YooV
[I:]_[T:i ‘1’::][‘-’:]

The individual Y parameters for a given network can be defined by setting each port
voltage to zero. If we let ¥z be zero by short circuiting port 2-2’ then

is the driving point admittance at port 1-1’, with port 2-2’ short circuited.lt is also called
1, the short
circuit input admittance.

121 is the transfer admittance at port 1-1’, with port 2-2’ short circuited.lt is also called the
short circuited forward transfer admittance. If we let Vi be zero by short circuiting port 1-
1’,then
PP
¥z

T1z is the transfer admittance at port 2-2’, with port 1-1’ short circuited. It is also called the

short
circuited reverse transfer admittance.

. Bl
Yoy =511

£
bt

=0

T2z s the short circuit driving point admittance at port 2-2’, with port 1-1’ short circuited.
It is also called the short circuited output admittance.The equivalent circuit of the
network governed by equation 1.3 & 1.4 is shown in figure 1.6.
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— Iy - Io

1
% w[Jrnd> Dol

1 = . g

N

Figure 1.6
If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

or
M 7Y

It is observed that all the parameters have the dimensions of admittance. Moreover,
individual parameters are specified only when the voltage in one of the ports is zero. This

corresponds to one of the ports being short circuited from which the Y parameters also
derive the name short circuit admittance parameters.

Problem 1.2 Find the Y-parameters for the network shown in Fig.1.7

a mAVAVAY AYAVAY b
“hlig L
T 20 !
V1 2Q § 4Q V2
l I
; Y
a 3 ; : A b’
Fig1.7
Solution :
1= 2| V2 =0

When b-3$ short circuited, V2= 0 and the network looks as shown in Fig. 1.8(a)
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S —~—

T h 10 50

Vi — Zg 20

a l
Fig.1.8(a)
".,.’1 =113.E._-,
Zeq=2p
SO, 1':'?-1 = 11 -
Ty = 2wy =0 ===k
Tay =:T v, 0
2 Ii

When b-o' is short circuited, 2= I3 % =—s0; -

I, ¥

L
A

Y = v 0=

and #

bl

similarly, when port a- is short circuited, V= = 0 and the network looks as shown in Fig.

121

1.8(b)



Ty T2, 0
I

ra

ti lra

with a-a" is short circuited , -1; =
Since I, =5 %

¥

%5

w |7

wi hra

-11

So, Tyz=1 =-1
Ve -
The describing equations in terms of tye admittance parameters are

- -
I ==V, + =V
- -

1 5
y = =V, fe=Vs
I. a3 6‘\‘-

Transmission (ABCD) parameters
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Figure 1.9

Transmission parameters or ABCD parameters are widely used in transmission line theory
and cascaded networks. In describing the transmission parameters, thtf)hnput'r\/anables
and at port 1-1’, usually called the sending end are expressed in terms of the output
variables and at port 2-2’, called, the receiving end.The transmission parameters prowde a
direct relationship between input and output.Transmission patameters are also called
general circuit parameters, or chain nparameters. They are defined by

1.?-1 = .*'I:'I-':: - Bf:

The negative sign is used with -z, and not for the parameter B and D. Both the port
i.currents /1 and - are directed to the right, i.e. with a negative sign in equation a and b the
currents at port 2-2’

which leaves the port is designated as positive.The parameters A,B,C and d are called
Transmission

parameters. In the matrix form, equation a and b are expressed as ,

;
[1;11=[§ Bl

A B

The matrix [C D]

is called Transmission Matrix.

For a given network, these parameters can be determined as follows. With port 2-2’ open circuited
i.e.1=0 ; applying a voltage¥':at the port 1-1’, using equ a , we have

1/Ais called the open circuit voltage gain a dimension less parameter. And =Y J f,=0% Zaul 1
i.e

=0 is called open circuit transfer impedance. with port 2-2’ short cq’r’cmté . =0 ,
applying voltage Vi at port 1-1’ from equn . b we have
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) I
=l =0 =l wm=0
-B=%k = and -D = Ig

1 Iz .

- | ¥ = il 21.| i

E =¥, =
- =0 is called short circuit transfer admittance
and ,

1 1 =

= SElp=0 wylv;
b =0 is called short circuit current gain a dimension less parameter.
Problem 1.3

Find the transmission or general circuit parameters for the circuit shown in Fig.1.10

SRR !1 12
a s VAVAYS AAA b

T 1Q 20 t

Vy § 5Q Vo

Fig. 1.10
Solution : From Equations 1.5 and 1.6 , we have

1.?-1 = .*"':'I—':: - .B}I:

I"_ - EtuF: - D]:
wheg ?-b’ é{s open circuited i.e. I; =0, we
havé A= -
where = and = and hence, A=
Vi Bl V. 51
E‘ . — —
E ana
]_-IL =0 :
when*b-b’ is shoft circuited i.e}/>=0, we have
B=- and D =-
= g = I o= o=

Inthe®eircuit, -1z = .%1"'?1 anti'so, B4™ p
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similarly, Iy =7 Vi and 12 =1; 11

and hence D =

Hybrid parameters

Hybrid parameters or h-parameters find extensive use in transistor circuits. They are well
suited to transistor circuits as these parameters can be most conveniently measured. The
hybrid matrices describe a two-port network, when the voltage of one port and the current
of other port are taken as the independent variables. Consider the network in figure 1.11.

If the voltage at port 1-1’ and Cljlrrent at port 2-2’ are taken as dependent variables,we can
express them in terms ¢f and?®.

W o=hyfy +hya Vs

....................................................... 1.7
Iy =hggky +hyoVo
.......................................................... 1.8
The coefficient in the above terms are called hybrid parameters.In matrix notation [
W, Wy R, b
L 1= “Hzg h::] [y, ]

; -

MNMabaroric
T )

Figure 1.11
from equation a and b the individual h parameters may be defineds t¥ fetting’zand = 0.
when V2= 0,the port 2-2’ is short circuited.
Then = %‘1 r—-:short circuit input impedance. =
=0 = short &ifcuit forward current gain Similarly,

Bl
by Iettulg‘ port 1-1’ open, 1+ =0

g - =0 = open circuit reverse voltage gain

Yy

4

Ve
I

=%
L

1
! =0 = open circuited output admittance

Since h-parameters represent dimensionally an impedance, an admittance,a voltage gain
and a current gain, they are called hybrid parameters .An equivalent circuit of a two-port
network in terms of hybrid parameters is shown below.
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t ' M he T
211
. ™[I
l s Vs l
Figure 1.12
Problem 1.4
Find the h-parameters of the network shown in Fig 1.13.
a SAVAVAY shVAYAY, 5
——Tp— ¥
T h 19 20
4Q

Vi 20

Fig.1.13 Solution

From equations 1.7 and 1.8 , we have

)
ot :f s =0 ;Mg :f V2 =0ihyy == {y=g; Baz =

a — NV —\AN
—_— = 5
T I1 1Q 20
— V 2Q 4 Q
a
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Fig.1.14(a)

b, =:'i V=0 Vi = by Zag

Zais the equivalent impedance as viewed from port a-a° is 2Q

s Vi L
by Ve )
1.
Iy =% .. =0when,, =0;.1:=!:and hencelz; =.1
I - K. 3
If port a-,is opencircuited,l; = 0 and the network looks as shown in Fig. 1.14(b) then
L AYYS )
= 0 10 l> T
T 2Q Ly
X 2
V4 § 2Q §4 Q V2
= \

Fig.1.14(b)

T

by =35 =g andV; =1,2; 1,

Iz

'|

"i.,!': = ]A4 ; ‘TA:]..
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[

Ya 1 %
g2 =57 li=e=; and Mz =77 11=0 =
H ] L+

a

INTER RELATIONSHIPS OF DIFFERENT PARAMETERS

Expression of z parameters in terms of Y parameters and vice-versa

From equations 1.1,1.2,1.3 & 1.4, it is easy to derive the relation between the open
circuit impedance parameters and the short circuit admittance pqqamet@frs by means
of two matrix equations of the respective parameters. By solving equafion aand b
for and , we get

Wy a2 o= a1 W

I. = [1;;: Z::] Az : and I, = [zn 1;|_r:]/f—\".z

where 4: is the determinant of Z matrix
_rd11 &pg

te = [3:1 Z::]

L= O 19
a7 -7

L=y s Zy

equations 1.9 and 1.10 with equations 1.3 and 1.4 we

T, = fzz | M2 = f1z
have z T L
21 .. 211
-‘1 = g DS
-1 = |5-- ) l‘-- :‘rz
In a similar manner, the z . , parameters may be expressed in terms of
the admittance Vi andV: parameters by solving equations 1.3 and 1.4
. I, Yo for 11 1
1= [I: ‘1-"'1:1] /45 V2= [*i-";: 11:]/‘:5.!
A
where 4, . and
T Yo . . :
&, = [‘1-"_ 3-__] is the determinant of Y matrix
o= ok g
Vo= fEE w b ZE L 1.11

1.12 comparing
equations 1.11 and 1.12 with equations 1.1 and 1.2 we have
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General Circuit Parameters or ABCD Parameters in Terms of Z
parameters and Y Parameters

We know that

Yy =al; - Bl W = 2315 +2350; I} =TV + TV -
L=CVo=D) » Va=Ep] + 250 [o =T Vg + 100V
A= =0, c=Hh=v ; B= Hw=0,p= w=0
rE rE H -

Substituting the condition Iz =0 in equations 1.1 and 1.2 we get

Substituting the condition Iz =0 in equations 1.4 we get ,

A=l B0 TR
Substituting the condition 2 =0 in equations 1.2 we get
1
C= = —
]—'l =0 =
rRl. . ”,

Substituting the conditiony, =0 in equation 1.3 and 1.4 and solving forVz gives
=1y 5 Whered, is the determinant of the admittance matrix
Ep_og =2u =C
" i

Substituting the condition Vz =0 in equations 1.4, we get

=

Tms
Substituting the condition;=0 in equation 1.1 and 1.2 and solving forl2 gives

=V, EWhere A is the determinant of the impedance matrix

=z

=0
- & =

&
=s. =B

Substituting the condition ¥z =0 in equation 1.2 we get ,
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_ Dz
V.= = ==

9 Zx =D
Substituting the conditon vz =0 in equations 1.3 and
1.4 we get

Alv =0 L

% .

M—Trlfepresentation

A two-port network with any number of elements may be converted into a two-port
three- element network. Thus, a two-port network may be represented by an

equivalent T- network, i.e. three impedances are connected together in the form of
a T as shown in figure 1.15.

t Lt 52
h=> 4, N
Vi Z, Vo
1" - — 2
Figure 1.15

It is possible to express the elements of the T-network in term of Z parameters,or ABCD
parameters as explained below.

Z parameters of the network

Iu=%l =0=
A
=%.
e B Z,
Zs =T:-‘I1_
=0=
=O—Z|:_:"'2|:
=0= .E"__
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From the above relations, it is clear that
Zy,  Zy, - 8a
2, =255 - 2y
T, =2, - a1

ABCDparametersofthenetwork

—_ I'F'L El.‘-'
© EpEotEaiZp+io)

Bz
B =|:Zc: “Zi;) + _E:h

=0 = =

Z

I,
C==
i

D=-TH v:=0

When 2.2’ i

I G

—l, =

e T

D= Eh"'zs
Zg

s short circuited is

short circuited
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From the above relations we can obtain
—a-1 .. D1 _
EL‘.‘ - T ) Er'_;' - c ] EL‘ _E

Problem :1.6

The Z parameters of a Two-port network are Z11 = 208 Zyp = 180, Z,=2,, = =50
Find the equivalent T network and ABCD Parameters.
Solution :
The equivalent T network is shown in Figure 1.16
Zh= 3:: -31_:= 10 Q

and Z_. =50

The ABCD parameters of the network are
A=§-“:+1 =2 B - zh)+% =( =250

C==002;D +2£=3 =1

1
In a:similar way a two-port network may be represented by an equivalent -
network, i.e. three impedances or admittances are connected together in the form
of as shown in Fig 1.17. =

Z3 Zs
Z;
+
i E=t i
= h » Y f =
V1 :I Y1 Y3 Yz
Fig. 1.16 Fig.1.17

It is possible to express the elements - of the -network in terms of Y parameters or
ABCD parameters as explained below.
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Y-parameters of the network

= =0 = +
‘I'.':r ]—L ! I .
-.I. =,'r_ - =0 ‘11_'__‘
AN AL T .
kv =',-?fr: 1,'{ Yo4¥3
z =
Ve
- Ll .
12 =5 |'¥'1 =0
Y=Y+ ¥y
Y=
=¥+ Vo
— ¥ _ YaEV:
A= Tee T
-1
B=— =i
) 4
C= =L =, 4y, + ==
ne R
_-‘.I._r_ _Yr_"'T:l;
T

Lo D=1 1.

‘!f-l_ ] 1‘5:'41_;1
_ &=l

Y. =3

From the above relations , it is clear that

Writing ABCD parameters in terms of Y parameters
yields the following results.

'CLASSIFICATION OF FILTERS

A filter is a reactive network that freely passes the desired band of frequencies while

almost

totally suppressing all other bands. A filter is constructed from purely reactive elements,
for otherwise the attenuation would never becomes zero i n the pass band of the filter
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network. Filters differ from simple resonant circuit in providing a substantially
constant transmission over the band which they accept; this band may lie
between any limits depending on the design. Ideally, filters should produce no
attenuation in the desired band, called the transmission band or pass band, and
should provide total or infinite attenuation at all other frequencies, called
attenuation band or stop band. The frequency which separates the transmission
band and the attenuation band is defined as the cut-off frequency of the wave
filters, and is designated by fc

Filter networks are widely used in communication systems to separate various
voice channels in carrier frequency telephone circuits. Filters also find applications in
instrumentation, telemetering equipment etc. where it is necessary to transmit or
attenuate a limited range of frequencies. A filter may, in principle, have any number of
pass bands separated by attenuation bands.However, they are classified into four
common types, viz.low pass, high pass, band pass and band elimination.

Decibel and neper

The attenuation of a wave filter can be expressed in decibels or nepers.Neper is defined as
the natural logarithm of the ratio of input voltage (or current) to the output voltage (or current),
provide

that the network is properly terminated in its characteristic impedance Z ¢ .

T v, Two Port Vs T

Fig .9.1 (a)

From fig. 9.1 (a) the number of nepers, N= log e [V1)V2] or loge [l1/l2]. A neper can
also be expressed in terms of input power,P+ and the output power P> as N=1/2 loge
P1/P2. A decibel is defined as ten times the common logarithms of the ratio of the input
power to the output power.

Decibel D=10 log10P+/P-
The decibel can be expressed in terms of the ratio of input voltage (or current) and the
output
voltage (or current.)
D=20 |Og1o[V1/V2] =20 |Og10[|1/|2] *
One decibel is equal to 0.115 N.
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Low Pass Filter

By definition a low pass (LP) filter is one which passes without attenuation all
frequencies up to the cut-off frequency f. , and attenuates all other frequencies greater
than f. The attenuation characteristic of an ideal LP filter is shown in fig.9.1(b).This
transmits currents of all frequencies from zero up to the cut-off frequency. The band is
called pass band or transmission band.Thus,the pass band for the LP filter is the
frequency range 0 to f;.The frequency range over which transmission does not take place

is called the stop band or attenuation band. The stop band for a LP filter is the frequency
range above f; .

T Pass ' T Attenuation
o Band Attenuation o Pass
Band Band Band
fe e o fe —f
Low Pass Filter High Pass Filter
o | Attenuation| pags Attenuation o |Pass | Attenuation | Pass
Band Band Band Band | Band Band
E
f1 f2 — f‘l r f
Band Pass Filter 2

Band Elimination Filter

Fig.9.1 (b)
High Pass Filter

A high pass (HP) filter attenuates all frequencies below a designated cut-off frequency,
fc , and passes all frequencies above f. . Thus the pass band of this filter is the frequency
range above f;, and the stop band is the frequency range below f. . The attenuation
characteristic of a HP filter is shown in fig.9.1 (b).

Band Pass Filter

A band pass filter passes frequencies between two designated cut-off frequencies and
attenuates all other frequencies. It is abbreviated as BP filter. As shown in fig.9.1 (b), a
BP filter has two cut-off frequencies and will have the pass band f, — f; f; is called the
lower cut —off frequency, while . is called the upper cut-off frequency.
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Band Elimination filter

A band elimination filter passes all frequencies lying outside a certain range, while it
attenuates

all frequencies between the two designated frequencies. It is also referred as band stop

filter. The characteristic of an ideal band elimination filter is shown in fig.9.1 (b). All
frequencies between f;

and f, will be attenuated while frequencies below f; and above f» will be passed.

FILTER NETWORKS

Ideally a filter should have zero attenuation in the pass band. This condition can only be

satisfied if the elements of the filter are dissipationless.which cannot be realized in practice. Filters
are designed with an assumption that the elements of the filters are purely reactive. Filters are
made of symmetrical T, or 1 section. T and 11 section can be considered as combination of
unsymmetrical L

sections as shown in Fig.9.2.

Z4 Zq 21 4
2 2 2 2

40— ———7 1 B =3
[l] 22, [I] 2z, [J] z
el |

[ 122 []22 [J2zz  []2z

Fig. 9.2

The ladder structure is one of the commonest forms of filter network. A cascade

connection of several T and 11 sections constitutes a ladder network. A common form of the
ladder network is shown in Fig.9.3.

Figure 9.3(a) represents a T section ladder network, whereas Fig.9.3 (b) represents the

mrsection ladder network. It can be observed that both networks are identical except at the
ends.
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Fig. 9.3

EQUATIONS OF FILTER NETWORKS

The study of the behavior of any filter requires the calculation of its propagation constant V,
attenuation a, phase shift  and its characteristic impedance Z .

T-Network

Consider a symmetrical T-network as shown in Fig. 9.4.

£ =4
1 2 2 2
—AANA—— AN—S —

Fig.9.4

If the image impedances at port 1-1' and port 2-2' are equal to each other ,the
image
impedance is then called the characteristic, or the iterative impedance, Z o .Thus, if the
network in Fig.9.4 is terminated in Z o | its input impedance will also be Z o . The value of
input impedance for the T-network when it is terminated in Z ¢ is given by
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> Z
/’m - =L b i
2 1
HZ, + 2,
also Z‘in : Z()
7 zz,[d' b z(,J
- ., 1 R Y/
Zy = — 4 — — 5
Zs - 4, 42, +22,27,)

“0

Z{ +22,Z, +22,Zy +22,Z, +4Z,yZ,
2(Z, +22;5 +2Zy)

Z 0

428 =7 +42,2,

SRR e

The characteristic impedance of a symmetrical T-section is

S S
Zor =1|—2-+2Z,Z
07 4 142
(9.1)
Zor can also be expressed in terms of open circuit impedance Zoc and short circuit
impedance Z sc of the T — network . From Fig. 9.4, the open circuit impedance Z oc =Z4/2 + Z >

and
Z

x L Z
A ,/_ll_ = ,,2,_ - %
A =

.- 2‘ +Z,

- Zi +42,7,
So Zzl 77'4 422
ZZ
Zoe % Zgo = Z1Z3 + -

= Zop Oof  Zop - ﬁ(;cz.\.-
9.2)

Propagation Constant of T- Network

By definitation the propagation constant Y of the network in Fig.9.5 is given by Y = log ¢ l1/l2
Writing the mesh equation for the 2nd mesh, we get
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%+4+%:%N

Z
Zy = Z,(e" —1)—-5'—

The characteristic impedance of a T — network is given by
A
ks Al

Squaring Esq. 9.3 and 9.4 and subtracting Eq.9.4 from EQq.9.3, we get
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2 le

Z
Z3 (e —1)? +7:——z,z,_(e" —-N-=LzzZ, =0

Zi" -1 —-2Z,Z,(1+e"—1)=0
Zi (-1 —2Z,Z,e" =0
Z,(e"—1)>—-Ze"=0

(¥ =1)* = Ze'!

Z,

eV +1—2e"Y = Z1
AY I

Rearranging the above equation, we have

Ly
Z 2
Z

e’ +e ¥ —2)=
( ) Z,

e Y(e®Y +1—2eY) =

Dividing both sides by 2, we have

e’ ‘e Zs
2 27,
Z,

coshy =1+ 57
2

(9.5)
Still another expression may obtained for the complex propagation constant in terms of

the hyperbolic tangent rather than hyperbolic cosine.

140



sinh y = \/cos Wy —1

z \ Z
= Jl+=| 1=, |2t
o] - 2

sinh'y:}—— Z\Zy +— = 2L

(9.6)
Dividing Eq.9.6 by Eq.9.5, We get

Zr
27,

tanh —ZOI —
b2 V. ] Z|
Az *' 2
4
Phs
But Zz + ST — ZOC
2
Also from Eq. 9.2,
Zor = \/20.-2.\».~
tanh vy — Z'i"—
; ZO(‘
Also sinh —Z— == / lz(cnsh v — 1)
Where coshy — 1 + (£,/272, )
5
e

m - Network

Consider asymmetrical 1 — section shown in Fig. 9.6. When the network is terminated in Z ¢ at port 2

— 2 " its input impedance is given by

Z4

1e - NN
/4 /

272

275 Zo

1T
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Fig.9.6
275 Zo
2Z, +Zp

222 \Z| +
§-2Z5

S 275 Zg

Zy -
L a2

By definition of characteristic
impedance, Z;, = Z,

273 Zo
7, A

S o0
=2 +2Z
At 2Z, + 2Z, 2

Zo =

3222 a2 27,(22,Zy + ZoZy +22o25)
e 37 2y e (225 +Zy)

2
270207y + 228 + 223 Zy + AZ5 Zo + 22,75
— 42,2} + 222,25 +4ZyZ;
: 2,23 + 42,23 =4Z,Z;
Z2(2Z, +42Z,) = 4Z,Z3

> 2
> 42,75
02 +42;

Rearranging the above equation leads to
ZZ
ZO L 1#~2
142, /425
@which is the characteristic impedance of a symmetrical -network,

2,2,

ZO'IT =5 >
NZ 2y 42 /4
From Eq. 9.1
5 Z5 o
Zop = 7‘- 4 Z £
=~ 22,
(+ 1, e Zor
(9.9)

Z or can be expressed in terms of the open circuit impedance Z oc and short circuit
impedance Z sc of the T network shown in Fig.9.6 exclusive of the load Z o .

From Fig.9.6, the input impedance at port 1- 1" when port 2 — 2’ is open is given by
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3Z(Z-+ B2
foc =—7 " 1>
)t 44,

Similarly, the input impedance at port 1 — 1" when port 2 — 2’ is short circuit is given by

oI A4

Zi‘ e T ——————
27542,

¥4/|/’7 g Zl Z').

Hence <Lg.X<Z,. S o

Thus from Eq. 9.8
L0t — \/Z().- L
(9.10)

Propagation Constant of m - Network

The propagation constant of a symmetrical ™ — section is the same as that for a
symmetrical T — Section.

: Z
€. cosh y=1+ 7—'

okt

CLASSIFICATION OF PASS BAND AND
STOP BAND

It is possible to verify the characteristics of filters from the propagation constant of the
network. The propagation constant Y, being a function of frequency, the pass band, stop
band and the cut-off point, i.e. the point of separation between the two bands, can be
identified. For symmetrical T or  — section, the expression for propagation constant Y in

terms of the hyperbolic functions is given by Eqs 9.5 and 9.7 in section 9.3. From Eq.9.7, sin
h Y2 =\(Z1/42Z,) .

If Z4+ and Z» are both pure imaginary values, their ratio, and hence Z1 /4Z, , will be a pure real
number. Since Z; and Z, may be anywhere in the range from -jito +ja , Z1 / 4Z> may also
have any
real value between the infinite limits . Then sin hY/2 = VZ 1 /\N4Z, will also have infinitelimits,
but may be either real or imaginary depending upon whether Z; / 4Z, is positive or
negative.
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We know that the propagation constant is a complex function ¥ = a+jB , the real part of the
complex propagation constant a , is a measure of the change in magnitude of the current or
voltage in the network ,known as the attenuation constant . 3 is a measure of the difference
in phase between the input and output currents or voltages. Known as phase shift constant
Therefore a and (3 take on different values depending upon the of Z+/ 4Z, . From Eq.9.7,
We have

a JB B B

sinh ¥ = sinh[— + ~——J = sinh > cos = + jcosh Zsint
2 25 .2 Dol

(9.11)
Case A
If Z1 and Z; are the same type of reactances, then [Z4 / 4Z> ] is real and equal to

say a+x . The imaginary part of the Eq. 9.11 must be zero. (9.12)

A o 3
sinh —cos L = X in E 0
2 £, :

(9.13) a and B must satisfy both the above
equations.

Equation 9.12 can be satisfied if /2 = 0 or nmr, where n =0, 1, 2,....., then cos p/2 = 1 and sinh a/2= x
=\(Z1/4Z,)

That x should be always positive implies that

l
47,

(9.14)
Since a #0, it indicates that the attenuation exists.

> 0and @ = 2sinh”

Case B

Consider the case of Z1 and Z, being opposite type of reactances, i.e. Z1/4Z; is

negative , making VZ 1 / 4Z, imaginary and equal to say Jx *The real part of the Eq.9.11
must be zero.

N

3 o
sinh — cos
2
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(9.15)

B

o .
cosh—sin— = x
2 2

(9.16)

Both the equations must be satisfied simultaneously by a and B. Equation 9.15 may be
satisfied when a = 0, or when B = 11. These conditions are considered separately hereunder

o When a = 0; from Eq. 9.15, sinh a/2 =0.and from Eq.9.16 sin B/2 = x = \( Z1 / 4Z>) . But the
sine can have a maximum value of 1. Therefore, the above solution is valid only for negative

Z114Z, , and having maximum value of unity. It indicates the condition of pass band with zero
attenuation and follows the condition as

— 7‘! -~
e = 0
a4z,
B=2Z8sin " =)
4z,

(9.17)

® When B =, from Eq.9.15, cos B/2 = 0. And from Eq.9.16, sin /2 =+ 1; cosh a/2 = x = (Z1/
47,)

Since cosh a/2 = 1, this solution is valid for negative Z1 / 4Z, ,and having
magnitude

greater than, or equal to unity. It indicates the condition of stop band since a # 0.

PO s A
—a< -l <
a4z,

« — 2 cosh '\/—%’—
Ay (9.18)

It can be observed that there are three limits for case A and B. Knowing the values of Z;
and Z» , it is possible to determine the case to be applied to the filter. Z1 and Z, are made of
different types of reactances, or combinations of reactances, so that, as the frequency
changes, a filter may pass from one case to another. Case A and (ii) in case B are
attenuation bands, whereas (i) in case B is the transmission band.

The frequency which separates theattenuation band from pass band orvice versa
is
called cut-off frequency. The cut-off frequency is denoted by fc , and is also termed as
nominal frequency. Since Z, is real in the pass band and imaginary in an attenuation band,
fc is the frequency at which Z, changes from being real to being imaginary. These
frequencies occur at

—7;:-'-— = 0Qor Z, =0
42> 9.18(a)
Z, : :

Z/, =—lorZ,4+4Z, =0
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9.18
(b) The above conditions can be represented graphically, as in Fig.9.7.

fa (nepers)
Stop Pass Stop
Band Band Band g
=
o
: _ ez ol
=2 - (s} <1 -1 <1 ==
475 42
Fig. 9.7

CHARACTERISTIC IMPEDANCE IN THE PASS
AND STOP BANDS

Referring to the characteristic impedance of a symmetrical T-network, from Eq. 9.1 We have

Zf 7
Zon =il A 202y = |22y |14 —=
0r 4 &2 1542 422

If Z, and Z are purely reactive, let Z; = jx1 and Z2 = jx2 , then

X
207 = _.rll.z 1 + _—l—'
4x,

(9.19)
A pass band exists when x4 and x; are of opposite reactances and
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X

—1< <)

4x,

Substituting these conditions in Eq. 9.19, we find that Zor is positive and real. Now consider
the stop band. A stop band exists when x4 and x» are of the same type of reactances; then
x1/4x2 > 0. Substituting these conditions in Eq. 9.19, we find that Zor is purley imaginary in
this attenuation region. Another stop band exists when x1 and x , are of the same type of

reactances, but with x41/4x> < -1.Then from Eq.9.19, Zor is again purly imaginary in the
attenuation region.

Thus, in a pass band if a network is terminated in a pure resistance Ro(Zot = Ro), the
input
impedance is Ro and the network transmits the power received from the source to the
Ro without any attenuation. In a stop band Zor is reactive. Therefore, if the network is
terminated in a pure reactance ( Zo = pure reactance), the input impedance is reactive,
and cannot receive or transmit power. However, the network transmits voltage and
current with 90° phase difference and with attenuation. It has already been shown that
the characteristics impedance of a symmet rical - section can be expressed in terms
of T. Thus, from Eq.9.9,Zor = Z1Z2/Zo7 .

Since Z1 and Z; are purely reactive, Zor is real, if Zor is real and Zoy is imaginary if Zot
is imaginary. Thus the conditions developed for T — section are valid for ™ —
sections.

CONSTANT -K LOW PASS FILTER

A network, either T or T, is said to be of the constant — k type if Z; and Z, of the network
satisfy the relation

Z1Z 2= k2 (9.20)

Where Z; and Z, are impedances in the T and 1 sections as shown in Fig.9.8.Equation

9.20 states that Z4 and Z; are inverse if their product is a constant, independent of

frequency. K is a real constant that is the resistance. k is often termed as design

impedance or nominal impedance of the constant k — filter.

The constant k, T or m type filter is also known asthe prototype because other
morecomplex network can be derived from it. A prototype T and 11 — section are shown in

Z4 Z;
2 4 Z4
IO e - SILIR
L/2 L/2 i
7 - O =t _J_
2 2Z; T cl2 cl2 T 22,
(a) (b)
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Fig.9.8

Fig.9.8 (a) and (b), where Z1 = jw. and Z2 = 1/ jwc . Hence Z1Z2 = L /C = k? which is
independent of frequency.

=k . or k= ﬁ

é Ve

(9.21)
Since the product Z; and Z; is constant, the filter is a constant — k type. From

Eq.9.18 (a) the cut-off frequencies are Z1 /4Z, = 0,

i.c. ;7‘” !_'L =0

4
i.e. S =0 and —— 1

—wiC .,

8 1

or S ey
i 1LC
(9.22)

The pass band can be determined graphically. The reactances of Z1 and 4Z, will
vary with frequency as drawn in Fig.9.9.The cut-off frequency at the intersection of the
curves Z1 and -4z; is indicated as fc . On the X — axis as Zy = -4Z, at cut-off frequency,

the pass band lies between the frequencies at which Z1 =0, and Z, = - 42, .

I

|

|

|

| ——
Reactance ll g\gggudtuon

, :
>

|

|

I

:\n

Pass
Band

Fig.9.9

All the frequencies above fc lie in a stop or attenuation band , thus, the network is called
a low- pass filter . We also have from Eq.9.7 that
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Ly V. /—szc Jo\JLC
sinh—= |— = =
2 \4z, 4 2

From Eq.9.22
_— 1
NLC = —
ST
S e s F24Ef o A
sinh = = *¥——— =
sinh 3 2an. T
We also know that in the pass band
i Jps e
4z,
2 7
e = B
N2
—1 < [-‘“—] < 0
or / <1
Je P
and B = 2sin '[J/f];cx—;O
In the attenuation band, e
Z, - 4
< —1l,i.e.— <1
422 ~/(' if"- > ,
o= 2(:0311"[4Z7"zl= 2 cosh ! [:;;?];B——— ar

The plots of a and [ for pass and stop bands are shown in Fig.9.10
Thus, from Fig. 9.10, a= 0, B =2 sinh-! (f/fc ) for f< fc

a =2cosh' (f/fc); B= mforf>fc

o

n.q_.
B

N T

—
- —
O

fc

O

N -

n O ¢ S
O

Fig .9.10

The characteristics impedance can be calculated as follows
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— ;-7 '-77 Z!
/O'I' = Jllll [l = ‘422]

N v & [l (l)2 I:(_:]
— -

Zor — 1 —(£])
(9.23) |

From Eq.9.23, Zor is rael when f< f¢ , i.e.in the pass band at f=fc , Zor ; and for f> fc , Zor is

imaginary in the attenuation band , rising to infinite reactance at infinite frequency . The variation

of Zot with frequency is shown in Fig.9.11

" |
oL |
T Z()n I L,
K oW
| e
A <
Zon Sor, B | i
T T Zo1 | &
/
Passband I / Attenuation
lI
} . -
0.5 1 NIy
Fig.9.11

Similarly, the characteristics impedance of a 1 — network is given by

Z L2y —

Z— 2 k
“Oar Z()T \/ f 5
1—| 2
7
(9.24)

The variation of Zor with frequency is shown in Fig.9.11 . For f<fc , Zorisreal ;atf=1fc, Zoris
infinite , and for f > fc , Zox is imaginary . A low pass filter can be designed from the
specifications of cut-off frequency and load resistance. At cut-off frequency, Z1 = - 42,

Jw L =-—2
T,

w2f2LC = 1
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Also we know that k = VL /C is called the design impedance or the load resistance

w2 hC2 = |

— gives the value of the shunt capacitance
f k

0.1 g k . . . .
and L=k“C = .7_ gives the value of the series inductance.
m

L

Example 9.1.

Design a low pass filter (both ™ and T — sections ) having a cut-off frequency of 2 kHz

to operate with a terminated load resistance of 500 Q .

solution. It is given that k = (L /C) =500 Q , and fc =
2000 Hz we know that L = k/mifc = 500/3.14 x 2000 =
79.6 mH

C = 1/mfck = 1/3.14.2000.500 = 0.318 pF
The T and 11 — sections of this filter are shown in Fig.9.12 (a) and (b) respectively.

L/2 = 39.8 mH L/2 = 39.8 mH L =796 mH
— VOO “BEO0 — — “BOOO0 ™ - —

l [ - L =
o o
Yy o

- C =0.3189 uf o s - -

] ‘[ " "
o o
o L&

(a) (b)

Fig.9.12

CONSTANT K - HIGH PASS FILTER

Constant K — high pass filter can be obtained by changing the positions of series and shunt
arms of the networks shown in Fig.9.8.The prototype high pass filters are shown in
Fig.9.13,where Z1 = -j/w ¢

and Z = jwL .
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N
O
N
O
O

] Ao 118 1 :
Zy Zy “
2 2
L 22 2L Q 22 2L
(a) (b)
Fig.9.13

Again, it can be observed that the product of Z1 and Z; is independent of frequency,
and the filter design obtained will be of the constant k type .Thus, Z1Z> are given by

L

2,2,=—= joL =—=k*
wC C
i
C

The cut-off frequencies are given by Z1 =0 and Z; = -4Z, .
Zy1 =0 indicates jwC=0,0orw —a

From Z,=-42,
H/wC = - 4 jwL
wlLC =1/4
. 1
or ./(. =
411\/E
(9.25)

The reactances of Z1 and Z; are sketched as functions of frequency as shown in Fig.9.14.
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Reactance —-
N

42725
-— Passband —

Fig.9.14

As seen from Fig.9.14, the filter transmits all frequencies between f= fc and f= a. The point fc

from the graph is a point at which Z1=-42Z, . From Eq.9.7,

mmiz:_é-: oreEp
2 \/422 V4w2LC

From Eq. 9.25,
o il
TE gL C
VLC = . -
47/

A g L 1
2 4o’ f
In the pass band, -1< Z4/4Z, < 0, a = 0 or the region in which fc/ f< 1 is a pass band B =2 sin - (fc/ f
)
In the attenuation band Z1/4Z>< -1,i.e.fc/f>1a
=2 cosh' [Z1/4Z,]
=2cos(fc/f);B=-T
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Fig.9.15

The plots of a and 8 for pass and stop bands of a high pass filter network are shown in Fig.9.15.

A high pass filter may be designed similar to the low pass filter by choosing a
resistive load r equal to the constant k , such that R =k = \L/C

1

am~[L/C
7 U, ) |
Y 4Aml  4AnCk
Since \/(_:£
k
L= . andC;_—L_——
4/, A/, k

The characteristic impedance can be calculated using the relation

Similarly, the characteristic impedance of a T — network is given by
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Zy ZOTr

T P e S s e e e o e SR
(9.26) Zor 1

Fig«9.16

The plot of characteristic impedanges with respect to frequefncy is shown in

Example 9.2.
Design a high pass filter having a cut-off frequency of 1 kHz with a load resistance

of 600 Q .

Solution. It is given that R L = K =600 Q and fc =1000 Hz

L =K /4mf, =600 /4 x m x 1000 = 47.74
mH C = 1/41kfc = 1/41 x 600 x1000 =

0.133 uF

The T and 1 — sections of the filter are shown in Fig.9.17.

2C = 0.266 uF 2C = 0.266 pF C = 0.133 uF
o—i| — jir—s ) —| Ty
E
R L =47.74 mH 2 L% ) 2L g 95.48 mH
o
o
o — ——— —— - ———————————) o .
(a) (b)
Fig.9.17

m - DERIVED T - SECTION FILTER

It is clear from Figs.9.10 and 9.15 that the attenuation is not sharp in the stop band for k-
type filters. The characteristic impedance, Z, is a function of frequency and varies widely in
the transmission band. Attenuation can be increased in the stop band by using ladder
section, i.e.by connecting two or more identical sections. In order to join the filter sections,
it would be necessary that their characteristic impedances be equal to each other at all
frequencies. If their characteristic impedances match at all frequencies, they would also
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have the same pass band . However , cascading is not a proper solution from a practical

point of view .

This is because practical elements have a certain resistance, which gives rise to attenuation
in the pass band also. Therefore, any attempt to increase attenuation in stop band by
cascading also results in an increase of ‘@’ in the pass band .If the constant k section is
regarded as the prototype, it is possible to design a filter to have rapid attenuation in the
stop band , and the same characteristic impedance as the prototype at all frequencies .
Such a filter is called m — derived filter. Suppose a prototype T — network shown in
Fig.9.18(a) has the series arm modified as shown in Fig.9.18 (b) , where m is a constant .
Equating the characteristic impedance of the networks in Fig.9.18, we have

Z4/2 Z4/2 mZ4/2

T e TS e {4 amife ) L

% ]

(a)

k

Fig.9.18

Zot = Zor,

|

1

mZ4/2

Where Zor ,is the characteristic impedance of the modified (m — derived) T — network.

;é i;% m*Z? LT
éil + Z\Z, = \/mdvl‘ {- mz,z_,{

ZZ ZZA_
Sl 22l Sz 2
4 4

S A I
L VAVAS ———Z—(l—m )+ Z,Z,

V4 Z
Z} ==L (1—mt)+ 2
4m m

(9.27) It appears that the shunt arm Z ' consists of two impedances in series as shown in

Fig.9.19.
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=472 =4 /2

—>frr?

Z (1 —rr?)
Arr

Fig.9.19
From Eq.9.27, 1 — m?/4m should be positive to realize the impedance Z ' physically ,
i.e.0<m<1 . Thus m — derived section can be obtained from the prototype by modifying its
series and shunt arms .The same technique can be applied to 1 section network. Suppose
a prototype m—
network shown in Fig. 9.20 (a) has the shunt arm modified as shown in Fig. 9.20(b).

21 211
3 (-0 ¢ A
. L A
2, 2 22,/ 22,
(a) (b)
Fig.9.20
Z()Tr =Z ‘

oWhere Z o is the characteristic impedance of the modified
(m — derived) 1 — network.

Squaring and cross multiplying the above equation results as under.
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4Z(Z, + Z,Z|

m

(42,2, +mZ!Z,) =

= (A 47, = -
Z/| =L+ —= MAIJ - 47, Z,
m m
or ¥ Ag T V_.__?‘J_EZ_W
: Z, 3 Z, mz,
4m m 4

4 _Z/IZ;Z
2 VA
£ 4 =l mz)
m 4m
R L
T 4m ; mZ, Z, 4'):
7! = as=m*).' " (1—m"*)
5 Z, am’ A Zy4m

(l 3 ) + Z, m INZi -}
n —m

(9.28)
It appears that the series arm of the m — derived 11 section is a parallel combination of
mZi and 4mZ; /11 — m? . The derived m section is shown in Fig.9.21.

m - Derived Low Pass Filter

In Fig.9.22 , both m — derived low pass T and 1 filter sections are shown. For the T —
section shown in Fig.9.22(a) , the shunt arm is to be chosen so that it is resonant at some
frequency fq above cut-off frequency fc .

If the shunt arm is series resonant ,its impedance will be minimum or zero .Therefore , the
output is zero and will correspond to infinite attenuation at this particular frequency . Thus,
atfy

1/mw:C = 1 —m?4m w: L , where wx is the resonant frequency

mZ4

. 1L o

o =
e IS

2Z5/m am. . 7., 2Z-/m
1—m?

L2 s 4

Fig.9.21
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ml./2 ml/2 m—— by
s 1 LY Brrray J——’B’m\ Tl \ THTATIE A FiS ’ ———T O
~ mc —" B0 0
| miL
b mel2 == == mc/2
p=o R s LLESY 3
- _— —_— e — — -
(a) (b)
Fig.9.22
2 4
)y T | e
(1 —-m~)YLC
. 1 .
J¢= ——re————— = fux

. o
fo =
\]1 —m~
(9.29)
or
(9.30)

If a sharp cut-off is desired,fy should be near to . . From EQq.9.29,it is clear that for
the smaller the value of m,fy comes close to f; .Equation 9.30 shows that if f; and fy are
specified , the necessary value of m may then be calculated. Similarly, for m — derived
section, the inductance and capacitance in the series arm constitute a resonant circuit .
Thus , at fy a frequency corresponds to infinite attenuation, i.e. at fy
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e, L. e e e
[l i ]0),.("
A
2 4
OF bk Lol oa
LC( —m~7)
1
Sy = e —
’Tl’\//.( (1 —m~)
Sinc /. 1
- c, Yy AL =
’ wJ1LC

S

A - -
\/l 'I’l'!

: S

(9.31)

Thus for both m — derived low pass networks for a positive value of m(0 <m<1),f>f;
. Equations 9.30 or 9.31 can be used to choose the value of m, knowing f; and f. = After the value
of m is evaluated, the elements of the T or m — networks can be found from Fig.9.22. The
variation of attenuation for a low pass m — derived section can be verified from a = 2 cosh’'
\Z1/4Z, for f.< f < fy . For Z1 = jwL and Z, = -j/wC for the prototype.
f
i

X = 2 C()Sh ———— -

71 m /
and B = 2sin l‘/]'—‘_"'""*-sm 1 fo

Z) ;
\/l [//( (1—m)?

Figure 9.23 shows the variation of a ,  and Z, with respect to frequency for an m —

derived
low pass filter.

160



ke = ),

Example 9.3

Design a m — derived low pass filter having cut-off frequency of 1kHz, design
impedance of 400 Q, and the resonant frequency 1100 Hz.
Solution. k =400 Q, fc =1000 Hz ; f, =1100
Hz From Eq.9.30

| J5 2 \/ [ l()(‘)()]2
o 11 L 4] Woliinciin M 4
n \/ [ /:’ ] 1 11 0.416

Let us design the values of L and C for a low pass , K — type filter (prototype
filter). Thus,

k 400
L — =127.32 m}
w/,. ar =< 1000 MRS
e TR P : - 0.795 WF
T akf., w=<400x<1000 oW

The elements of m — derived low pass sections can be obtained with reference to Fig.9.22.
Thus the T-section elements are
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mL _ 0.416x127.32x10"°
2 2

mC = 0.416 X 0.795 X 106 = (.33 uF

= 26.48 mH

2 2
1—m” , _12(0.416)" 1593551072 = 63.27 mH
4m 4-0416
The Tr-section elements are

6

mC  0.416%0.795x10
51 1 2

= 0.165 wF

Lt e 1 —(0.416)°

x C = % 0.795%10 ° = 0.395 pF
4m 4x0.416

mL = 0.416 X 127.32 X 103 = 52.965 mH

The m —derived LP filter sections are shown in Fig.9.24.

52.965 mH
26.48 mH 26.48 mH —BEEE
® W__T__/mm\—o o e
0.33 uF L il U
v e 0.395 pF g
o | i
63.27 mH o o
(a) (b)

Fig.9.24

m - Derived High Pass Filter

In Fig.9.25 both m — derived high pass T and 11 — section are shown.

If the shunt arm in T — section is series resonant, it offers minimum or zero
impedance.Therefore, the output is zero and, thus, at resonance frequency or the
frequency corresponds to infinite attenuation.

5 i 1
5 4m
m o gt
1—m

5 C
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.
2CIm 2CIm [
-} ] s s
Lim clm
2L/m
_4Am c 2L/m
= T 1-m? . L {
(a) (B)
Fig.9.25
s s 1 4 | — m?>
% = L 4m C 41.C
=i
\/l—m2 . \/l—m‘2
O, = ————immm—OF f =

ILEC - amJLC

From Eq. 9.25, the cut — off frequency fc of a high pass prototype filter is given by

b L T
"€ 4a[LC
fouo = foN1—m?

(9.32)

m=_|1— l%—
Je

(9.33)

Similarly,for the m — derived 1 — section , the resonant circuit is constituted by the series
arm inductance and capacitance . Thus , at fq
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Arn e 1

- @, L =
1 m” il B
1
> 2> 1 — ”72
W, = W, =
41.C

V1 — 2?2 . V1 — 2

) ~ T ————___ma or ‘/-, — ==
| 2JILC arJSI.C

20 L_ bia-ide o KL l_ il |
] | |
a | |
Atten'uatioL lpass band
Band I
|
l
l
0 | ,
'—ffo, fc S f
(a)
Fig.9.26

Thus the frequency corresponding to infinite attenuation is the same for both sections.

Equation 9.33 may be used to determine m for a given f, and fc . The elements of the m —
derived high pass T or 1 — sections can be found from Fig.9.25. The variation of a, f and Z, with

frequency is shown in Fig. 9.26.

B
|
|
—7T : Pass band._____,_
Attenuation
Band ™
(b)
Fig.9.26
Example 9.4.
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Design a m-derived high pass filter with a cut-off frequency of 10kHz; design
impedance of 5Q and m = 0.4.

Solution .For the prototype high pass filter,

=K _ 2Ll — 3.978 mH
Anf. 4xmwx=10000 oM™
1 |
= 0.0159 WF

 Awkf. 41w x500%10000

The elements of m-derived high pass sections can be obtained with reference to
Fig.9.25.Thus, the T-section elements are
2C _ 2x%0.0159x%107°
” 0.4

= 0.0795 pwF

Ve 3.978 <10 2
s = 9.945 mH

m 0.4
dm 4><0.4
C=—"-"-x0.0159%10"° = 0. -
1 — m?® 1 — (0.4)2 ! 0.0302 pul

The ar-section elements are

2L  2x0.0159x107?

e T -~ 19.89 mH

il 4%0.4 3978103 — 7.577
———— o ————————— a > . p— "
E—2 —: (0.4)2 g mkl

C  0.0159
— = ——-x%10"°% = 0.0397 uWF

” 0.4

T and 17 sections of the m —derived high pass filter are shown in Fig.9.27.

7.5777 mH
0.0795 uF 0.0795 uF Ll R
-} j-—

9.945 mH = 0.0397 puF =
o o
B3 B
- 0.0302 pF & 22

i T ° ;e

(a) (b)
Fig.9.27

BAND PASS FILTER
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As already explained in Section 9.1 , a band pass filter is one which attenuates all
frequencies below a lower cut-off frequency f; and above an upper cut-off frequency £ .
Frequencies lying between f; and f. comprise the pass band ,and are transmitted with zero
attenuation .A band pass filter may be obtained by using a low pass filter followed by a high
pass filter in which the cut-off frequency of the LP filter is above the cut-off frequency of the
HP filter , the overlap thus allowing only a band of frequencies to pass . This is not

economical in practice; it is more economical to combine the low and high pass functions
into a single filter section .

Consider the circuit in Fig.9.28, each arm has a resonant circuit with same resonant

frequency, i.e. the resonant frequency of the series arm and the resonant frequency of the
shunt

arm are made equal to obtain the band pass characteristic.

Ly Ly
2 2C4 2C1 2 C1 Ly
S 111 A e e [ 11 12 AT ——
Cy N Ly Cyl2 il 2Ly Cyl2 " 2L,
(a) (b)
Fig.9.28

For this condition of equal resonant frequencies.

For this condition of equal resonant frequencies.

L, . .
w, — = ——— for the series arm
from which, ®?,L,C, =1
(9.34)
] % 2l '
and —— = L, for the shunt aiin
(N & )

. )
from which, oy ,C; =1

(9.35)
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WS LG, = V=il
L,C, = L,C,
(9.36)

The impedance of the series arm, Z, is given by

: 2

3 r J oL, C; —1

l, == .[(,I)Ll — ——-!—'—] == .1[—l‘l—]
wC| w

The impedance of the shunt arm, Z, is given by

1

JoLly ——— ‘
Z JoC, Jwl.,
AZ -_— S— 2
i et S e
JwC,y
Z Z e K wz 1"‘("l _l ‘i(.l)l.z
1 2 ., (.l.)(r'l l e (1)2 142(:'2

=L | oL c -1
(:'] ‘ s wz 142(‘2
From Eq.9.36

EyC iy Ly

ZIZZ = —]-:-2—-—-£L:k2

€S e
Where k is constant. Thus, the filter is a constant k — type .Therefore, for a constant k — type
in the pass band.

pu-

1

—1 < —— < 0, and at cut-off frequency
4z,
Z, = —42,
Z, = % j2k

i.e. the value of Z, at lower cut-off frequency is equal to the negative of the value of Z, at
the upper
cut-off frequency .

|
N [y ] () e S Y P 4
[.I'“%Cn it l] [./'wzcl St l]
1 |
wy Ly — = — s L
E [ i “’lCl] [wzcl . |]
) h
(1—wlLC) = L (3L, C, —1)
Wy
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(9.37)
From Eq.9.34, L1C1 =1 /w¢?
Hence Eq.9.37 may be written as

[1_0).2 = —] w‘%‘—l

2 2 2
(w5 — W) )w, = w, (w5 — wg)
2 2 S 2 2
“’0;’2 T ARy (0D TEEN0805 =S W,
wo(w) +w,) = W w5 (W, + W)

2
Wy

Jo = NS>

|

(9.38)

Reactance

Thus, the resonant frequency is the geometric mean of the cut-off frequencies.
The variation of the reactances with respect to frequency is shown in Fig.9.29.
If the filter is terminated in a load resistance R = K, then at the lower cut-off frequency.
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[ Jw, Cy

1
o o =2k

Since L, Cj = _17
Wq
02
l ] ‘_—‘5' = ka' C"
Wy

2
e l~[£~} = 4mkf, C,

yo It

¥ ks, C C Jo =ANS3)

So =Sy = 4wkfy 5C,

Coe= fz —'/l
awkty 15
(9.39)
: 1
Since 14C| e =
wo
1 ks, />
by oo s g
Wy wy (2 —N)
S
(/o — )
(9.40) B )
To evaluate the values for the shunt arm, consider the equation
Z,Z, = Ly 4 _ k2
C ,
L, =Gk = (2 — )k
anh /2
(9.41)
L I
ko w(fh -k
(9.42)
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Equations 9.39 through 9.42 are the design equations of a prototype band pass filter.
T he variation of a , B with respect to frequency is shown in Fig.9.30 .

r - SR

,1 i for "’2 7* r B =

Example 9.5.

Design k — type band pass filter having a design impedance of 500 Q and cut-off
frequencies 1 kHz and 10 kHz.

Solution .
k =500 Q; f = 1000 Hz; - = 10000 Hz
From Eq.9.40,
k 500 55.55
L = . — = ) o 2 mH = 16.68 mH
w(f,— /) w9000 v
From Eq.9.39,
AR 9000
C, =2 /e —— =(.143 uF
dnkf, f,  4xmwx500x1000x10000
From Eq.9.41,

L,=Ck=35TmH

From Eq.9.42,
ol
C, = - 0.0707 .

Each of the two series arms of the constant k, T — section filter is given by
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£!_ - 17.68
2 2
2C; = 2 X 0.143 = 0.286 nF

= 8.84 mH

And the shunt arm elements of the network are given by
C, = 0.0707 pF and L, = 3.57 mH

For the constant-A, v section filter the elements of the series arm are
C, = 0.143 wF and L, = 16.68 mH

The elements of the shunt arms are

C, 0.0707
2

— 0.035 wF

2L, = 2 X 0.0358 = 0.0716 H

BAND ELIMINATION FILTER

A band elimination filter is one which passes without attenuation all frequencies less than
the lower cut-off frequency fi , and greater than the upper cut-off frequency £ . Frequencies
lying between fi and f; are attenuated. It is also known as band stop filter. Therefore, a
band stop filter can be realized by connecting a low pass filter in parallel with a high pass
section, in which the cut-off frequency of low pass filter is below that of a high pass filter.
The configurations of T and 1 constant k band stop sections are shown in Fig.9.31. The
band elimination filter is designed in the same manner as is the band pass filter.

L4/2 L4/2 Ly
- L*l S TE —— —
2C| L'-i’ 201 C‘] 2L2
T C: - = Cal2
A . i S LEe oL NI VUG TINER
(a) (b)
Fig.9.31
As for the band pass filter, the series and shunt arms are chosen to resonate at
the same
frequency w o . Therefore, from Fig.9.31 (a) , for the condition of equal resonant frequencies
(_"()I'I S 1 il ST e
for the series arm
2 2w, C
or ®2 = yid.o
0 L] (7‘|

(9.43)
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1

wo /., — ———— for the shunt arm
= w3, C7
1
Wy = 1.
(9.44)
Airoy ad) to i
L CS IACh
Thus L,Cy = L,C,
(9.45)
It can be also verified that
2L y & f -
Z\Zy = —b = 2 = f*
«, (&
(9.46)
(9.47)

At cut-off frequencies, Z1 = - 42,
Multiplying both sides with Z, , we get
k
Z“) = = j—
2 J >
(9.48)

If the load is terminated in a load resistance, R = k, then at lower cut-off frequency

| k
VANE — W | = J—
: 'I[“’1Cz l 2] '12
: - (.l)'L) = 'k
w, 2
= k
l e (,l)lz(_-'zl.rz = ‘”l("2 E
From Eq.9.44,
= |
112( '2 _— -
wj
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2
1—[%] = k1if,C,
SO : /‘ 2
C'z FEPS C—— l_[ l
kat/, fo
Since o = «J NS5
1 1 1
A |7 7;]
R T S
2 km| AL
(9.49)
From Eq.9.44,
" 1
s L,C
gleooll ol o vk s
3 wiCy @GSy — L)
Since Jo =N NS>
Lo b x
2T an( s = 1)
(9.50)

Also from Eq. 9.46,
k? = L G L
CZ Cl

(9.51)

~ Amk(fs — 1)
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Z1
Pass
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- / ﬂ\.\ —
i—_i‘fi — - - ,\.3. . == =
iy fo 2 ’_t_;f_
//—-_-—
474
Fig.9.32

The variation of reactances with respect to frequency is shown in Fig.9.32. Equation
9.49 through EQq.9.52 is the design equations of a prototype band elimination filter. The
variation of a, B with respect to frequency is shown in Fig.9.33 .

oL

T

it

I3

T e

fi fo Iz

Fig.9.33

Example 9.6.

Design a band elimination filter having a design impedance of 600 Q and cut-off
frequencies f1 = 2 kHz and f; = 6 kHz.

Solution. (2 — f;) =4 kHz

Making use of the Egs.9.49 through 9.52 in Section 9.10, we have
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Ll:_l_c_ fo—= N __ 600x4000 A
w| fHofi  x 2000 x 6000
1 1
C = s = 0.033 pF
dwk(f5 — f;)  4xwx600(4000)
L 1 _ .o 600 e > mH
dwk(f5 — f;)  4mw(4000)
C, = 4 b ) A caitlsl ]:0.176;;5
kw| [ 600 x 1 [ 2000 x 6000
Each of the two series arms of the constant &, 7-section filter is given by
it =31.5mH
2
2C, = 0.066 pF

And the shunt arm elements of the network are
L, = 12mHand C, = 0.176 wF

For the constant £, 1r-section filter the elements of the series arm are
L, = 63 mH, C, = 0.033 pF

and the elements of the shunt arms are

2L, = 24 mH and 522- = 0.088 wF
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