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INTRODUCTION: 

CHAPTER-1 

NETWORKELEMENTS 

An electric circuit is an interconnection of electrical elements such as 
resistors, capacitors, inductors, voltage source etc. In electrical engineering, transfer of 
energy takes place from one point to another, which requires interconnection of 
electrical devices. Such interconnection isknown aselectric circuit and each component 
of the circuit is known as an element. 

 
EXAMPLE # Consider an electrical circuit as shown in 
the figure. This electric circuit consists of four elements 
abattery,alamp, switch&connectingwires.Circuitand 
network theorem is the study of the behaviour of the 
circuit: Its behaviour tells us how does it respond to a 
given input how do the interconnected elements and 
devices in the circuit interact? 

ELECTRICCURRENT: 
Electric current may be defined as the time rate of net motion of an 

electric charge across a cross sectional boundary as shown in the figure given below. A 
random motionof electronsin ametal doesnot constituteacurrent unlessthere is anet 
transfer of charge with time i.e. electric current. 

 
i =Rateoftransferofelectriccharge 

=Quantityofelectricchargetransferredduringagiventime 
duration/ Time duration 

=𝑑Q 

𝑑𝑡 

 

Coulomb is the practical as well as SI unit for measurement of electric 
charge. Since current is the rate of flow of electric charge through conductor and 
coulomb is the unit of electric charge, the current may be specified in coulombs per 
second. In practice the ampere is used as the unit of current. Coulomb is the practical as 
well as SI unit for measurement of electric charge. Since current is the rate of flow of 
electric chargethroughconductor and coulombistheunitof electric charge, the current 
may be specified in coulombs per second. In practice the ampere is used as the unit of 
current. 
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VOLTAGE:  
Thevoltageisthepotentialdifferencebetweentwopointsofa 

conductor carrying a current of one ampere when the power dissipated between 

thesetwo points is equal to one watt. The practical unit of voltage is volt. 
 

 

POWER:  
Powerisdefinedastherateofdoingworkorrateatwhichitcanperform 

work. So Power=workdone/Timeinseconds P

 = 𝑑w= 𝑑w 𝑑𝑞= v i 
𝑑𝑡 𝑑𝑞𝑑𝑡 

Absolute unit of power is watt. One watt is thatpower which is required to perform one 
joule of work in one second. The practical unitof power is horse power (HP). This value 
in metric system is 75kg meters per second and in British system is 550 Foot 
Pounds/second. Therefore 

1 HP (Metric) =75Kgmeterspersecond=735.5watt 1 
HP (British) = 550 Foot Pound/ second = 746 watt 

 

ENERGY:  
Energyofabodyisitscapacityofdoingwork. 

𝑡 
𝐸=∫ 

0 
𝑃𝑑𝑡 

The unit of energy in MKS system is joule and in SI system is KWH. A 
system can have this energy in various forms, such as electrical, mechanical, heat, 
chemical, atomic energy etc. Energy of one form can be transformed to other form, but 
cannot be created nor be destroyed. If one form of energy disappeared, it reappears in 
another form. This principle is known as law of conservation of energy. 

 

CIRCUITELEMENTS/PARAMETERS: 
 

1. RESISTANCE: 
Resistance restricts the flow of electric current through the material. Unit 

of Resistance(R) is Ohm. From Ohm’s law 
R=V/I 

Whenanelectriccurrentflowsthroughanyconductor,heatisgenerateddueto collision of 
free electrons with atoms. If I amp is the strength of current for potential difference V 
volts across a conductor, the power observed by resistor is : 

P=VI= (IR).I=𝐼2𝑅watts 
Energylostintheresistor informofheatis then 

𝑡 E= = 2𝑅 𝑑𝑡=𝐼 2 𝑉2 

∫0𝑝.𝑑𝑡 

2. INDUCTANCE: 

∫0𝐼 𝑅t= xt 
𝑅 

It opposes any change of magnitude or direction of electric current 
passing through the conductor. Unit is Henry (H).When a current will flow through the 
coils/Inductor an electromagnetic field is created. However in the event of any change 
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of flow on direction ofcurrent,theelectromagnetic field alsochanges.Thischange of field 
induces a voltage (V) across the coil & is given by 

𝑉=𝐿.𝑑i 
𝑑𝑡 

Where‘i’iscurrentthroughtheinductor. 

- ---- (1) 

Voltageacrossaninductoriszerowhencurrentisconstant. Hence 
an inductor acts like short circuit to dc. 

Powerabsorbedbyinductor 
P=Vxi=Li𝑑iwatts -------------------------------------- (2) 

𝑑𝑡 

Energyabsorbed.𝑡  
 

E=∫𝑝.𝑑𝑡=1Li2 (3) 
0 2 

 

From equation (2) & (3): The inductor can store finite amount of energy, 
even the voltage across it may be nil. A pure inductor does not dissipate energy but can 
only store it. 

3. CAPACITANCE: 
Itisthepropertyofcapacitor,whichhavethecapabilitytostoreelectric charge 

in its electric field established by the two polarities of charges on the two electrodes of a 
capacitor. 

Theamountofchargestorebycapacitoris q = 
cv 
i=𝑑𝑞=>i=c𝑑𝑣 

𝑑𝑡 𝑑𝑡 

Thereforeifvoltageacrosscapacitorisconstant,currentthroughitis zero. 
Hence capacitor acts like a open circuit to dc. 

Power absorbed P=V.I=VC𝑑𝑣 
Energy stored E=𝑡𝑝.𝑑𝑡

𝑑𝑡
1 2 

∫ =CV 
0 2 

Acapacitorcanstorefiniteamountofenergy.Evenifthecurrent throughitiszero.It never 
dissipates energy. 

TYPESOFELEMENTS: 
ACTIVEANDPASSIVEELEMENT: 

An active element has capability to generating energy while passive 
elements have not. 

Ex: ActiveElement: Generators,Batteries,AndAmplifiers. 
PassiveElement: Resistor,Inductor,capacitor. 

BILATERALANDUNILATERALELEMENT: 
If the magnitude of current passing through the element is affected due to 

change in the polarity of the applied voltage, the element is called unilateral element. 
And if the current magnitude remains same, it is called as bilateral element. 

Ex: Unilateral Element: - Diodes, Transistors. 
Bilateral Element: -Resistor, Inductor, Capacitor 
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LINEARANDNON-LINEARELEMENTS: 
A linear element shows linear characteristics of voltage Vs current. 

Resistors, Inductor, Capacitor are linear elements and their property does not change in 
applied voltage on circuit current. 

For non-linear elements the current passing through it does not change 
linearly with the time as change in applied voltage at a particular frequency. 

Ex:Semiconductordevices. 
ENERGYSOURCES: 

Independent Energy sources: The voltage & current sources whose values or 
strength of voltage and current does not change by any variation in the connected 
network are called independent sources. 

 

 
 

Series connected independent 
sources: Consider the series connection of two 
voltage sources as shown in the figure. By KVL 
the total voltage between the terminals is equal 
to algebraic sum of individual sources i.e. the 
voltage sources connected in series may be 
replaced by a single voltage source whose 
voltage is equal to the algebraic sum of the 
individual sources. 

 
 

DependentEnergysources:Whenthestrengthofvoltageandcurrentchanges in the 
sources for any change in the connected network, they are called dependent sources. 
There four different types of dependent sources 

a) Voltagecontrolledvoltagesource(VCVS) 
b) Voltagecontrolledcurrentsource(VCCS) 
c) Currentcontrolledvoltagesource(CCVS) 
d) Currentcontrolledcurrentsource(CCCS) 
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SOURCETRANSFORMATION: 

The voltage and current sources aremutually transferable as shown inthe 
figure below. 

KIRCHHOFF’SLAW: 
These laws are more comprehensive than Ohm’s law and are used for 

solving electrical networks which may not be readily solved by latter. Kirchhoff’s law is 
oftwotypes,Kirchhoff’scurrentlawand Kirchhoff’svoltagelaw. Kirchhoff’scurrentlaw is 
used when voltage is chosen as variable while Kirchhoff’ voltage law is used when 
current is chosen as variable. 

 
KCL:According to Kirchhoff’s current law the algebraic sum of currents at any 

node of a circuit is zero. From the figure given below: 
 

 

 
 

 
Hence: 

-I1-I2+I3-I4+I5=0 

=>I1+I2+I4=I3+I5 

Algebraicsumofcurrentsenteringanode= Algebraic 
sum of current leaving a node. 

 
Example1: Find the magnitude and direction of the unknown current as 

shownin figure given I1= 10 A, I2= 6A, I5= 4A 

Solution: Assume direction ofcurrent in the 
network 

(i) I1=I7=10A 
(ii) I1=I2+I4=>I4=I1-I2=10- 6=4A 
(iii) Atnode b:I2-I3-I5=0 

=>6-I3-4=0=>I3=2A 
(iv) Atnode d:I4+ I3- I6=0 

=>4 +2–I6=0 
=> I6= 6A 
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Assume direction of all current are correct because of their positive 
magnitude. Assume directions of unknown current are arbitrary and any direction can 
be taken. 

Example2: Find v and the 
magnitude and direction of the unknown 
currents in the branch xn, yn and zn as 
shown in figure. 

 
 
 

 

Solution:  
Atnodey:10+Ix+Iz=Iy+2 Ix – Iy 
+ Iz= -8 
𝑉+𝑉+𝑉=-8[sinceIx = ,Iy=−𝑉 ,Iz=𝑉 ] 

5 2 4 5 5 5 

𝑉=−8.42volt 

Negativemagnitudeshowsthatntobepositive. 
 

Therefore Ix=-8.42=-1.684A(i.e.fromflowingcurrentntox) 
5 

Iy= -(−8.42)= 4.21A(ieCurrentflowingfromntoy) 
2 

Iz=−8.42=-2.1A(iecurrentflowingfromn to z) 
4 

 

 

Thecircuitcanberedrawnasgiven below 
 
 
 
 
 
 
 

Example3: Find i1 and i2 asshown in figure 

Solution: The circuit is redrawn in figure 
AccordingtoKCL: i1+i2=5+4i2 ---------------------- (1) 

i1-3i2=5 (2) 

 

Herei1=;i2=
𝑉

 

1 5 

Thereforeequation2:V-3𝑉=5 
5 

=>V=12.5volt 
Therefore i1 = 12.5 A and i2 = 2.5 A 
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KIRCHHOFFSVOLTAGELAW: 
Thislawcanbestatedas 
“The algebraic sum of voltage in any 

closed path of a network that is traversed in single 
direction is zero.” 

Explanation:Accordingto KVL 
V1 –IR1–V2–IR2 –IR3=0 IR1 + 
IR2+ IR3= V1– V2 

I=
𝑉1−𝑉2 

𝑅1+𝑅2+𝑅3 

 

CURRENTDIVISIONRULE: 
Two resistors are joined in parallel 

across avoltageV.Thecurrentineachbranch, asgiven in 
ohm’s law is 

I1=V/R1andI2=V/R2 

Therefore I1/I2=R2/ R1=G1/ G2 

Hencethedivisionofcurrentinthe branch 
ofparallel circuit isdirectlyproportional tothe 
conductanceofthebranchesorinverselyproportional totheirresistances. Wemay also 
express the branch currents in terms of the total circuit current thus: 

Now I1+ I2=I 
=> I2=I-I1 

Therefore I1= 
𝑅2

or I1R1= R2(I - I1) 
I−I1 𝑅1 

Therefore I1=I 
𝑅2

 

𝑅1+𝑅2 

andI2=I 
𝑅1

 

𝑅1+𝑅2 

Thuscurrentdivisionruleisstatedas 
“The current in any of the parallel branches is equal to the ratio of 

the opposite branch resistance to the total resistance, multiplied by the total current.” 
 

Example4: A resistance of 10 ohm is connected in series 
with two resistances each of 15 ohm arranged in parallel. 
What resistance must be shunted across this parallel 
combination so that the total current taken shall be 1.5 A 
with 20 volt applied? 
Solution: The circuit connected in figure 
Dropacross10ohmresister=1.5*10=15V 
Drop across parallel combination, VAB= 20-15=5V 
Hencevoltageacrosseachparallelresistanceis5V. 

I1=5/15 =1/3 A 
I2= 5/15=1/3A 
I3=1.5-(1/3+1/3)=5/6A 

 
Therefore I3R= 5 or (5/6) R=5orR=6ohm 
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Example5: Calculate thevalue of differentcurrentfor the 
circuit shown in given figure. 

Solution: TotalcurrentI=I1+I2+ I3 

LettheequivalentresistancebeR. 
Then V= I R 
Also

 V=I1R1Therefore
 I R = I 1R1 

Or I1=IR/R1 (1) 
Now (1/R)=(1/R1)+(1/R2)+(1/R3) 

 

R= 𝑅1𝑅2𝑅3 

𝑅1𝑅2 +𝑅2 𝑅3+𝑅3 𝑅1 

Fromequation 1: I1= 
𝑅2𝑅3

 

𝑅1𝑅2+𝑅2𝑅3+𝑅3𝑅1 

Similarly I2= 
𝑅1𝑅3

 

𝑅1𝑅2+𝑅2𝑅3+𝑅3𝑅1 

 

I3= 𝑅1𝑅2 

𝑅1𝑅2+𝑅2𝑅3+𝑅3𝑅1 

VOLTAGEDIVISIONRULE: 
A voltage divider circuit is a series network which is used to feed other 

networks with a number of different voltages and is derived from a single input voltage 
source. Figure shows a simple voltage divider circuit whichprovide twooutput voltages 
V1 and V2. Since no load is connected across the output terminals, it is called an 
unloaded voltage divider. We may also express the branch voltages in terms of the total 
circuit voltage thus: 

NowV1+V2=V 
=>V2=V-V1 

Therefore V1= 
𝑅1

or V1 R2 = R1(V –V1) 
V−V1 𝑅2 

Therefore V1=𝑉 __ 
𝑅1

 

𝑅1+𝑅2 
andV2= V𝑅2  

𝑅1+𝑅2 

ThusVoltagedivisionruleisstated as 
“The voltage across a resistor in series circuit is equal to the value of that 

resistor times the total impressed voltage across the series elements divided by thetotal 
resistance of the series elements.” 

 
Example9: Find the value of different voltages that can be 
obtained from a 12 V battery with the help of voltage divider 
circuit of figure. 

Solution: 
R= R1 + R2 +R3 = 4+3+ 1= 8ohm 
Drop across R1=VR1 = 12 × (4/8) = 6 volt 
DropacrossR2=VR2=12×(3/8)=4.5volt 
Drop acrossR3=VR3= 12×(1/8)=1.5volt 
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Example10:Whataretheoutputvoltagesoftheunloadedvoltagedividershownin figure what 
is the direction of current Through AB? 

 
Solution: 

It mayberememberthat both V1andV2 arewith 
respect to ground. 

R=6+4+2= 12ohm 
Therefore 

V1= Drop across R2= 24 × (4/12) = 8 volt 
V2=DropacrossR3=-24×(2/12)=-4volt 

It should be noted that point B is negative potential with respect to the 
ground. Current flows from A to b i.e. from a point at a higher potential to appoint at a 
lower potential. 
Problem1 
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Problem2 
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Problem3 
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CHAPTER-2 
NETWORKTHEOREMS 

 

INTRODUCTION  
Electriccircuitsonnetworkconsistofanumberofinterconnected 

single circuit elements. This circuit will generally contain at least one voltage on current 

source. The arrangement of elements results in a new set of constraintsbetween currents 

and voltages.These new constraints and their corresponding equations added to 

thecurrent-voltagerelationshipsoftheindividual elementsprovidethesolutionofthe 

network. There are different approaches for this but the solution is always unique. 

 

STARDELTATRANSFORMATIONS 
 

FigureshowsaY(staror wage)connectedresistancecircuit.Let 

the resister value of Y network are Ra, Rb andRc.Figureshowsa(delta) connected 

resistances and Let the resistor values are Rab, Rbcand Rca . 
 

StarConnected DeltaConnected 
 

 

It is possible to substitute a star connected system of resistance for a delta 
system and vice-versa if proper values are given to the substituted resistances. 

 

DELTATOSTARCONVERSION 
 

The two systems will be exactly equivalent if the resistance between any 

pair of terminals A, B and C in figure for the star is the same as that between the 
corresponding pair for the delta connectionwhen the third terminal is isolated. 

FortheY-networkresistancebetweentheterminal 

Aand BisRab= Ra+Rb -----------------------------------------------------------------------------------------------------eq.(i) 

Forthe networkresistancebetweentheterminalsABis 

Rab =Rab (Rac+Rbc) 

=Rab(Rac+Rbc) eq.(ii) 
Rab+Rac+Rbc 

Hence Ra+ Rb= Rab(Rac+Rbc)  eq.(iii) 

Rab+Rac+Rbc 
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SimalarlyforY-networkresistancebetweenterminalBandCis Rbc= 

Rb+Rc 

Forthe networkresistancebetweenterminalBandCis 

Rbc= Rbc (Rab+Rac) 

Rb+Rc =Rbc (Rab+Rac)  eq.(iv) 

Rbc+Rab+Rac 

SimilarlywecanfindRacbetweenterminalAandCis 
Ra+Rc= Rac(Rab+Rbc)  eq.(v) 

Rac+Rab+Rac 

Subtractingeq.(v)fromthesumofeq.(iii)andeq.(iv)yields 2 

Rb= 2 Rab. Rbc 

Rab+Rbc+Rca

Rb = Rab. Rbc 

Rab+Rbc+Rca 

Subtractingeq.(iv)fromthesumofeq.(iii)&eq.(v) yields 

2 Ra= 2Rab.Rac 

Rab+Rbc+Rac 

Ra=Rab.Rac 

Rab+Rbc+Rac 

Similarlysubtractingeq.(iii)fromthesumofeq.(iv)andeq.(v)yields 2 

Rc=2. Rbc. Rca 

Rab+Rbc+Rca 

Rc= Rbc.Rca 

Rab+Rbc+Rca 

 

 

STARTODELTACONVERSION 

Similarlywe canfindconversionformulaforYto  as 

Rab=Ra.Rb+ Rb.Rc+Rc.Ra 

Rc 

Rbc=Ra.Rb+ Rb.Rc+Rc.Ra 

Ra 

Rca=Ra.Rb+ Rb.Rc+ Rc.Ra 

Rb 

Therefore, the equivalent impedance of each arm of the star is given by the 

product of the impedance of the two delta sides that meet at its ends divided by the sum of 

there delta impedance 
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SOURCETRANSFORMATIONS 

In the circuit analysis, a circuit with either voltage source or current 

sources is preferred. Sometimes a circuit may have both i.e. voltage source & current 

source. In that case it is convenient to transform voltage source to equivalent current 

source and current source to equivalent voltage source . 
 

 

(Transformation of Voltage source to (currentsourcetoanequivalent 

an equivalent current source)  voltage source) 

 

NODEANALYSIS&MESHANALYSIS 

Two methods one Node analysis and the other mesh analysis are used to 

analyse a circuit depending on the arrangement and types of elements in the circuit. 

Nodal analysis is based on Kirchhoff’s Current Law (KCL) and Mesh analysis is based on 

Kirchhoff’s Voltage Law (KVL). 

 
NODALANALYSIS 

Letusconsideracircuitshowninfig2.2withfour 

nodes. A convenient way of defining voltagesfor any network is 

the set of node voltages. 

One node i.e. 4 (generally the node at the 

bottom)ismarkedasreferencenodewithgroundandother 

nodes are associated with a voltage. The reference node also can be called as Ground 

Node. In fig 2.2, the voltages V1, V2, V3 are called Node Voltages because they represent 

thepotentialdifferencesbetweenthenodes1,2&3andreferencenoderespectively. 

That is the voltage of each of the non-reference 

nodes with respect to thereference node is defined 

as a node voltage. 

Considerthecircuitinfigure 

 
i1= V1– V2 ,i5=V1– V3 

R1 R5 

Now applying KCL at node 1, the sum of currents 

leaving is zero. 
Thereforei1+i5–i=0 
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i = V1-V2 +V1-V3  eq.(1) 

R1  R5 

 
Similarlyatnode2 -i1=V2–V1,i2= V2,i3=V2–V3 

R1 R2 R3 

V2 – V1+ V2 –V3+V2 = 0  eq.(2) R1 R3

 R2 

AtNode3 Sumofcurrentsleavingare 

-i3= V3-V2,i4= V3,-i5=V3–V1 

R3 R4 R5 

 

V3 – V2+V3+V3- V1  _ eq.(3) R3

 R4 R5 

Alltheabovetheseequationcanbesolvedtodeterminetheindividual node 

voltages V1, V2& V3. 
Example1 

Find the node voltages V1 and V2 for the 
circuit at figure. 

Solution At node 1 apply KCL sum of all 

the current leaving the node (1) is zero current leaving 

node 1 are V1, V1-V2and -2A (2A is entering) 
1015 

V1+ V1-V2_-2= 0 
10 15 

V1(
1
+

1
)–

𝑉2
=2 

1015 15 

5V1– 2V2=60 eq.(1) 
SimilarlyAtnode2currentleavingare𝑉2,𝑉2−𝑉1and -4A 

5 15 
𝑉2

+
𝑉2−𝑉1

-4=0
 

5 15 

4V2–V1=60  eq.(2) 
Solvingtheabovetwoequations(1)&(2) 

We get V1= 20V, V2= 20V 

 
Example2 

FindV1,V2andV3forthecircuit infigure. 

Solution 

Atnode1 
V1–V2+

𝑉1−𝑉3
+ 3=0 

2 

3V1-2V2-V3= -6  eq.(1) 
Atnode2 

V2-V1+
𝑉2

+
𝑉2−𝑉3

=0 
3 4 

-12V1+19V2-3V3=0_ eq.(2) 
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Atnode3 
 

 
𝑉3−𝑉1+𝑉3+𝑉3−𝑉2=7 

2 5 4 

-10V1-5V2+19V3= 140  eq.(3) 
 

 
Example3 

 

 
Solution 

BysolvingwegetV1 =5.238V,V2 =5.12V&V3= 11.47V Find the 

node voltage V1& V2 

 
Towritenodeequation treatnode1and2 

and the voltage source together as a Sort of Super node 

and apply KCL to both nodes at the same time.The super 

node is individual by dotted line. 

ApplyingKCL,weget 
-1+𝑉1+𝑉2+𝑉2=0 eq.(1) 

2 2 5 

And from voltage source V1 – 2 = V2 eq.(2) 

Now we can solve for V1and V2using both equations. 
 

MESHANALYSIS 
Mesh analysis is restricted to the category called Planar Circuit whereas 

nodal analysis can applied to any electrical circuits. A planer circuit is a circuit if the 
diagram of the circuit can be drawn on a plane surface without crossover. Example of 

planner and non-planar circuit are shown in fig (2.7). 

 

Figuredepictsacircuitcomprisingtwomeshes. 
 

They are  
Mesh1:V5R1R2 V3 

Mesh2:R3R4R2R3 

The two mesh currents are labeled as i1 and i2flowing in clockwise 

direction. Now we will apply KVL around each mesh. 
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Formesh1 

i1R1+(i1-i2)R2=V5 _____________________________________________________________ eq.1 
Formesh2 

i2R3+i2R4+R2(i2-i1)=0  eq.2 

 
Eq.(1)&(2)canberewrittenas 

(R1+R2)i1–R2i2=V5 ________________________________________________________________ eq.3 
-R2i1+(R2+R3+R4)i2=0 

Finallythetwoequationscanbeputinmatrixform 

[𝑅1+𝑅2 −𝑅2 ][
i1

]=[
𝑉5

] 
−𝑅2 𝑅2+𝑅3+𝑅4 i2 0 

Whichcanbesolvedfor i1andi2. 

Examples 4 findthemeshcurrent i1andi2for the circuit shown infigure. 

For first mesh 2i1+3(i1 – i2) = 9 eq.1 
4i2-5+3(i2-i1)=0 eq.2 

Equationcanberewrittenas 

5i1-3i2=9  eq.3 
-3i1+7i2=5  eq.4 

Bysolving i1=3A,i2=2A 

 
Example5 

Determinethevoltagedropacross3Ωresisterusingmeshanalysisin figure. 
 

 

 

SUPERMESH 

When a current source is common to two meshes we use the concept of 

super mesh to analysis the circuit using mesh current method. A super mesh is a larger 

mesh created from two meshes that have a current source as common element. A super 

mesh encloses more than one mesh for each common current source between two 

meshes,thenumberofmeshesreducebyone,thusreadingthenumberofmesh 



20  

Solution toExample6 

The2Acurrentsourceiscommontomesh2&3.Sowecreateasuper mesh as 

shown in dotted line. 

Forsuper mesh 

6i3+ 3i2+5(i2-i1)-8= 0 
-5i1+ 8i2+6i3=8 __________________________________ eq.1 

 
Formesh1 

-12+8+5(i1-i2)=0 
5i1–5i2= 4 _________________________________ eq.2 

 
Fromcurrent source i2-i3= 2 
By solving we get i2 = 2.664 

Voltageacross3Ωresistor=2.66×3=8v. 

 
Example7 

UsenodeanalysistofindV1,V2,V3&i1 
 

Solution 

ApplyingKCLatnode1 

We get 
𝑉1−𝑉2+𝑉1−𝑉3=2 eq.1 

20 2 

ApplyingKCLatnode2 
𝑉2−𝑉1+𝑉2+8=0 eq.2 

20 4 

ApplyingKCLatnode3 
𝑉3+𝑉3−𝑉1=8 eq.3 
2 2 

Bysolvingall theseequationswecangetV1= 16v,V2=-24v,V3=16v,i1= 0A 

 
Examples8 

FindthevoltageV2usingmeshanalysis. 

 
Solution 

ApplyingKVLforsupermesh 
30i1+20(05+i1)+10=0 
50i1=-20 
i1= -

2
=-0.4A,V2=20(i1+0.5) 
5 

=20×0.1= 2v 
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4 

SuperpositionTheorem 
In a linear bilateral network containing two or more independent sources, 

the voltage across or current in any branch is algebraic sum of individual voltages or 

currents produced by each independent sources acting separately with all the 

independent sources set equal to zero. 

Proceduretosolvethecircuitusingsuperposition theorem 

1. Select only one source and replace all other sources with 

their internal resistance. If the source is an ideal current 

source replace it by open circuit. If the source is an ideal 

voltage source, replace it by short circuit. 

2. Findthecurrentanditsdirectionthroughthedesired 

branch. 

3. Addallthebranchcurrentstoobtaintheactualbranch 

current. 

 
Examples9 

Findthecurrentthrough2Ωregisterusing 

superpositiontheorem. 

 
Solution 

FirstwefindthecontributiontoIdueto5V 

sourcebyreplacing2Acurrentsourcewithopen-circuit. Applying 

KCL for the circuit in figure. 

 
𝑉−5+ 𝑉+𝑉=0 

3 2 6 

V=
5
v,I1= 5Amp 

3 6 

Next we findthe contributions I2 due to 2A currentsource by 

replacing the voltage source by short-circuit. 
 

 

 

I2=2×
2
=1Amp 

Totalcurrentflowingthroughthe2Ωresistor=I1+I2=1+
5

 

 
=11Amp 

6 6 
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LimitationofSuper-positionTheorem 
1. Notapplicabletothecircuitsconsistingofonlydependent sources. 

2. Notapplicabletothecircuitsconsistingofnon-linearelements. 

3. Not applicable for calculation of power, since power is potential is propositional 

to the sequence of current or voltage. 

4. Notusefultothecircuitsconsistingoflessthantwoindependent sources. 

 
Example10 

FindcurrentIusingSuperpositiontheoremforthecircuitinthefigure. 
 

 
Solution: 

Thecircuithasthreevoltagesources.FirstwefindthecontributiontoI1 

dueto2V.Thereforeshort-circuittheremainingtwovoltagesourcesasshowninfigure. 

 
I1=2=10=5A 

2+
616 8 
5 

 

I1= 
5
×

2
=

1
A 

85 4 
 
 
 

 

When4Vactingasshowninfigure I1 

=4= 5A 
2+

64 
5 

 

I2= 
5
×

2
=

1
A 

45 2 
 
 
 

 

When3Visactingaloneasshowninfigure I3= 

- 
3
Amp 

4 

Whenall thesourcesareacting together total 
current will be 

I= I1+ I2+ I3=
1
+

1
-

3
= 

1+2−3
=0Amp 

4 24 4 
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Example11 

FindcurrentIa 

Solution:Letusassumethatonly12Visactingdoneandcurrent through it ia1, 

open circuit 4A and 1A current source and short-circuit the 6V voltage source as in the 

figure. 
 
 

 

Ia1=-
12

=-
4
A 

9 3 

When4Acurrent sourceisactingaloneasshownin figure. 
Ia2=

4×6
=

24
=

8
A 

9 9 3 
 
 

 

When 1Aisactingaloneasshown infigure. 
Ia3= 1×

3
= 

1
A 

9 3 
 
 

 

When6Visactingaloneasinfigure 

Ia4= 
6
= -

2
A 

9 3 
 

 

Whenallthesourcesareactingtotalcurrentwillbe 

Ia =Ia1+ Ia2+ Ia3+ Ia4 

= -4+ 8+ 1-2= −4+8+1−2 

3 3 33 3 

=3 

3 

= 1amp 

Ia =1A 

 

APPLICATIONOFSUPER-POSITIONTHEOREM 
The super-position theorem is applicable for any linear circuit having time 

varying or time invariant elements. It is useful in circuit analysis for finding current & 

voltage when the circuit has a large number of independent sources. 
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LIMITATIONOFSUPER-POSITIONTHEOREM 
1. Notapplicabletothecircuitsconsistingofdependent sources. 

2. Notapplicabletothecircuitsconsistingofnonlinearelementslike 

diode, transistor etc. 

3. Notapplicableforcalculationofpower. 

THEVENIN’STHEOREM 
Thevenin’s theorem states that any linear active two terminal network 

containing resistance and voltage sources or current sources can be replaced by a single 

voltage sources Vth in series with single resistance Rth. The Thevenin equivalent voltage 

Vth is the open circuit voltage at the network terminal and the Thevenin resistance Rth is 

the resistance between the network terminals when all the sources are replaced with 
their internal resistance. 

Fig (a) shows a linear network containing resistance, voltage sources or 

current sources with output terminal AB using Thevenin’s theorem the linear network 

can be replaced by single voltage source Vthin series with a single resistor Rthas shown in 

fig(b). Now any resistor can be corrected between the terminal AB andcurrent through it 

can be obtained easily. 

ProceduretofindthecurrentthroughabranchusingThevenin’sTheorem. 

 
1. Remove the branch through which current is to be found and mark the terminal 

AB. 
2. CalculatetheopencircuitvoltageVthbetweentheterminalAB. 

3. Replace the independent sources with their internal resistance. (if the internal 

resistances are zero, then voltage source should be short-circuited and current 
source should be open-circuited) 

4. CalculateRthbetweentheterminalAB. 

5. Correct thevenin’s voltage sources in series with Thevenin resistance with output 

terminal AB. 

6. CorrecttheremovedresistancebetweenABandfindthecurrentthroughit. 
 

 
Example 

FindVTH,RTHndtheloadcurrent 
flowingthroughandloadvoltageacrosstheload 

resistor in figure by using Tevenin’s Theorem. 

 
Solution 

Step1 

Openthe5kΩloadresistorfigure. Step 

2 

Calculate/measur theOpenCircuit 
Voltage.ThisistheTheveninVoltage(VTH) 
figure. Wehave alreadyremoved theload resistor from figure1,so thecircuit becamean 

opencircuitasshowninfi 2.NowwehavetocalculatetheThevein’sVoltage.Since 
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3mA Current flows in both 12kΩ and 4kΩ resistors 

as this is a series circuit because current will not 

flow in the 8kΩ resistor as it is open. 

So12V(3mAx4kΩwillappearacrossthe 

4kΩresistor.Wealsoknwthatcurrentisnot 

flowingthroughthe8kΩ resistorasitisopen 

circuit,butthe8kΩresistorisinparallelwith4k 

resistor.Sothesamevoltage(i.e.12V)willappear 

across the 8kΩ resistor a 
terminals. So, 

4kΩresistor.Therefore12VwillappearacrosstheAB 

VTH=12V 

 
Step3 

OpenCurrentSourcesandShort 

VoltageSourcesfigure. 
 

 
Step4 

Calculate/measuretheOpenCircuit 

Resistance.ThisistheThevninResistance (RTH) 

WehaveReducedthe48VDCsource 

tozeroisequivalenttorepl 

(3), as shown in figure () 

resistorisinserieswithap 

ceitwithashortinstep 

We can see that 8kΩ 

rallelconnectionof4kΩ 

resistor and12kΩresistor.i.e.: 

8kΩ+(4kΩ||12kΩ)…..(||=inparallelwith) RTH = 

8kΩ + [(4kΩ x 12kΩ) / (4kΩ + 12kΩ)] RTH= 

8kΩ + 3kΩ 

RTH=11kΩ 

 
Step5 

ConnecttheRTHinserieswithVoltage 
SourceVTH andre-connecttheloadresistor.Thisis 
shown in figure i.e. Thevenin circuit with loadresistor. 
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Step6 

Nowapplythelaststepi.e.calculatethe 

totalloadcurrent&loadvoltageasshowninfigure. 

IL = VTH/(RTH+ RL) 

=12V (11kΩ+ 5kΩ)→ 

=12/16kΩ 

IL =0.75mA 

And 

VL = ILxR 

VL =0.75mAx5kΩ 

VL =3.75V 

NORTON’STHEOREM 

Norton’s theorem states that any linear active two 

contains resistance and voltage source or current source can be 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
terminalnetwork 

replaced by single 

current source or current source can be replaced by single current source INin parallel 

with a single resistanceRN. The Norton’s equivalent current INis the state circuit current 

through the terminals AB and resistance RNis the resistance between the network 
terminalswhenallthe sourcesare replacedwithinternal resistances. 

Proceduretofindthecurrent throughabranchusingNorton’stheorem. 

1. Removethebranchthroughwhichcurrent istobefoundandmarkterminalAB. 

2. Short-circuittheterminalABandfindcurrentthroughitanddenoteitasISC. 
3. Replace the independent sources with their internal resis ances (if internal 

resistances are zero then voltage source should be short circuited and current 

sources should be open-circulated). 

4. CalculateRNbetweentheterminalsAB. 

5. Connect the short-circuit current (Norton’s) In in parallel with RN with output 
terminal AB. 

CorrecttheremovedbranchbetweenterminalsABandfindcurrent. 

Example 

FindthecurrentinRLusingNorton’s Theorem 
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AfterNorton conversion... 
 

 

Remember

a currentsource isaco 

that 

ponent 

whose job is to provide a constant 

amount of current, outputting as 

much or as little voltage necessary 

to maintain that constant current. 

 
 
 

 
As with Thevenin's 

Theorem, everything in the original 

circuit except the load resistance has 

been reduced to an equivalnt circuit 

thatissimplertoanalyze.Alsosimilar to 

Thevenin's Theorem are the steps 

usedinNorton'sTheoremto 

calculatetheNortonsourcecurrent(INorton)andNortonresistance(RNorton). 

Asbefore,thefirststepistoidentifytheloadresistanceandremoveit from the 

original circuit. 

Then, to find the 

Norton current (for the 

source in the Norton e 

circuit),placeadirectwir 

current 

uivalent 

(short) 

connection betweenthe load points 

and determinetheresultantcurrent. 

Note that this step is exactly 

oppositetherespectivestepinThevenin'sTheorem,wherewereplacedtheloadresistor with 

a break (open circuit). 

With zero voltage dropped 

between the load resis or connectionpoints, 

the current through R1 is strictly a function 

of B1's voltage and R1's resistance: 

7 amps (I=E/R). Likewise, the current 

through R3 is now strictly a function of B2's 

voltageand R3'sresistance:7 amps(I=E/R). 
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The total current through the short between the load connection points is the sum of 

these two currents: 7 amps + 7 amps = 14 amps. This figure of 14 amps becomes the 

Norton source current (INorton) in our equivalent circuit. 

Currentthroughloadof2resistor =14X .8/2.8 =4 Amp. 

MaximumPowerTransferTheorem 

In a linear bilateral network containing an independent voltage 

source in series with resistance RS delivers maximum power to the load resistance 
RLwhen RL=RS 

Letusconsideracircuitshowninfig(a) 

CurrentI=𝑉𝑠 
𝑅𝑠+𝑅𝑙 

2 𝑠2 

Power delivered totheload PL=IRL= ( )RL 

𝑅𝑠+𝑅𝑙 

TofindthevalueofRLforoptimumpowertransferdifferentiatePLwithrespecttoRLand equal 
to 2nd 

𝑑𝑃𝑙 

𝑑𝑅𝑙 
=V2(𝑅𝑠+𝑅𝑙)2−2𝑅𝑙(𝑅𝑠+𝑅𝑙) =S0

 
(𝑅𝑠+𝑅𝑙)2 

⇒(RS+RL)X = 2 RL(RS/+RL) 
⇒RS+ RL =2RL 

 
⇒ 

 
Maximum power will be =(VS/2RL)2 ×RL 

=VS
2/4RLExample 

Find the value of RL for the given network below 
that the power is maximum? And also find the Max Power 
through load-resistance RL by using maximum power transfer 
theorem? 

 

RS=RL 

Solution 

For the above network,we 
are going to find-out the value of 
unknown resistance called “RL”. In 
previous post, I already show that when 
power is maximum through load- 
resistance is equals to the equivalent 
resistance between two ends of load- 
resistance after removing. 

So, for finding load- 
resistance RL. We have to find-out the 
equivalent resistance like that for this 
circuit. 
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Now, For finding Maximum Power through 

load-resistance we have to find-out the value of Vo.c. Here, 
Vo.cisknownasvoltagebetween open circuits.So,stepsare 

ForthiscircuitusingMesh-analysis.We get 

ApplyingKvlinloop1st:- 

6-6I1-8I1+8I2=0 

-14I1+8I2=-6 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ (1) 

Again, Applying Kvl in loop 2nd:- 

-8I2-5I2-12I2+8I1=0 

8I1-25I2=0 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ (2) 

On solving,eqn (1) & eqn (2), We get 

I1=0.524A 

I2=0.167A 

Now,FromthecircuitVo.cis 

VA-5I2- VB = 0 

Vo.c/VAB=5I2=5X0.167=0.835v 

So,themaximumpowerthroughtheRLisgivenby:- 
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Milliman’sTheorem 

This theorem states that Any number of current sources in parallel may be 

replaced by a single current source whose current is the algebraic sum of individual 

source currents and source resistance is the parallel combination of individual source 

resistance. 

The alternative statement of Milliman’s theorem is Any number of voltage 
sourceV1,V2,V3,----------VnhavingsourceresistanceR1,R2,R3 ---------------------------------------------------------- Rn 

respectively connected in parallel may be replaced y a single voltage source Vn and 

resistance Rnwhere 
Vn = 1 whereG1=1,G2=1etc. 
𝐺1+𝐺2±−−−±𝐺𝑛 𝑅1 𝑅2 

The above two statements are identical because a voltage source can be 

connected in to current source and vice-versa. 

ReciprocityTheorem 

The Reciprocity theorem states that if the source voltage and zero 

resistance ammeters are integrated, the magnitude of the current through the ammeter 

will be the same. In lead the principle states that in a linear positive network, supply 

voltage V and current I are mutually transferable. The ratio of V and I is called thetransfer 

resistance. 
Problem1 
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Problem2 
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Problem3 
 

 



33  

Problem4 
 



34  

Problem5 
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Problem6 
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CHAPTER-3 

AC FUNDAMENTAL & AC 

CIRCUITWHATIS ALTERNATINGCURRENT (A.C.) 

Alternating current is the current which constantly changes in amplitude, 
and reverses direction at regular intervals. We know that direct current flows only in 
one direction, and that the amplitude of current is determined by the number of 
electrons flowing past a point in a circuit in one second. If, for example, a coulomb of 
electrons moves past a point in a wire in one second and all of the electrons are moving 
in the same direction, the amplitude of direct current in the wire is one ampere. 
Similarly,ifhalfacoulombofelectronsmovesin onedirectionpastapointinthewirein half a 
second, then reverses direction and moves past the same point in the opposite direction 
during the next half-second, a total of one coulomb of electrons passes the point in one 
second. The amplitude of the alternating current is one ampere. 

PROPERTIESOFALTERNATINGCURRENT 
An A.C. source of electrical power 

changes constantly in amplitude and
 the+changesaresoregularAlternatingvol

tageand 0 current have a number of properties 

associated –with any such waveform. These basic 
properties include the following list: 

Frequency 
One of the most important properties of any regular waveform identifies 

the number of complete cycles it goes through in a fixed period of time. For standard 
measurements, the period of time is one second, so the frequency of the wave is 
commonly measured in cycles per second (cycles/sec) and, in normal usage, is 
expressed in units of Hertz (Hz). It is represented in mathematical equations by the 
letter ‘f ’. 

Period 
Sometimes we need to know the amount of time required to complete 

one cycle of the waveform, rather than the number of cycles per second of time. This is 
logically the reciprocal of frequency 

Wavelength 

Because an A.C. wave moves physically as well as changing in time, 
sometimes we need to know how far it moves in one cycle of the wave, rather than how 
long that cycle takes to complete. This of course depends on how fast the wave is moving 
as well. The Greek letter (lambda) is used to represent wavelength in mathematical 
expressions. And, λ= c/f. As shown in the figure to the above, wavelength can be 
measured from any part of one cycle to the equivalent point in the nextcycle. Wavelength 
is very similar to period as discussed above, except that wavelength is measured in 
distance per cycle while period is measured in time per cycle. 

 
 
 

 
Time  
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Peakto 

peak 

value 

Peak 

value 

Amplitude 

Mathematically,theamplitudeofasinewaveisthevalueofthatsinewave 

at its peak. This is the maximum value, positive or negative, that it can attain. However, 

when we speak of an A.C. power system, it is more useful to refer to the effective voltage 

or current. 

 

THESINEWAVE 
In discussing alternating current and voltage, you will often find it 

necessary to express the current and voltage in terms of maximum or peak values, peak- 
to-peak values, effective values, average values, 
orinstantaneousvalues.Eachofthesevalues 
hasadifferentmeaningandisusedtodescribeVm

 

adifferentamountofcurrentorvoltage. Im
 

PeakValue[Ip] 

Refertofigure,itisthemaximum 

valueofvoltage[Vp]orCurrent[Ip].Thepeak 
valueappliestobothpositiveandnegativevalues 

of the cycle. 

Peak-Peakvalue[Ip-p] 

Fig.1.6 

During each complete cycle of ac there are always two maximum or peak 
values, one for the positive half-cycle and the other for the negative half-cycle. The 
difference between the peak positive value and the peak negative value is called thepeak-
to-peak value of the sine wave. This value is twice the 
maximum or peak value of the sine wave and is sometimes 
used for measurement of ac voltages. 

Note the difference between peak and peak 

to-peak values in the figure. Usually alternating voltage and 

current are expressed in effective values rather than in 

peak-to-peak values. 

 

INSTANTANEOUSVALUE 

The instantaneous value of an alternating voltage or current is the value of 
voltage or current at one particular instant. The value may be zero if the particular 
instant is the time inthe cycle atwhich thepolarity of the voltage is changing.It may also 
be the same as the peak value, if the selected instant is the time in the cycle at which the 
voltage or current stops increasing and starts decreasing. 

There are actually an infinite number of instantaneous valuesbetween zero 

and the peak value. 

AVERAGEVALUE 

The average value of an alternating current or voltage is the average of all 

the instantaneous values during one alternation. Since the voltage increases from zero to 

peak value and decreases back to zero during one alternation, the average value must be 

some value between those two limits. 

V 

I 

Time 

Voltageand 

currentinphase 
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The average value of A.C. is the average over one complete cycle and is 

clearly zero, because there are alternately equal positive and negative half cycles. 

 

Averagevoltage=
2
peakvalue 



ROOTMEANSQUAREVALUE 
Circuit currents and voltage in A.C. circuits are generally stated as root- 

mean-square or rms values rather than by quoting the maximum values. The root- 
mean-square for a current is defined as the value of steady state current which when 
flowing through a resistor for a given time produces the same amount of hit as 
generated by the alternating current when passed through the same resistor for the 
same time. 

 

 

Irms



V

rms1.11 
 

Irms

FormFactor= 
ave 

ItistheratioofRMSvaluetoaveragevaleofvoltageorcurrent. 

SINEWAVESINPHASE 
When a sine wave of voltage is applied to a pure resistance, the resulting 

current is also a sine wave. This follows Ohm’s law which states that current is directly 
proportional to the applied voltage. To be in phase, the two sine waves must go through 
their maximum and minimum points at the same time and in the same direction as 
shown in the figure. 

 

 

 
 

 

 

 

2 Ti
2dt 

1T 

0 

V 

Im 

Voltagewave 

Current wave 

270_ 360_ 

0_ 90_ 180_ 
Time 

axis 

E1 E2 

90_ 

360_Time 

0_ 90_180_ 270_ 

Time 
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0_ 90_180_270_ 360_ 

SineWavesOutof Phase 
Figure shows voltage wave E1 which is considered to start at 0° (time 

one). As voltage wave E1 reaches its positive peak, voltage wave E2 starts its rise (time 
two). Since these voltage waves do not go through their maximum and minimum points 
at the same instant of time, a phase difference exists between the two waves. The two 
waves are said to be out of phase. For the two waves in figure, the phase difference is 
90°. 

PHASORS 
In an a.c. circuit, the e.m.f. or current vary sinusoidally wih time and may 

be mathematically represented as 
E= E0sinωt 

and I= I0sin (ωt±θ) 
Whereθisthephaseanglebetweenalternating e.m.f.andcurrent. 
Displacement of S.H.M. also varies sinusoidally with time i.e. 

Y = Asinωt 
And its instantaneous value is equal to the projection of the amplitude A 

onY-axis.Therefore,instantaneousvaluesofalternatinge.m.f.(E) andcurrent(I)maybe 
considered as the projections of e.m.f. amplitude (E0) and current amplitude (I0) 
respectively. The quantities, such as alternating e.m.f. and alternating current are called 
phasor. Thusaphasor isaquantitywhich variessinusoidally with timeand represented as 
the projection of rotating vector. 

PHASORDIAGRAM 
Thegenerator at thepowerstation which producesour A.C.mainsrotates 

through 360 degrees to produce one cycle of the sine wave form which makes up the 
supply. 

Inthenextdiagramtherearetwo sinewaves. 
Theyareoutofphasebecausetheydonotstart fromzeroatthesametime. To be 
in phase they must start at the same time. 
ThewaveformAstartsbeforeB andisLEADINGby90 degrees. 

 
 

 
+ 

+
 

 
 
 
 
 
 

 
 

 

– – 

 

Waveform BisLAGGING Aby90degrees. 
 

Thenextlefthanddiagram,knownasaPHASORDIAGRAM,showsthisinanother way. 

AB 
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XL 

Z 



It is sometimes helpful to treat the phase as if it defines a vector in aplane. 
The usual reference for zero phase is taken to be the positive x-axis and is associated 
with the resistor since the voltage and current associated with the resistor are in phase. 
The length of the phasor is proportional to the magnitude of the quantity 
represented,and its angle represents its phase relative to that of the current through the 
resistor. The phasor diagram for the RLC series circuit shows the main features. 

 

 
 
 
 
 
 
 

 

VC 

VC 
 

 

VR 

VR 

XC 

 

V 

VR 
R

 

Notethatthephaseangle,thedifference inphasebetweenthevoltageand the 
current in an A.C. circuit, is the phase angle associated with the impedance Z of the 
circuit. 

 

 

 
RESISTANCEACCIRCUIT 

ACSERIESCIRCUIT 

 
writtenas 

AresistanceRconnectedtoanacsourceisshown.Itsvoltagecanbe 

 
etEtmsinwt i 

Imsin wt 

 

i
EtmsinwtI R m 

sinwt 

 

 
 

 

 

The above two equations depict that voltage and current in resistive 

network are in phase. Figure shows the voltage and current waveform and phasor 

diagram. 

VL 

I 

VL 



VL 
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2 2 

POWERINRESISTIVENETWORK 

The instantaneous power 

curve is plotted in figure it is seen that 

the power curve is always positive in 

case of resistive network and equal to 

 
 
 
 

 
peiEIsin2wtEI1cos2wt 

EtmIm


EtmIm
cos2wt

 
t tmm tmm 2 2 2 

 

Theabovepowerequationshowsthatthepowerhastwocomponents,oneis 

constanti.e.
EtmIm&anaccomponent

EtmImcos2wt.Theaveragevalueofaccomponent 
2 2 

inonecycleiszero.ThereforeAveragepowerp
EtmIm=

E
tm

I
m

 

2 
EtI 

InductanceACCircuit 

Figure shows an inductance 

Lconnectedtoanacsupplywhichvoltage 
isgivenby


v=ETmsinwt,i= 

Isin

wt 




m  2 

 

Theaboveequationshows 

thatcurrentlagstheappliedvoltageby90∘WhereI 
ETm,thequantitywLcontrolsthe 

 

m wL 

currentinductorandthisquantitywLisknownasinductivereactancedenotedXL 

.Hence XLwL 

POWERININDUCTIVENETWORK 

Theinstantaneouspowerinapurelyinductivenetworkis 

peiE sinwtIsin

wt




T Tm m  2

 

ETmImsinwt.coswt 


ETmImsin2wt 

2 

Theaveragepowerinapureinductorduringacycleiszero. 
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CAPACITANCEINACCIRCUIT 

FigureshowsacapacitorCconnectedto anacsourceequationofvoltage& 

current are given below 

v=Vsinwt,Isin

wt




m m  2 

 



Equationshowsthat currentleadsvoltage by90∘and 

capacitive reactance denoted as XC. Its unit is ohm. 

 

IVm 

m 1 

wC 

Where 
1

isknownas 
wC 

 

 
 

 

POWERINCAPACITIVENETWORK 

Theinstantaneouspowerinap

urelyca


pacitivenetworkis 

pviVsinwtIsinwt  
m m  2

 

= 
VmImsin2wt 

2 

Theaveragepowerinapurecapacitivenetworkiszero. 
 

 
SERIESRLNETWORK 

 

Figureshowsaresistor(R)andinductor(L)seriesnetworkwith itsphasor 

diagramandimpedancediagram.AsdiscussedearlierERisinphasewithIandEL 

 

Iby90∘. 

leads 
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2 2 

 
 

 

ETELERIRjXL

HenceIZIRjXL

ZRjXLRjwL 

 

 

WheremagnitudeofZ

ThequantitiesR,XL,Zareshownintheimpedence diagram. 

POWERINSERIESRLNETWORK 

The average power in RL series circuit is 

p
ETmImcos

ETm.
Im

 

2 
cosET Icos

EIcosisknownasactivepower.pEIcosEI
R


ET.IRI2R∵I
ET

 

T T T Z Z Z 

 

 

 

 

 

 

 

 

Thus the active power in ac circuit represents the power dissipated across 
resistance. It is measured in watt. The product of RMS voltage & current i.e. VI is known 
as apparent power and measured in volt ampere. The ration of active power to apparent 

power equalstocoswhereisthephase anglebetween V&I.Thetermcosiscalled 

R2X2 
L 
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L T 

power factor of the circuit. The power factor is zero in case of pure inductiveor capacitive 

network. The power factor of a circuit may be either leading or lagging. A leading power 

factor means that the current in the circuit leads the voltage and lagging power factor 

means the current lags the voltage. The power factor of a circuit is the ratio of resistance 

to impedence . 

Theinstantaneouspoweracrossinductorofcapacitor isknown asreactive 

power. That isQ I2XI2wL I2Z sinEI sin

Thereactivepowerdoes notcontributeanything to thenetenergytransfer 

from source to load. Yet it constitutes a loading of the equipment. 

The apparent power VI, active power VIcosand reactive power VIsinis 

also applicable in this case too. Current in RC circuit leads the apply voltage and 

therefore the power factor is leading. 

SERIESRCNETWORK 

Figure shows a 

seriesRCnetwork 
ERIj

I 

 

J
T 

wC IR
wC




 
 

 J j 

IZIRwC
ZRwCRjX 

 
1 

XCCapacitiveReactance
wC

 

magnitudeofZ









SERIESR-L-CCIRCUIT 

C 

R2
1 

w2C2 
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ConsideraseriesR-L-Ccircuitasshowninthefigure.ThevoltageVRisin 

phasewiththe current,thevoltageVLleadsthecurrentby90∘andthevoltageV 

currentby90∘.Thetotalimpedence 

Clagsthe 

 
 

 
Wecanfind 

ZZRZLZC 

RjXLXC

thatthereactanceispositiveifXL≻XCandnegativeif 

XC≻XL . IfXL≻XC
thecircuitbehaveslikeanR-Lseriescircuitandcurrentlags voltage by an 

angle if XC≻ XL the circuit behaves as an R-C series circuit and current leads the applied 

voltage by angle. The phasor diagram for both cases are shown. 

Themagnitudeoftheimpedenceisgiven by 
 

Z

wL
1
 

i
vs 

z 

tan1 wC 

R 
 

 

 

 

R2X L C 
X 2 
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CHAPTER-4 
 

 
RESONANCE 

Consider a series R-L-C circuit 

as shown in the figure. The impedence of the 

circuit is given by 

ZRjXLXC

whereX isinductivereactance= wLandX =capacitivereactance=
1

. 
 

L C wC 
 

 

 

 

 

 

AsfrequencyofthesupplyisincreasedXLincreasesandXCdecreases. At 

oneparticularfrequencyXL=XCandthetotalreactanceofthecircuitbecomezero.At 

this particularfrequency the impedence is resitive and voltage & currentarein phase.This 
phenomenon is known as resonance. 

XLXC 

 2f0L   
1 

2f0C 

f0
1 

2LC 
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1 1 

2 

f0iscalledasfrequencyofresonance.ImpedenceZoftheR-L-Cseries circuit is 

equal to R at resonance and current is equal to
V

. 
R 

QFactor 
 

 
Theratioofcapacitorvoltageorinductorvoltageatresonantfrequencyto 

supplyvoltageisameasureofqualityofaresonancecircuit.Thistermisknownas quality factor 

(Q factor). 

Atthefrequencyoftheresonance(f0) 

VIX
V

X∵I
V

 
  

L L R L R 

Q
VL


XL


2f0L 

V R R 


VC

XC 
1 

   

V R 

Bandwidth 

2f0RC 

At resonant frequency current in the 

R-L-C series circuit is maximum. Let us define two 

frequenciesw1&w2atwhichcurrentis707Imax. 

Thefrequency 

frequency. 

w1&w2 arecalledhalfpower 

Bandwidth=w2w1 

 

 

Wherew2=upperhalfpowerfrequency,w1=lowerhalf powerfrequency. 

RelationshipbetweenQandBandwidthofR-L-Cseriescircuit 

Bandwidth=w2w1 

Atw=w1,thereactanceiscapacityasXC≻XL 

Hence 
1
 

w1C 

 

w1LR ............................ eq.1 

Atw=w2thereactanceisinductiveasXL≻XC 

HencewL 
1
 
 
R .............................eq.2 

w2C 

Fromequation1wegetw2LCwRC10 
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DividingbyLCwegetw2w
R


1
0 

1 1L LC 

w
R


1 

2L 

Similarlyfromequation 2 

w2
R

w
1
0 

2  L 2 LC 

R 

w2
2L


Hencebandwidth 

w wR


R


R 
2 1 2L 2L L 

2ff
R

 
 

2 1 
L

 

ffR


f0 

2 1 2L Q 

Q 
 f0 

w0
 

f2f1 BW 

 

TheParallelResonanceCircuit 

In many ways a parallel resonance circuit is exactly thesameasthe series 

resonance circuit we looked at in the previous tutorial. Both are 3-element networks 

that contain two reactive components making them a second-order circuit, both are 

influenced by variations in the supply frequency and both have a frequency point where 
their two reactive components cancel each other out influencing the characteristics of 

the circuit. Both circuits have a resonant frequency point. 

The difference this time however, is that a parallel resonance circuit is 
influencedbythecurrentsflowingthrougheachparallelbranchwithintheparallel LC tank 
circuit. A tank circuit is a parallel combination of L and C that is used in filternetworksto 
eitherselectorreject ACfrequencies.ConsidertheparallelRLCcircuit below. 

4L
2 

LC 

R2


 1 

4L2 LC 

R2


 1 
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LetusdefinewhatwealreadyknowaboutparallelRLCcircuits. 
 

 

 

 

 
A parallel circuit containing a resistance, R, an inductance, L and a 

capacitance, C will produce parallel resonance (also called anti-resonance) circuit when 
the resultant current through the parallel combination is in phase with the supply 
voltage. At resonance there will be a large circulating current between the inductor and 
the capacitor due to the energy of the oscillations, then parallel circuits produce current 
resonance. 

A parallel resonant circuit stores the circuitenergy in the magnetic fieldof 
the inductor and the electric field of the capacitor. This energy is constantly being 
transferred back and forth between theinductor and thecapacitorwhichresultsin zero 
current and energy being drawn from the supply. This is because the corresponding 
instantaneous values of IL and IC will always be equal and opposite and therefore the 
current drawn from the supply is the vector addition of these two currents and the 
current flowing in IR. 

In the solution of AC parallel resonance circuits we know that the supply 
voltage is common for all branches, so this can be taken as our reference vector. Each 
parallelbranchmustbetreatedseparately as withseriescircuits sothatthetotalsupply 
current taken by the parallel circuit is the vector addition of the individual branch 
currents. Then there are two methods available to us in the analysis of parallel 
resonance circuits. We can calculate the current in each branch and then add togetheror 
calculate the admittance of each branch to find the total current. 

We know from the previous series resonance tutorial thatresonance 
takesplacewhenVL=-VCandthissituationoccurswhenthetworeactanceare equal, XL= XC. 
The admittance of a parallel circuit is given as: 
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Resonanceoccurswhen XL= XCandtheimaginarypartsofYbecomezero. 
Then: 

 

 

 

 

 
Notice that at resonance the parallel circuit produces the same equationas 

for the series resonance circuit. Therefore, it makes no difference if the inductor or 
capacitor isconnected in parallelor series. Also at resonancetheparallel LC tank circuit 
actslikeanopencircuitwiththecircuitcurrentbeingdeterminedbytheresistor, R only. So 
the total impedance of a parallel resonance circuit at resonance becomes just the value 
of the resistance in the circuit and Z = R as shown. 

 

 

ImpedanceinaParallelResonanceCircuit 
 

Notethatiftheparallelcircuit’s      

impedanceisatitsmaximumatresonancethen  

consequently,thecircuit’sadmittancemustbeatits  

minimumandoneofthecharacteristicsofaparallel  

resonance circuitisthatadmittanceisverylowlimiting the 
circuitscurrent.Unliketheseriesresonancecircuit,the  

resistorinaparallelresonancecircuithasadamping  

effectonthecircuit’sbandwidthmakingthecircuit  

lessselective.  
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Also, since the circuit current is constant for any valuof impedance,Z,the 
voltage across a parall l resonance circuit will have the same shape as the total 
impedanceandforaparallelcircuitthevoltagewaveformisgenerallytakenfromacross the 
capacitor. 

We now know that at the resonant frequency,ƒr the admittance of the 
circuit is at its minimum ad is equal to the conductance,G given by1/Rbecause in a 
parallel resonance circuit the imaginary part of admittance, i.e. the susceptance,B is 
zero because BL = BCas shon. 

 

Bandwidth&SelectiviyofaParallelResonanceCircuit 

The bandwidth of a parallel resonance circuit is defied in exactly the same 

way as for the series resonance circuit. The upper and lower cut-off frequencies givenas: 

ƒupper and ƒlower respectivelydenotethehalf-powerfrequencieswherethe power dissipated 
in the circuit is half of the full power dissipateat the resonant frequency0.5( I2 R )which 
givesusthe same-3dB pointsata current value that isequal to 70.7% of its maximum 
reonant value, ( 0.707 x I )2R. 

Aswiththesriescircuit,iftheresonantfrequencyre ainsconstant,an 
increaseinthequalityfactr,Q willcauseadecreaseinthebandwidthandlikewise,a 
decreaseinthequalityfactor will causeanincreaseinthebandwidth 
=ƒr/QorBW=ƒ2-ƒ2. 

Alsochangingtheratiobetweentheinductor,Landt 

sdefinedby:BW 

 
ecapacitor,C,or 

thevalueoftheresistance,thebandwidthandthereforethefrequencyresponseofthe 
circuitwillbechangedforafixedresonantfrequency.Thistechniqueisusedextensively in 
tuning circuits for radio and television transmitters and receivers. 

The selectivity or Q-factor for a parallel resonance circuit is generally 
defined as the ratio of the circulating branch currents to the supply current and is given 
as: 

 

 
Note that the Q-factor of a parallel resonance 

circuit istheinverse of the expression for theQ-factor of the 
series circuit. Also in series resonance circuits the Q-factor 
gives the voltage magnifica ion of the circuit, whereas in 
aparallel circuit it gives the crrent magnification. 
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CHAPTER-5 

TransientResponseofSimpleCircuit(DC) 
Circuits that contain capacitors and inductors can be represented by 

differential equation. If a circuit contains one resistor and one Inductor (or one 

capacitor), it can be represented by first order differential equation. On the other hand if 

a circuit contains a resistor, inductor and Capacitor it can be represented by a second 

order differential equation. The solution of the differential equation represents the 

response of the circuit. The response consists of two parts (1) Transient response (2) 

SteadyStateresponse.Thetransientresponsedependsonthecircuitelementsand initial 

energy stored init. Toobtain the transient response of thenetworkit is necessary to find 

the initial state of the network. 

 

InitialCondition 
Initial condition of a circuit is important to be calculated when a change of 

state occurs and the change of state of the network occurs when the switch change its 

position at time t=0. The value of voltage, current derivatives of both at t=0- and t=0+,that 

is immediately before and after change of switch position. Initial conditions in a circuit 

depends on the past history of the network prior to t= 0-. We will assume that the switch 

in the network has been in a position for along time and at t=0, the switch changes its 

position. That is we say the circuit is in steady state at the time of switching. 

 
Initialconditionincircuitelements. 

1. Resistor:- By Ohm’s Law we have V= IR , if there is a change involtage,thecurrent 

through resistance will change simultaneously. Similarly if the current change, 

voltage across resistance changes simultaneously. 

2. Inductor:- Current through inductor cannot change instantaneously,ifthecurrent 

through an inductor before switching is zero, then the current through inductor 

after switching is also zero. 

i.e.iL(0+)= iL(0-)=0 

In the same way if the current through inductor before switching is I0, then the 

current through inductor after switching is also I0. i.e.iL(0+)=iL(0-)= I0. 
3. Capacitor:- Voltage across capacitor cannot change instantaneously. If the voltage 

across capacitor before switching is zero, then the voltage across capacitor after 

switching is also zero. 

VC(0+)=VC(0-)=0 

If the voltage across capacitor prior to switching is V0 then the voltage across 

capacitor immediately after switching is 
VC(0+)=VC(0-)=V0 
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The equivalent from of the elements in terms of the initial condition of the 

elements is shown below. 
 
 
 

ELEMENT EQUIVALENTFORMAT 
t=0 

t=0+/EQUATIONCIRCUITAT 
t=∞ 

 

 
 

 

 
 

 

 
 

 

 

 
 

 
 

 

 

 
 

 

 

 
 

 
 

 
 

 

 

To solve the initial condition of an element it is necessary to study the 

steady statebehaviorofthiselement.The steadystatebehaviorcanbeobtainedfromthe basic 

relations. 

VL=L
𝑑i

 

𝑑𝑡 

ic=C
𝑑𝑣𝑐

 

𝑑𝑡 

At t=∞, VL= 0 hence the inductor acts as short-circuit 

Similarlyatt=∞,iL=0hencethecapacitoractsasopen-circuit. 

 
Example:Inthenetworkshown infig.1,theswitchKis calledatt=0withthecapacitor 

𝑑i 

uncharged.Findthevalue of i, , att= 0+. 
𝑑𝑡 

 

 
 

Solution: 
 
 

 
⇒ 500i+ 

 
ApplyKVLtothecircuit 

Ri∫+1 i𝑑𝑡=V eq. (i) 
𝐶 

 

∫i𝑑𝑡=50 eq.(ii) 

 
VC(0+)= VC(0-)=0 

Att=0+ 500i (0+)+0=50 

i(0+)=50= 0.1A 
500 
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Differentiatingeq.(ii) 
𝑑i 

500 +i =0 eq.(iii) 
𝑑𝑡 

𝑑i 
Att=0+ 500(0+) =-i (0+)- =- ×0.1 

𝑑 
𝑑i 

⇒(0+)=- =-2000Amp/sec. 
𝑑 

 

 
Differentiatingeq.(iii) 

 

500 
𝑑i

=0 
𝑑𝑡 

 

 

⇒ 500 (0+)= 
𝑑i 
(0+)= (-2000) 
𝑑 

⇒ (0+) = = 4×106A/sec2 

TransientResponseofseriesR-LcircuithavingDCExcitation. 

ConsideraR-Lseriescircuitasshowninfigure.Theswitchisclosedattimet=0 Applying 

KVL 
Ldi(t)+Ri(t)=V 
𝑑𝑡 

⇒ di(t)+𝑅i(t)=𝑉 

𝑑𝑡 𝐿 𝐿 

Generalsolutionofthedifferentialequation 

𝑉 
R

t
 

i(t)= 
𝑅 

+keL
 

Sinceinductorbehavesasanopencircuitasswitching 
i(0+)=0 
0=𝑉+K or K=-𝑉 

𝑅 𝑅 

Thereforei(t)=𝑉-𝑉e-R/L(t)= 𝑉[1-e(-R/L)t] 
𝑅 𝑅 𝑅 

Voltageacrossinductor VL(t)=L
di(f)

= Ve(-R/L)t
 

𝑑𝑡 

VoltageacrossresistorVR(t)=V[1-e(-R/L)t] 

At t=0, i(t)=0, VL(t) = V VR(t)=0 
At t=∞,i(t)=

𝑉
,VL(t)=0, VR(t)= V 

Att=𝐿 
𝑅𝑉 -1 𝑉 

i(t)= (1-e) =0.632 ,VL(t)=0.368V 
 

𝑅 𝑅 𝑅 

i(t)&V(t)areplottedin figure. 


L

 

R 
isknownasthetimecontentandisdefinedastheintervalafter 

whichcurrentorvoltagecharges63.2%ofitstotalchange. 
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LetusanalysesthetransientconditionoftheR-Lcircuitasthecircuit reaches 

steady state charging switch to S1 

di1t
L _____ Ri1t0 

dt 

 

Solutionofi1(t)=K1e(-R/L)t 
Steadystatecurrenti(0+)= i(∞)= 𝑉 

𝑅 

𝑉=K1e0 
𝑅 

⇒ K1=𝑉 
𝑅 

 

 
di1t

Thereforei1(t)= 
𝑉 

e(-R/L)t,V1R(t)=Ve(-R/L)t,VL
1(t)=L 

𝑅 
=-Ve(-R/L)t 

dt 

i1(t)and V1R(t),V1L(t)areplottedbelow. 
 

 

 

 
TransientresponseofseriesR-CcircuithavingDCexcitation. 

 
Consider a series R-C circuit as shown in figure. The switch S is closed 

attime t=0. Applying KVL 

Ri(t)+1∫i(𝑡)dt=V 
𝐶 

Differentiating,weget 
Rdi(f)+1i(t)=0 

𝑑𝑡 𝐶 

Generalsolutionofthisdifferentialequationis 

i(t)=Ke– t/RC 

att=0+,i(0+)=𝑉 
𝑅 

∵capacitoractsasashort-circuitat switching. 
𝑉=Ke0⇒K=𝑉 

𝑅 𝑅 

Thereforei(t)=𝑉e–t/RC 
𝑅 
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Voltageacrosstheresistorandcapacitorare 

VR(t)=i(t).R=Ve-t/RC
 

VC(t)=  =   -t/RCdt 

= (-RC)e-t/RC=V(1-e-t/RC) 

Att=0,i(t)= VC(t)=0 ,VR(t)=V 

Att=∞,i(t)=0,Vc(t)=V,VR(t)=0 At t= 

RCi(t) = e-1= 0.368 , 

Vi(t)=V(1-e-1)=0.632V 
Let usanalyze another transient 

conditionofR-Ccircuitasthecircuitreaches 

atsteadystate(att=∞)byclosingswitchatpoint2 

Ril(t) +  1(t)=0 

Differentiating we get 

R + i1t=0 

Itssolutionisi1(t)=Ke-t/RC 

However at t=0+, capacitor keeps the steady state voltage VC(0+) = V 

anddirection of i1(t) during discharge is negative 

i(0+)= --  

- - = Ke0⇒K= - -  

 
V1

R(t)=i1(t).R=-Ve-t/RC
 

 
VC

1(t) =  1(t)dt=Ve-t/RC
 

 
 
 

 

i(t) =- e-t/RC 
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CHAPTER6 

LAPLACETRANSFORM 

TheLaplace domain or the "Complex s Domain" is the domain into which 

the Laplace transform transforms a time-domain equation. s is a complex variable, 

composed of real and imagiary parts: 
 

The Laplace domain graphs the real part (σ) as the horizontal axis, andthe 

imaginary part (ω) as the vertical axis. The real and imaginary parts of s can be 

considered as independent quantities. The similarity of this notation with the notation 

used in Fourier transform teory is no coincidence; for ,theLaplacetransformis 

the same as the Fourier transform if the signal is causal. 

 
ThemathematicaldefinitionoftheLaplacetransformisasfollows: 

 

Thetransfor ,byvirtueofthedefiniteintegral,remvesalltfromthe 
resultingequation,leavinginsteadthenewvariables,acomplexnum 

writtenas . In essence, this transform takes the 

erthatisnormally 

functionf(t),and 

"transforms it" into a function in terms of s, F(s). As a general rule the transform of a 

function f(t) is written as F(s). Time-domain functions are written in lower-case, and the 

resultant s-domain functions are written in upper-case. 

Wewillusethefollowingnotationtoshowthetransfor of a function: 
 

Weusethisnotation,becausewecanconvertF(s)backintof(t)using the inverse 

Laplace transform. 

TheInverseTransfor 
 

InitialValueTheorem 
 

This is useful for finding the initial conditions of a function needed when 
we perform the transform of a differentiation operation. 
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FinalValueTheorem 

Similar to the Initial Value Theorem, the Final Value Theorem states that 
we can find the value of a function f, as t approaches infinity, in the laplace domain, as 
such: 

 

This is useful for finding the steady state response ofcircuit. The final 
value theorem may only bepplied to stable systems. 

LaplaceTransformatinofSignalWaveform 

Laplacetransformofunitstepfunction is
1
 

S 

Laplacetransformoframp functionis
1
 

S2 

 

Laplacetransformofunit impulsefunction isunity. 

The laplace transform can be used independently odifferent circuit 
elements, and then the circuit can be solved entirely in the S Domain (Which is much 
easier). Let's take a look at some of the circuit elements: 

Resistor 

Resistors are time and frequency invariant. Therefore, the transform of a 
resistor is the same as the resistance of the resistor: 

 

Comparethisresulttothephasorimpedancevalueforaresistancer: 
 

You can see very quickly that resistance values are very similar between 
phasors and laplace transforms. 

Ohm'sLaw 

IfwetransformOhm'slaw,weget thefollowingequation: 
 

Now, following ohms law, the resistance of the circuit element is a ratio of 

the voltage to the current. So, we will solve for the quantity , anthe result will be 
theresistanceofourcircuit element.  
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This ratio, the input/output ratio of our resistor is an iportant quantity, 

and we will find this quatity for all of our circuit elements. We can say that the 

transform of a resistor with resistance r is given by: 

Capacitors 

 
Let us look at the relationship between voltage, current, and capacitance, 

in the time domain: 
 

Solvingforvoltage,wegetthefollowingintegral: 
 

Then,transformingthisequationintothelaplacedomainassumingthe zero 

initial condition, we get the following: 
 

Again,ifwesolvefor theratio ,wegetthe following: 
 

Therefore,thetransformforacapacitorwithcapacitanceCisgivenby: 
 

 

Inductors  

 
Letuslookatourequationfor inductance: 

 

 
 

Puttingthisi 

we get the formula: 

tothelaplacedomainassumingthezer initialcondition, 

 

 

Andsolvingforour ratio ,wegetthefollowing: 
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Therefore,thetransformofaninductorwithinductanceLisgivenby: 

Impedance 

 
Impedanceofalltheloadelementscanbecombinedintoasingleformat 

dependentons,wecallthe 

phasorrepresentation.We 

). 

ffectofallloadelementsimpedance,thesameaswecallitin 

enoteimpedancevalueswithacapital Z(butnotaphasor  

 

 

 
 
 
 

 
Determiningelectriccurrentincircuits 

 

In the net 

character of the currents 

ork shown, determine the 

, ,and assuming 
thateachcurrent iszerowhentheswitch isclosed. 
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Solution: 

Currentflowatajointincircuit 

Sincethealgebraicsmofthecurrentsatanyjunctioniszero,then 
 

Voltagebalanceonacircuit 

Applyingthevoltagelawtothecircuitontheleftweget 
 

Applyingagainthevoltagelawtotheoutsidecircuit,giventhat Eiscostant,weget 
 

Laplace transformsof currentandvoltageequations 

Transforming the ab 

 
 
 
 
 

 
The above three Laplace transformed equationsshow thebenefits of 

integral transformation in converting differential equationsinto linear algebraic 

equations that could be solved for the dependent variables (the three currents in this 

case), then inverse transformed to yield the required solution 
 

 

 

Example:Findthecapacitorvoltage. 

 vc(t)





vL(t) 












u(t) 3



vR(t) 



1H 

0.5F 
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2 
s 3 

s 

I(s) 





 

 

 

 



VL(s) 



Vc(s)






1 

 

 

 
 

 

Vc(s) VR(s)




 3 

VL(s) s 
















Thecapacitor’svoltage 

V(s)
2
I(s) 

6
 

c 
s s(s

2
3s2) 

 

ExpandingV(s)bypartial fraction 
c 

V(s) 6 


K1
K2

K3 

c s(s1)(s2) s s1 s2 

vc(t)36et3e2tu(t) 

3 



VR(s) 

s
I(s) 

s 
s 

2 
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L

 
R 



StepresponseofanR-Lcircuit 

Consider the RL circuit as shown in the 

figure assuming the initial current to be zero. At t = 0the 

switch is closed and the voltage E is impressed on the 

circuit. The differential equation on application of KVL 

is 

 

RitL
dit

E 

RIs
dt

sIsi0
E

 

 
E 

L  s 

IssLR∵i00 

s L 

Is
E
s 

 E
L 

E1


1 

sLR s

s



R

E

R

s 


R 


s
L

takinginverseLTi(t)1eLt


R 

StepresponseofanR-Ccircuit 

Consider the R-C circuit as shown in the 

figure assuming the initial current to be zero. At t = 0 the 

switch is closed and the voltage E is impressed on the 

circuit. The differential equation on application of KVL is 

 

 
1t 

Rit
CitdtE 

 
01Is E 

RIs
C s


s 

Is

R

 

1


E 


 Cs s 

E 
 

 

Is R  

s
1
 

RC 

takinginverseLTi(t)











Et
1 

R
eRC 

L 


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1 2 

StepresponseofanR-L-Ccircuit 

Consider the R-L-C series circuit as shown 

in the figure assuming the initial current to be zero. At t 

= 0 the switch is closed and the voltage E is impressedon 

thecircuit.Thedifferential equation on application of KVL 

is 

 

dit 1t 

dt 


CitdtE 
0 

RIsL

sIs

1Is


EC


 
s
 

s 
 

E E 
 

 

I s s 
sLR


E 

 
 

1
 L  

s2R
s

1 

Cs L LC 

Is L K1 


K2  

ss1ss2 ss1 ss2

i(t)Kes1t
Kes2t

 

Wheres1&s2arethe rootsofthecharacteristicequation 

s2R
1 

andK&Kare constant. 
Ls LC 

1 2 

Valueofs1&s2canbedeterminedas 

R 
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 

R
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
1 


2L


LC 
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Problem1 
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Problem2 
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Problem3 
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Problem4 
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CHAPTER7 
 

TWO-PORTNETWORKS 
 

 

 

v 
 

 

 

 
a) A pair of terminals at which a signal (voltage orcurrent) may enter or leave is 

called a port. 
b) Anetworkhavingonlyonesuchpairofterminalsiscalledaone-port network. 

c) Noconnectionsmaybemadetoanyothernodesinternaltothenetwork. 

d) ByKCL,wethereforehavei1=i1 

 

+ 

v 2 

- 

 Two-port networksare usedto describe therelationship between apairof 
terminals 

 The analysis methods we will discuss require the following conditions be 

met 

1. Linearity 

2. Noindependent sourcesinsidethenetwork 

3. Nostoredenergyinsidethenetwork(zeroinitial conditions) 

4. i1=i1andi2=i2 

 

 
One-Port 

Network 

+i1 

 
 
 
 
 

 

- 

 

 

 

 
Two-Port 

Network 

- 

 

 

 
 
 
 

 
1 

 
 

 

i'1 

i2 

+ 

v 

 
i'2  
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I I 

ImpedanceParameters 

 Supposethecurrentsandvoltagescanbemeasured. 

 Alternatively,ifthecircuitintheboxisknown,V1andV2canbecalculated 
based on circuit analysis. 

 Relationshipcanbewrittenintermsoftheimpedanceparameters. 

 Wecanalsocalculatetheimpedanceparametersaftermakingtwosetsof 

measurements. 

V1=z11I1+z12I2 

V2=z21I1+z22I2 

Iftherightportisan opencircuit (I2=0),thenwecan easilysolvefor two of the 

impedance parameters: Similarly by open circuiting left hand port (I1=0) we can solve for 

the other two parameters. 

 
Z11inputimpedence

1 

 

I20 

 

Z
21 
forwardtransferimpedence

V2
 

I1 

I20 

Z reversetransferimpedence
V1I0 Z outputimpedence

V2I 0 
12 1 22 1 

2 2 

ImpedanceParameterEquivalent 
 

 

 

 

V1=z11I1+z12I2 

V2=z21I1+z22I2 

 

 

 

 Onceweknowwhattheimpedanceparametersare,wecanmodel the 

behavior of the two-port with an equivalent circuit. 

 NoticethesimilaritytoTh´eveninandNorton equivalents 

V1 

I 

I1(s) I2(s) 

+ 

V1(s) 

- 

z11 z22 

z12I2 z21I1 

+ 

V2(s) 

- 
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V 

V 

I 

1 

1 

AdmittanceParameters 

 

+ 

v 2 

 

 

 

 
 

 

I1=y11V1+y12V2 

I2=y21V1+y22V2 

Y11=inputadmittance= 

 
 

 

 
 
 

 
I1V 0 

2 

1 

Y=forwardtransfer admittance=I2V0 
21 2 

1 

 

Y =outputadmittance=I1V 0 
22 1 

2 

 

Y =reversetransferadmittance= 
I1V0 

12 
 

 

HybridParameters 

1 

2 

 

 

 

 

V1=h11I1+h12V2 

I2=h21I1+h22V2 

 

h11=inputimpedance= 
V1V0 

2 

1 

 

h =forwardcurrentratio =I2V0 
21 2 

1 

 
 

h12 
=reversevoltageratio=V1I 0 

V2 

 
 

h22 =outputadmittance= 
I2I 0 

V2 

V 

V 

I 

 

 

Two-Port 

Network 

- 
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i2 
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i'2  
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+ + 

V1 
 

_ 

20 20 V2 

_ 

+ 

V1 

_ 

1 

s 
s 

+ 

V2 

_ 

    

1 

2 

Example: 

 
Giventhefollowingcircuit.DeterminetheZparameters. 

 

 

I1 8 10 
I2

 

 

 

 

 

 

 

 

 
Z

11
=8+20||30=20

Z
22

=20||30=12

Z
12 


V1I0 

I2 

V
20xI2x20

8xI Thereforez 
8xI28Ω=z 

1 2030 2 12 I 
21

 

TheZparameterequationscanbeexpressedinmatrixformasfollows. 

V1
z11 z12I1

V z z I 
2 21 222 



V1

20 8I1

V 8 12 I 

 

Example: 

2  2



Giventhefollowingcircuit.DeterminetheYparameters. 

I1 1 
I2 

 

 
 

 

 

 

1
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+y
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V
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1
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22
V
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I2 

V1 

I2 

V2 
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V1 
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V 
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V 11 V 

I1 1 
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Tofindy11 
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2s1

I I 
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11
 1y 1 

1 1 

s0.5 
V20 
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Problem1 
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Problem2 
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Problem3 
 

Problem4 
 



79  

 
 



80  

 
 

 
 
 

 



81  

CHAPTER8 
 

LOWPASSFILTERINTRODUCTION 

Basically, an electrical filter is a circuit that can be designed to modify, 

reshapeorrejectallunwantedfrequenciesofanelectricalsignalandacceptor passonly 

thosesignalswanted bythecircuit’sdesigner.Inother wordsthey“filter-out” unwanted 
signals and an ideal filter will separate and pass sinusoidal input signals based upon 

their frequency. 

In lowfrequency applications(up to100kHz),passivefiltersaregenerally 
constructed using simple RC(Resistor-Capacitor) networks, while higher frequency 
filters (above 100kHz) are usually made from RLC (Resistor-Inductor-Capacitor) 
components. 

Passive Filters are made up of passive components such as resistors, 
capacitorsand inductorsandhaveno amplifying elements(transistors, op-amps, etc) so 
have no signal gain, therefore their output level is always less than the input. 

Filters are so named according to the frequency range of signals that they 
allow to pass through them, while blocking or “attenuating” the rest. The most 
commonly used filter designs are the: 

 1. The Low Pass Filter – the low pass filter only allows low frequency signals from 

0Hz to its cut-off frequency, ƒc point to pass while blocking those any higher. 

 2. The High Pass Filter – the high pass filter only allows high frequency signals 

from its cut-off frequency, ƒc point and higher to infinity to pass through while 

blocking those any lower. 

 3. The Band Pass Filter – the band pass filter allows signals falling within a certain 

frequencybandsetupbetweentwopointsto passthroughwhileblockingboth the 

lower and higher frequencies either side of this frequency band. 

 4 Band Stop Filter - It is so called band-elimination, band-reject, or notch filters; 

this kind of filter passes all frequencies above and below a particular range set by 

the component values. 

SimpleFirst-orderpassivefilters(1storder)canbemadebyconnecting 
together a single resistor and a single capacitor in series across an input signal, (Vin) 
with the output of the filter, (Vout ) taken from the junction of these two components. 
Depending onwhich wayaround weconnecttheresistor and thecapacitor with regards to 
the output signal determines the type of filter construction resulting in either a Low 
Pass Filter or a High Pass Filter. 

As the function of any filter is to allow signals of a given band of 
frequenciestopassunalteredwhileattenuatingorweakeningallothers thosearenot 
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wanted, we can define the amplitude response characteristics of an ideal filter by using 
an ideal frequency response curve of the four basic filter types as shown. 

 
IDEALFILTERRESPONSECURVES 

 

A Low Pass Filter can be a combination of capacitance, inductance or 
resistance intended to produce high attenuation above a specified frequency and little or 
no attenuation below that frequency. The frequency at which the transition occurs is 
called the “cutoff” frequency. The simplest low pass filters consist of a resistor and 
capacitor but more sophisticated low pass filters have a combination of series inductors 
and parallel capacitors. In this tutorial we will look at the simplest type, a passive two 
component RC low pass filter. 

 
THELOWPASSFILTER 

A simple passive RC Low Pass Filter or LPF, can be easily made by 
connecting together in series a single Resistor with a single Capacitor as shown below.In 
this type of filter arrangement the input signal (Vin) is applied to the series combination 
(both the Resistor and Capacitor together) but the output signal (Vout ) is taken across 
the capacitor only. This type of filter is known generally as a “first-order filter” or “one-
pole filter”, why first-order or single-pole?, because it has only “one” reactive 
component, the capacitor, in the circuit. 

 
RCLOWPASSFILTERCIRCUIT 

As  mentioned 
previously in theCapacitive 
Reactance tutorial, the reactance of a 
capacitor varies inversely with 
frequency, while the value of the 
resistor remains constant as the 
frequency changes. At lowfrequencies 
the capacitive reactance, 
(Xc)ofthecapacitorwillbevery 
large compared to the resistive value of the resistor, R and as a result the voltage across 
the capacitor, Vc will also be large while the voltage drop across the resistor, Vr will be 
much lower. At high frequencies the reverse is true with Vc being small and Vr being 
large. 

While the circuit above is that of anRC Low Pass Filtercircuit, it can also 
beclassedasafrequencyvariablepotentialdividercircuitsimilartotheonewelooked 
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at in theResistorstutorial. In that tutorial we used the following equation to 
calculatethe output voltage for two single resistors connected in series. 

 
 
 
 

 

 

 
WealsoknowthatthecapacitivereactanceofacapacitorinanACcircuit 

isgiven as: 
 

 
 

 
OppositiontocurrentflowinanACcircuitiscalledimpedance,symbol Z and 

for a series circuit consisting of a single resistor in series with a single capacitor, the 
circuit impedance is calculated as: 

 

 

 
Then by substituting our equation for impedance above into the resistive 

potential divider equation gives us: 
 

RCPOTENTIALDIVIDEREQUATION 
 

 

 
So, by using the potential divider equation of two resistors in series and 

substituting for impedance we can calculate the output voltage of an RC Filter for any 
given frequency. 
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LOWPASSFILTEREXAMPLE 

A Low Pass Filter circuit consisting of a resistor of 4k7Ω in series with a 
capacitor of 47nF is connected across a 10v sinusoidal supply. Calculate the output 
voltage (Vout ) at a frequency of 100Hz and again at frequency of 10,000Hz or 10kHz. 

 
 
 
 

 
VoltageOutputata Frequencyof100Hz. 

 

 
 
 

 

 

 
Voltage Outputata Frequencyof10,000Hz(10kHz). 

 

 
 

 

FREQUENCYRESPONSE 

We can see from the results above that as the frequency applied to the RC network 
increasesfrom 100Hz to 10 kHz,thevoltagedropped acrossthe capacitorand therefore 
the output voltage (Vout) from the circuit decreases from 9.9v to 0.718v. 

Byplottingthenetworksoutputvoltageagainstdifferentvaluesofinputfrequency, the 
Frequency Response Curve or Bode Plot function of the low pass filter circuit can be 
found, as shown below. 
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Frequency Response of a 1st-order Low Pass Filter 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
The Bode Plotshows the Frequency Response of the filter to be nearly flat 

for low frequencies and the entire input signal is passed directly to the output, resulting 
in a gain of nearly 1, called unity, until it reaches its Cut-off Frequency point (ƒc). This is 
because the reactance of the capacitor is high at low frequencies and blocks any current 
flow through the capacitor. 

After this cut-off frequency point the response of the circuit decreases to 
zero at a slope of -20dB/ Decade or (-6dB/Octave) “roll-off”. Note that the angle of the 
slope, this -20dB/ Decade roll-off will always be the same for any RC combination. 

Any high frequency signals applied to the low pass filter circuit above this 
cut-off frequency point will become greatly attenuated, that is they rapidly decrease. 
This happens because at very high frequencies the reactance of the capacitor becomesso 
low that it gives the effect of a short circuit condition on the output terminals resulting 
in zero output. 

Then by carefully selecting the correct resistor-capacitor combination, we 
can create a RC circuit that allows a range of frequencies below a certain value to pass 
through the circuit unaffected while any frequencies applied to the circuit above this 
cut-off point to be attenuated, creating what is commonly called a Low Pass Filter. 
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For this type of “Low Pass Filter” circuit, all the frequencies below thiscut-
off, ƒc point that are unaltered with little or no attenuation and are said to be in the 
filters Pass band zone. This pass band zone also represents the Bandwidth of the filter. 
Any signal frequencies above this point cut-off point are generally said to be inthe filters 
Stop band zone and they will be greatly attenuated. 

This “Cut-off”, “Corner” or “Breakpoint” frequency is defined as being the 
frequency point where the capacitive reactance and resistance are equal, R = Xc = 4k7Ω. 
When this occurs the output signal is attenuated to 70.7% of the input signal value or - 
3dB (20 log (Vout/Vin)) of the input. Although R = Xc, the output is not half of the input 
signal. This is because it is equal to the vector sum of the two and is therefore 0.707 of 
the input. 

As the filter contains a capacitor, the Phase Angle(Φ)oftheoutputsignal 
LAGS behindthatoftheinputandatthe-3dBcut-offfrequency(ƒc)andis- 45o 

outofphase.Thisis dueto thetimetaken to chargetheplates ofthecapacitor as the input 
voltage changes, resulting in the output voltage (the voltage across the capacitor) 
“lagging” behind that of the input signal. The higher the input frequency applied to the 
filter the more the capacitor lags andthe circuitbecomes more andmore“out ofphase”. 

The cut-off frequency point and phase shift angle can be found by using 
the following equation: 

 
CUT-OFFFREQUENCYANDPHASESHIFT 

 

 
 

 

 

 
Then for our simple example of a “Low Pass Filter” circuit above, the cut- 

off frequency (ƒc) is given as720Hz with an output voltage of 70.7% of the input voltage 
value and a phase shift angle of -45o. 

 
HIGHPASSFILTERS 

A High Pass Filter or HPF, is the exact opposite to that of the previously 

seen Low Pass filter circuit, as now the two components have been interchanged with 

the output signal ( Vout ) being taken from across the resistor as shown. 

Where as the low pass filter only allowed signals to pass below its cut-off 
frequency point, ƒc, the passive high pass filter circuit as its name implies, only passes 
signals above the selected cut-off point, ƒc eliminating any low frequency signals from 
the waveform. Consider the circuit below. 
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THEHIGHPASSFILTERCIRCUIT 
 

 
 

In this circuit arrangement, the reactance of the capacitor is very high 
atlowfrequenciessothecapacitoractslikeanopencircuitandblocksanyinputsignals at Vin 
until the cut-off frequency point (ƒc) is reached. Above thiscut-offfrequency point the 
reactance of the capacitor has reduced sufficiently as to now act more like a short circuit 
allowing the entire input signal to pass directly to the output as shown below in the 
High Pass Frequency Response Curve. 

 
FREQUENCYRESPONSEOFA1STORDERHIGHPASSFILTER. 
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TheBodePlotor FrequencyResponse Curve abovefor a High Pass filter is 
the exact opposite to that of a low pass filter. Here the signal is attenuated or damped at 
low frequencies with the output increasing at +20dB/Decade (6dB/Octave) until the 
frequency reaches thecut-off point ( ƒc) where again R = Xc. It has a response curve that 
extends down from infinity to the cut-off frequency, where the output voltage amplitude 
is 1/√2 = 70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input value. 

Also we can see that the phase angle (Φ) of the output signal LEADS thatof 
the input and is equal to+45oat frequency ƒc. Thefrequency responsecurvefor a high pass 
filter implies that the filter can pass all signals out to infinity. However in practice, the 
high pass filter response does not extend to infinity but is limited by the electrical 
characteristics of the components used. 

The cut-off frequency point for a first order high pass filter can be found 
using the same equation as that of the low pass filter, but the equation for the phaseshift 
is modified slightly to account for the positive phase angle as shown below. 

 
CUT-OFFFREQUENCYANDPHASESHIFT 

 
 
 
 
 

 

 
 

 
Thecircuitgain,AvwhichisgivenasVout/Vin(magnitude)andiscalculated as: 

 

 

 

 

 

 
HIGHPASSFILTEREXAMPLE. 

Calculate the cut-off or “breakpoint” frequency ( ƒc ) for asimple highpass 
filter consisting of an82pF capacitor connected in series with a 240kΩ resistor. 
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BANDPASSFILTERS 

The cut-off frequency or ƒc point in a simple RC passive filter can be 

accurately controlled using just a single resistor in series with anon-polarized capacitor, 
and depending upon which way around they are connected either a low pass or a high 
pass filter is obtained. 

 
One simple use for these types of Passive Filters is in audio amplifier 

applications or circuits such as in loudspeaker crossover filters or pre-amplifier tone 
controls. Sometimes it is necessary to only pass a certain range of frequencies that do 
not begin at 0Hz, (DC) or end at some high frequency point but are within a certain 
frequency band, either narrow or wide. 

By connectingor “cascading” togethera singleLow Pass Filter circuitwith a 
High Pass Filter circuit, we can produce another type of passive RC filter that passes a 
selected range or “band” of frequencies that can be either narrow or wide while 
attenuating all those outside of this range. This new type of passive filter arrangement 
produces a frequency selective filter known commonly as a Band Pass Filter or BPF for 
short. 

 
BANDPASSFILTERCIRCUIT 

 

 
Unlike alowpass filterthat only passsignals of a low frequency range 

orahighpassfilterwhichpasssignalsofahigherfrequencyrange,aBandPass Filters passes 
signals within a certain “band” or “spread” of frequencies without distorting the input 
signal or introducing extra noise. This band of frequencies can be any width and is 
commonly known as the filters Bandwidth. 

Bandwidth is commonly defined as the frequency range that exists 
between two specified frequency cut-off points ( ƒc ), that are 3dB below the maximum 
centre or resonant peak while attenuating or weakening the others outside of these two 
points. 

Then for widely spread frequencies, we can simply define the term 
“bandwidth”, BW as being the difference between the lower cut-off frequency (ƒcLOWER ) 
and the higher cut-off frequency ( ƒcHIGHER ) points. In other words, BW = ƒH– ƒL. Clearly 
for a pass band filter to function correctly, the cut-off frequency of the low pass filter 
must be higher than the cut-off frequency for the high pass filter. 

The“ideal”Band PassFilter can also beused toisolateor filter out certain 
frequenciesthatliewithinaparticularbandoffrequencies,forexample,noise 
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cancellation. Band pass filters are known generally as second-order filters, (two-pole) 
because they have “two” reactive component, the capacitors, within their circuit design. 
One capacitor in the low pass circuit and another capacitor in the high pass circuit. 

 
FrequencyResponseofa2ndOrderBandPassFilter. 

 

 

 
The Bode Plot or frequency response curve above shows the 

characteristics of the band pass filter. Here the signal is attenuated at low frequencies 

with the output increasing at a slope of +20dB/Decade (6dB/Octave) untilthe frequency 

reaches the “lower cut-off” point ƒL. At this frequency the output voltage is again 1/√2 = 
70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input. 

The output continues at maximum gainuntil itreaches the “upper cut-off” 
point ƒHwhere the output decreases at a rate of -20dB/Decade (6dB/Octave)attenuating 
any high frequency signals. The point of maximum output gain is generally the 
geometric mean of the two -3dB value between the lower and upper cut-off points and 

is called the “Centre Frequency” or “Resonant Peak” value ƒr. This geometric mean value 

is calculated as being ƒr2= ƒ(UPPER)x ƒ(LOWER). 

A band pass filter is regarded as a second-order (two-pole) type filter 
because it has “two” reactive components within its circuit structure, then the phase 
anglewillbetwicethatofthepreviouslyseenfirst-orderfilters,i.e.,180o.Thephase 
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b 

a 

a 

angle of the output signal LEADSthat of the input by+90o up to the centre or resonant 
frequency,ƒrpoint were itecomes “zero” degrees (0o) or “in-phase” and then changes to 
LAG the input by -90oas the output frequency increases. 

Theupperandlower cut-offfrequencypointsfor abandpassfilter can be 
foundusingthesameformulaasthatfor boththelowandhighpassfilters,For example. 

 
 
 
 
 

 
Thenclearly,thewidthofthepassbandofthefiltercanbecontrolledbythe positioning 

of the two cut-off frequency points of the two filters. 
 

BandPassFilterExample 

Asecond-order bandpassfilter istobeconstructedusingRC components that 
will onlyllow a range of frequencies to pass above 1kHz (1,000Hz) 
andbelow30kHz(30,000Hz).Assumingthatboththe resistors havevalues of10kΩ´s, 

 

TheHighPassFilterStage 

The value of thecapacitor C1 required to give a cut-off frequency ƒL of 
1kHz with a resistor value of10kΩ is calculated as: 

 

 
 

 
Then, the values ofR1 andC1required for the high pass stage to give a cut-

off frequency of 1.0kHz 

 
TheLowPassFilterStage 

Thevalueofthecapacitor C2 requiredtogiveacut-offfrequency ƒHof30kHzwitha resistor 
value of10kΩ is calculated as: 

 

calculatethevaluesofthet wo capacitorsrequired. 

re:R1= 10kΩ´sand C1 =15nF. 
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Then,thevaluesofR2and C2requiredforthelowpassstage to givea cut- off 
frequency of 30kHz are, R = 10kΩ´s and C = 510pF. However, the nearest preferred 
value of the calculated capacitor value of 510pF is 560pF so this is used instead. 

With the values of both the resistances R1 and R2 given as 10kΩ, and the 
twovaluesofthecapacitorsC1 and C2 foundforthehighpassandlowpassfilters as 15nF and 
560pF respectively, then the circuit for oursimplepassive BandPassFilter is given as. 

 
CompletedBandPassFilterCircuit 

 

 

 

 

 
BandPassFilterResonantFrequency 

We can also calculate the “Resonant” or “Centre Frequency” (ƒr) point of the band pass 
filter were the output gain is at its maximum or peak value. This peak value is not the 
arithmetic averageof theupperand lower -3dBcut-off pointsasyoumight expect but is in 

factthe “geometric” or mean value. This geometricmeanvalueiscalculatedas being ƒr 2= 

ƒc(UPPER)x ƒc(LOWER)for example: 
 

CentreFrequencyEquation 
 

 Where,ƒristheresonantorcentrefrequency 

 ƒListhelower-3dBcut-offfrequencypoint 

 ƒHistheupper-3dbcut-offfrequencypoint 

And in our simple example above, the calculated cut-off frequencies were 
found tobe ƒL=1,060HzandƒH=28,420Hzusingthe filtervalues. 

Then by substituting these values into the above equation gives a central 
resonant frequency of: 
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b 

Band-stop filters 

It is so calledband-elimination,band-reject, ornotch filters; this kind of 

filter passes all frequencies above and below a particular range sety the component 

values. Not surprisingly, it can be made out of a low-pass and a high-pass filter, just like 

the band-pass design, except that this time we connect the two filter sections in parallel 

with each other instead of in series. (Figure below) 
 

Systemlevelblockdiagramofaband-stopfilter. 

Constructed using two capacitive filter sections, it looks something like 

(Figure below). 
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