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CHAPTER 1

Circuit Elements and Laws

Voltage

Energy is required for the movement of charge from one point to another. Let W
Joules of energy be required to move positive charge Q columbs from a point a to
point b in a circuit. We say that a voltage exists between the two points. The voltage
V between two points may be defined in terms of energy that would be required if a
charge were transferred from one point to the other. Thus, there can be a voltage
between two points even if no charge is actually moving from one to the other.

Voltage between a and b is given by

v="3/c
Q

Worked are (W) in Joules
Ch arge (Q)in columbs

Hence Electric Potential (V) =

Current ;

An electric current is the movement of electric charges along a definite path. In case

of a conductor the moving charges are electrons.

The unit of current is the ampere. The ampere is defined as that current which when
flowing in two infinitely long parallel conductors of negligible cross section, situated 1
meter apart in Vacuum, produces between the conductors a force of 2 x 10”7 Newton per

metre length.

Power : Power is defined as the work done per unit time. If a field F newton acts for t

seconds through a distance d metres along a straight line, work done W = Fxd N.m. or J.
The power P, either generated or dissipated by the circuit element.

w Fxd

P=_"=
t t



Work
time

Power can also be written as Power =

Work « Ch arge

= - = Voltage x Current
Charge Time

P =V x| watt.

Enerqgy : Electric energy W is defined as the Power Consumed in a given time. Hence, if
current 1A flows in an element over a time period t second, when a voltage V volts is applied

across it, the energy consumed is given by
W =Pxt=VxIxtJorwatt. second.

The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of

energy is kilowatt. hour (Kwh)

Resistance : According to Ohm's law potential difference (V) across the ends of a conductor
is proportional to the current (1) flowing through the conductor at a constant

temperature. Mathematically Ohm's law is expressed as
ValorV=RxI

\Y . L : .
Or R = — Where R is the proportionality constant and is designated as the conductor

resistance and has the unit of Ohm (A).

Conductance : Voltage is induced in a stationary conductor when placed in a varying
magnetic field. The induced voltage (e) is proportional to the time rate of change of

current, di/dt producing the magnetic field.

Therefore e a ﬂ
dt

Ore:Ld

dt



e and i are both function of time. The proportionality constant L is called inductance.

The Unit of inductance is Henery (H).

Capacitance : A capacitor is a Physical device, which when polarized by an electric field

by applying a suitable voltage across it, stores energy in the form of a charge separation.

The ability of the capacitor to store charge is measured in terms of capacitance.

Capacitence of a capacitor is defined as the charge stored per Volt applied.

~q Coulomb

C= = Farad

V Volt

Active and passive Branch :

A branch is said to be active when it contains one or more energy sources. A passive

branch does not contain an energy source.

Branch : A branch is an element of the network having only two terminals.

Bilateral and unilateral element :

A bilateral element conducts equally well in either direction. Resistors and inductors
are examples of bilateral elements. When the current voltage relations are different
for the two directions of current flow, the element is said to be unilateral. Diode is an

unilateral element.

Linear Elements : When the current and voltage relationship in an element can be
simulated by a linear equation either algebraic, differential or integral type, the

element is said to be linear element.

Non Linear Elements : When the current and voltage relationship in an element can

not be simulated by a linear equation, the element is said to be non linear elements.

Kirchhoff's Voltage Law (KVL) :

The algebraic sum of Voltages (or voltage drops) in any closed path or loop is Zero.



Application of KVVL with series connected voltage source.
R,

M\

Fig. 1.1
Vi+Vy-1IR; - 1R, =0
=Vi+Vy=1 (R1+R2)

V,+V,
R;+R,

Application of KVL while voltage sources are connected in opposite polarity.

R
Vv

MW ol

= g i

R,

Fig. 1.2
Vi—IR;~V,— IR, — IRz =0

> Vi-V,= IR+ IR, +IRs

> Vi-V,=1(Ry+ IR, +IRs)



- Vl_VZ
R,+R,+R,

Kirchaoff's Current Law (KCL) :

The algebraic sum of currents meeting at a junction or mode is zero.

Fig. 1.3

Considering five conductors, carrying currents I4, I, I3, 14 and Is meeting at a point O.
Assuming the incoming currents to be positive and outgoing currents negative.

i+ () + 13+ (-ly) +15=0
li—L+1l3—-I4+15=0

lh+ls+ls=1L+1,

Thus above Law can also be stated as the sum of currents flowing towards any
junction in an electric circuit is equal to the sum of the currents flowing away from
that junction.

Voltage Division (Series Circuit)

Considering a voltage source (E) with resistors R; and R; in series across it.

R.

WV

£ - /D § .

Fig. 1.4



Voltage drop across R; = . Ry = E.R,
R,+R,

E.R,

Similarly voltage drop across R; = LRy = ————
R,+R,

Current Division :

A parallel circuit acts as a current divider as the current divides in all branches in a

parallel circuit.

Fig. 1.5

Fig. shown the current | has been divided into I; and I in two parallel branches with

resistances R; and R, while V is the voltage drop across R; and R.

Il-v and I,= —
Rl 2

Let R = Total resistance of the circuit.

Hence == i+ 1_
R R, R,
> R - RlR 2



V_ _V(R+R,)

R RR, RR,
R,+R,

But=V =11R; = bR,

ORR,0
> 1=1R[]
DR1+RZD
5 12 hR+R))
R,
Therefore I, = IR,
R,+R,




CHAPTER 2

Magnetic Circuits :

Introduction : Magnetic flux lines always form closed loops. The closed path
followed by the flux lines is called a magnetic circuit. Thus, a magnetic circuit
provides a path for magnetic flux, just as an electric circuit provides a path for the
flow of electric current. In general, the term magnetic circuit applies to any closed
path in space, but in the analysis of electro-mechanical and electronic system this
term is specifically used for circuits containing a major portion of ferromagnetic
materials. The study of magnetic circuit concepts is essential in the design, analysis
and application of electromagnetic devices like transformers, rotating machines,

electromagnetic relays etc.

Magnetomotive Force (M.M.F) :

Flux is produced round any current — carrying coil. In order to produce the required
flux density, the coil should have the correct number of turns. The product of the
current and the number of turns is defined as the coil magneto motive force (m.m.f).

If I = Current through the coil (A)

N = Number of turns in the coil.

Magnetomotive force = Current x turns
SoOMM.F=1XN

The unit of M.M.F. is ampere—turn (AT) but it is taken as Ampere(A) since N

has no dimensions.

Maagnetic Field Intensity

Magnetic Field Intensity is defined as the magneto-motive force per unit length of the

magnetic flux path. Its symbol is H.



Magnetomotive force
Mean length of the magnetic path

Magnetic field Intensity (H) =

> H=F_UN.
I

Where | is the mean length of the magnetic circuit in meters. Magnetic field intensity is also
called magnetic field strength or magnetizing force.

Permeability :-

Every substance possesses a certain power of conducting magnetic lines
of force. For example, iron is better conductor for magnetic lines of force than

air (vaccum) . Permeability of a material (u) is its conducting power for
magnetic lines of force. It is the ratio of the flux density. (B) Produced in a

material to the magnetic filed strength (H) i.e. pu = %

Reluctance :

Reluctance (s) is akin to resistance (which limits the electric Current).
Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a
measure of the opposition offered by a magnetic circuit to the setting up of the
flux.
Reluctance is the ratio of magneto motive force to the flux. Thus

Ssz%)

Its unit is ampere turns per webber (or AT/whb)
Permeance:-
The reciprocal of reluctance is called the permeance (symbol A).
Permeance (A) =1/S  wb/AT
Turn T has no unit.

Hence permeance is expressed in wh/A or Henerys(H).



Electric Field versus Magentic Field.

1)

2)

3)

4)

5)

6)

1)

2)

Similarities

Electric Field

Flow of Current (1)

Emf is the cause of
flow of current

Resistance offered
to the flow of
Current, is called
resistance (R)

Conductance

(G)=£
R

Current density is
amperes per square
meter.

Current (1) - El\/IF/R

1)

2)

3)

4)

5)

6)

Dissimilarities

Current actually flows
in an electric Circuit.

Energy is needed as
long as current flows

1)

2)

Magnetic Field
Flow of flux (&)

MMT is the cause of
flow of flux

Resistance offered to
the flow of flux, is
called reluctance (S)

Permitivity(u) = %

Flux density is number
of lines per square
meter.

Flux (@) :%

Flux does not actually
flow in a magnetic
circuit.

Energy is initially
needed to create the
magnetic flux, but not



to maintain it.

3) Conductance is 3) Permeability (or
constant and magnetic
independent of current conductance )
strength at a particular depends on the total
temperature. flux for a particular

temperature.
B.H. Curve :

Place a piece of an unmagnetised iron bar AB within the field of a
solenoid to magnetise it. The field H produced by the solenoid, is called
magnetising field, whose value can be altered (increased or decreased) by
changing (increasing or decreasing) the current through the solenoid. If we
increase slowly the value of magnetic field (H) from zero to maximum value,
the value of flux density (B) varies along 1 to 2 as shown in the figure and the
magnetic materials (i.e iron bar) finally attains the maximum value of flux
density (Bm) at point 2 and thus becomes magnetically saturated.

Fig. 2.1
Now if value of H is decreased slowly (by decreasing the current in the

solenoid) the corresponding value of flux density (B) does not decreases along
2-1 but decreases some what less rapidly along 2 to 3. Consequently during the
reversal of magnetization, the value of B is not zero, but is '13' at H= 0. In other



wards, during the period of removal of magnetization force (H), the iron bar is
not completely demagnetized.

In order to demagnetise the iron bar completely, we have to supply the
demagnetisastion force (H) in the opposite direction (i.e. by reserving the
direction of current in the solenoid). The value of B is reduced to zero at point
4, when H="14'". This value of H required to clear off the residual magnetisation,
Is known as coercive force i.e. the tenacity with which the material holds to its
magnetism.

If after obtaining zero value of magnetism, the value of H is made more
negative, the iron bar again reaches, finally a state of magnetic saturation at the
point 5, which represents negative saturation. Now if the value of H is increased
from negative saturation (= '45') to positive saturation ( = '12") a curve '5,6,7,2'
Is obtained. The closed loop "2,3,4,5,6,7,2" thus represents one complete cycle
of magnetisation and is known as hysteresis loop.



NETWORK ANALYSIS
Different terms are defined below:

1. Circuit: A circuit is a closed conducting path through which an electric current either
flow or is intended flow

2. Network: A combination of various electric elements, connected in any  manner.
Whatsoever, is called an electric network

3. Node: it is an equipotential point at which two or more circuit elements are joined.
4. Junction: it is that point of a network where three or more circuit elements are joined.
5. Branch: it is a part of a network which lies between junction points.

6. Loop: Itisaclosed path in a circuit in which no element or node is accounted more than
once.

7. Mesh: It is a loop that contains no other loop within it.

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of i) circuit elements ii)
nodes iii) junction points iv) branches and v) meshes.

Rs

R7




Solution: i) no. of circuit elements = 12 (9 resistors + 3 voltage sources)
ii) no. of nodes =10 (a, b, c, d, e, f, g, h, k, p)
iii) no. of junction points =3 (b, e, h)
iv) no. of branches = 5 (bcde, be, bh, befgh, bakh)
V) no. of meshes = 3 (abhk, bcde, befh)
MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding solutions
for a network. The suitability of either mesh or nodal analysis to a particular problem depends
mainly on the number of voltage sources or current sources .If a network has a large number
of voltage sources, it is useful to use mesh analysis; as this analysis requires that all the
sources in a circuit be voltage sources. Therefore, if there are any current sources in a circuit
they are to be converted into equivalent voltage sources,if, on the other hand, the network has
more current sources,nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuits mesh
analysis is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface
without crossovers. A non-planar circuit cannot be drawn on a plane surface without a
crossover.

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a
planar circuit which looks like a non-planar circuit. It has already been discussed that a loop
is a closed path. A mesh is defined as a loop which does not contain any other loops within it.
To apply mesh analysis, our first step is to check whether the circuit is planar or not and the
second is to select mesh currents. Finally, writing Kirchhoff*s voltage law equations in terms
of unknowns and solving them leads to the final solution.

=

@) (b) (©
Figure 3.2

Observation of the Fig.3.2 indicates that there are two loops abefa,and bcdeb in the
network .Let us assume loop currents I; and l,with directions as indicated in the figure.



Considering the loop abefa alone, we observe that current Iy is passing through Ry, and (11-1,)
is passing through R,, By applying Kirchhoff’s voltage law, we can write

Vs. =l1R1+R(l1-12) (3.1)
R]_ RS
a % 0 /\/\/\/ c
Vs R,
R4
o .2
f e d

Figure 3.3

Similarly, if we consider the second mesh bcdeb, the current I, is passing through R3
and R4, and (I, — 1y) is passing through R, By applying Kirchhoff’s voltage law around the
second mesh, we have

R, (|2-|1) + Rzl +R41,=0 (32)

By rearranging the above equations,the corresponding mesh current equations are
I (R1+R2) - 12R2 =V,

-l1R, +(R2+R3+R4) 1,=0 (33)

By solving the above equations, we can find the currents I; and I If we observe
Fig.3.3, the circuit consists of five branches and four nodes, including the reference node.The
number of mesh currents is equal to the number of mesh equations.

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of
mesh current would be 5-(4-1)=2.



In general we have B number of branches and N number of nodes including the
reference node than number of linearly independent mesh equations M=B-(N-1).

Example 3.2 Write the mesh —\\V\\
5Q 10Q2

current equations in the circuit shown 10V —— 2Q

50v —|—

in fig 3.4 and determine the currents.

Figure 3.4

Solution: Assume two mesh currents in the direction as indicated in fig.
3.5. The mesh current equations are

5Q
—\/\V\\
0V 1 1, 10 Q
o< v [sov
Figure 3.5
51 + 2('1-'2) =10
101, + 2(1,-11) +50=0 (3.4)

We can rearrange the above equations as
711 -21, =10
-211+121,=-50 (3.5)

By solving the above equations, we have 1;=0.25 A, and I, =-4.125



Here the current in the second mesh I, is negative; that is the actual current I, flows opposite
to the assumed direction of current in the circuit of fig .3.5.

Example 3.3 Determine the mesh current I, in the circuit shown in fig.3.6.

AAAN —

50
5V

Solution: From the circuit, we can from the following three mesh equations

10|1+5(|1+|2) +3(|1-|3) =50 (36)
21, +5(1o+14) +1(Ix+13) =10 (3.7)
3(I5-11) +1(I3+l5) =-5 (3.8)

Rearranging the above equations we get

181,+51,-313=50 (3.9)
51,481, + 13=10 (3.10)
31y + Ip+ 413=-5 (3.11)

According to the Cramer’s rule



Y50
'10

5 -3
o
8 1
_'-5 1 4o 1175
Il_r -
B8 5 -3° 356
8
1

«
"5

1w
! 0
§—3 4f

Or 1;= 3.3 A Similarly,

Y18 50 -3
5 10 1°
-3 -5 4% _-355
2718 5 -3% 356
"5 8 1 w
! 0
Or 1,=-0.997A
Y18 5 50/
5 8 10%
. -3 1 -5@_525
3 158 5 3% 356
o0
! o0
31 47
Or 1;=1.47A

= 11=38.3A, 1,=-0.997A, 13=1.47A

(3.12)

(3.13)

MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be written by
inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7

The loop equation are I;R;+ Ry(1-1,)

R1 Rs

Figure 3.7



Rz( |2-|1)+|2R3: -V, 3.14
Rals+R513=V> 3.15

Reordering the above equations, we have

(R1+R2)|1-R2|2:V1 3.16
-R2|1+(R2+R3) 1,=-V> 3.17
(R4+Rs5)1:=V> 3.18

The general mesh equations for three mesh resistive network can be written as

Rlllli R12|2i R13|3: Va 3.19
* R21|1+R22|2 iR23|3: Vb 3.20
* R31|1 iR32|2+R33|3: VC 3.21

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 3.21
respectively, the following observations can be taken into account.

1. The self-resistance in each mesh

2. The mutual resistances between all pairs of meshes and

3. The algebraic sum of the voltages in each mesh.

The self-resistance of loop 1, R11=R1+Ry, is the sum of the resistances through which I,
passes.

The mutual resistance of loop 1, Ri,= -Ry, is the sum of the resistances common to loop
currents Iy and I, If the directions of the currents passing through the common resistances are
the same, the mutual resistance will have a positive sign; and if the directions of the currents
passing through the common resistance are opposite then the mutual resistance will have a
negative sign.

V.=V is the voltage which drives the loop 1. Here the positive sign is used if
the direction of the currents is the same as the direction of the source. If the current
direction is opposite to the direction of the source, then the negative sign is used.

Similarly R2,=R,+R3 and R33=Rs+Rs are the self-resistances of loops 2 and 3
respectively. The mutual resistances R13=0, R21= -Rj, R23=0, R31=0, R3,=0 are the
sums of the resistances common to the mesh currents indicated in their subscripts.

Vp=-V,, V= V; are the sum of the voltages driving their respective loops.



Example 3.4 write the mesh equation for the circuit shown in fig. 3.8

5Q
10V -
Solution : the
R11|1i R12|2i R13|3:Va (322)
+ R21|1+R22|2i R23|3:Vb (323)
* R31|1i R32|2+R33|3:Vc (324)

Consider equation 3.22

Rii=self resistance of loop 1=(1Q+ 3 Q +6 Q) =10 Q

R1,= the mutual resistance common to loop 1 and loop 2 = -3 Q
Here the negative sign indicates thatthe currents are in opposite direction .
R13= the mutual resistance common to loop 1 & 3=-6 Q

V.= +10 V, the voltage the driving the loop 1.

Here he positive sign indicates the loop current I, is in the same direction as the
source element.

Therefore equation 3.22 can be written as



10 |1- 3|2-6|3: 10V (325)
Consider Eq. 3.23
R2;= the mutual resistance common to loop 1 and loop 2 = -3 Q

R2,= self resistance of loop 2=(3Q+ 2 Q +5 Q) =10 Q
R23=0, there is no common resistance between loop 2 and 3.
Vp = -5V, the voltage driving the loop 2.
Therefore Eg. 3.23 can be written as
-31; + 101,= -5V (3.26)
Consider Eq. 3.24
R3;= the mutual resistance common to loop 1 and loop 3 =-6 Q
R3,= the mutual resistance common to loop 3 and loop 2 =0
Ras= self resistance of loop 3=(6Q+ 4 Q) =10 Q
V= the algebraic sum of the voltage driving loop 3
=(5 V+20V)=25 V (3.27)
Therefore, Eq3.24can be written as -61; + 101;= 25V
-61;-31,-615= 10V
-31;+101,=-5V
-61;+1015=25V

SUPERMESH ANALYSIS

Suppose any of the branches in the network has a current source, then it is slightly difficult to
apply mesh analysis straight forward because first we should assume an unknown voltage
across the current source, writing mesh equation as before, and then relate the source current
to the assigned mesh currents. This is generally a difficult approach. On way to overcome this
difficulty is by applying the supermesh technique. Here we have to choose the kind of
supermesh. A supermesh is constituted by two adjacent loops that have a common current
source. As an example, consider the network shown in the figure 3.9.

2]
+ V I I, R3 I3 R4
«— «— «—




Here the current source I is in the common boundary for the two meshes 1 and 2. This current
source creates a supermesh, which is nothing but a combination of meshes 1 and 2.

Rily + Rs(l-13)=V
Or Ril1+ Rsl2- Rals=V
Considering mesh 3, we have
Ra(ls-12)+ R4l3=0

Finally the current I from current source is equal to the difference between two mesh currents
ie.

11-1=1

we have thus formed three mesh equations which we can solve for the three unknown
currents in the network.

Example 3.5. Determine the current in the 5Q resistor in the network given in Fig. 3.10

3 e
2Q
f
S0v C 1Q
Figure 3.10
Solution: - From the first mesh, i.e. abcda, we have
50 = 10(I1-1,) + 5(11-1s)
Or 151;-101,-515=50 (3.28)

From the second and third meshes. we can form a super mesh
10('2-'1)+2|2 +|3+5(|3-|1)=0

Or -1511+121,+613=0 (3.29)



The current source is equal to the difference between Il and 111 mesh currents
ie. l-l3=2A (3.30)
Solving 3.28.,3.29 and 3.30. we have
I1 =19.99A,1,=17.33 A, and I3 =15.33 A
The current in the 5Q resistor =I; -13
=19.99 -15.33=4.66A
The current in the 5 resistor is 4.66A.

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the
currents, Iy, 1, and I3,

10V
_I_
h G-
1, I3
A
(DroA 3Q 1Q
-« 1 _>20
4+—
! I i
Figure 3.11

Solution ; In fig 3.11, the current source lies on the perimeter of the circuit, and the
first mesh is ignored. Kirchhoff*s voltage law is applied only for second and third meshes .

From the second mesh, we have
3(12-17)+2(12-13)+10 =0

or -31; +51,-213= -10 (3.31)

From the third mesh, we have
I3+ 2 (I3-1,) =10

or -21,+315 =10 (3.32)



From the first mesh, I =10A (3.33)
From the abovethree equations, we get

11=10A, 1,=7.27, I3=8.18A

NODALANALYSIS

In the chapter | we discussed simple circuits containing only two nodes, including the
reference node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum
node, then it is possible to write N -lnodal equations by assuming N-1 node voltages. For
example,al0 node circuit requires nine unknown voltages and nine equations. Each node in a circuit
can be assigned a number or a letter. The node voltage is the voltage of a given node with respect to
one particular node, called the reference node, which we assume at zero potential. In the circuit shown
in fig. 3.12, node 3 is assumed as the Reference node. The voltage at node 1 is the voltage at that
node with respect to node 3. Similarly, the voltage at node 2 is the voltage at that node with respect to
node 3. Applying Kirchhoff’s current law at node 1, the current entering is the current leaving (See
Fig.3.13)

3 Figure 3.12

Figure 3.13

l1=V/Ry + (Vl-Vz)/Rz



Where V; and V; are the voltages at node 1 and 2, respectively. Similarly, at node
2.the current entering is equal to the current leaving as shown in fig. 3.14

R Ra

Rs

Figure 3.14

(V2-V1)/R; + Vo/R3 + V2l (R4+Rs) =0

Rearranging the above equations, we have
V1[L/R1+1/R5]-Vo(1/R2)= Iy

-V1(1/Ry) + Vo[1/R,+1/Rg+1/(R4+Rs)]=0

From the above equations we can find the voltages at each node.

Example 3.7 Determine the voltages at each node for the circuit shown in fig 3.15

3Q

10Q J\/\/\/\ﬁ 2Q
VWAV

3Q
®
10V ?D 5Q 5A 1Q 6Q
Figure 3.15
Solution : At node 1, assuming that all currents are leaving, we have
(V1-10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0
Or Vq[1/710+1/3+1/5+1/3]1-V,[1/3+1/3]=1
0.96V;-0.66V,=1 (3.36)
At node 2, assuming that all currents are leaving except the current from current source, we

have

(V2-V1)I3+ (V2-V1)/3+ (V-V3)[2 =5

VA[2/3]+V,[L1/3 +1/3 + 1/2]-V5(1/2) =5

-0.66V1+1.16V2-0.5V3= 5 (337)



At node 3 assuming all currents are leaving, we have
(V3-V2)/2 +V3/1+ V3/6 =0
-0.5V; + 1.66V3=0 (3.38)

Applying Cramer’s rule we get

Y 1 —066 0 /
: 116 -05 7
! 2%)
V= 0 05 1.66 =115 _ 506

1 0% -066 0 - 0.887
066 116 -05%

!

¢ 0 05 1667
Similarly,
Y 096 1 o /
| -066 5 -05
yo 0 0 166 _906 =102
096 066 0 _ 0887
'~066 116 0.5
¢ 0 —05 1667

Y 09 -066 1 /
, —Q86 116 5
V= ~05 0 «_ 273 =307
0% -066 0 . 0887
~0.66 116 —0.5
0

~05 1.66“;

3

~ = =

I~

NODAL EQUATIONS BY INSPECTION METHOD The nodal equations for a general planar network can also be written by

inspection without going through the detailed steps. Consider a three node resistive network, including the reference node, as shown in fig
3.16

R1 Rs Rs

— Figure 3.16



In fig. 3.16 the points a and b are the actual nodes and c is the reference node.

Now consider the nodes a and b separately as shown in fig 3.17(a) and (b)

R1 Va R3

Figure 3.17

In fig 3.17 (a), according to Kirchhoff’s current law we have

I1+12+15=0

(Va-V1)/R1 +Vo/Ro+ (Va-Vp)/R3=0

In fig 3.17 (b) , if we apply Kirchhoff’s current law

I+ I5= 13

2. (Vp-Va)/IR3 + Vp/R4+(Vp-V2)/R5=0

Rearranging the above equations we get
(1/R1+1/Ry+1/R3)Va-(1/R3)Vp=(1/R1) V1

(-1/R3)Vat+ (1/R3+1/R4+1/Rs5)Vp=V2/Rs

In general, the above equation can be written as

GaaVa+ GabVb=11

GpaVa+ GopVp=I2

(3.39)

(3.40)

(3.41)
(3.42)

(3.43)
(3.44)

By comparing Eqgs 3.41,3.42 and Eqgs 3.43, 3.44 we have the self conductance at node
a, Gaa=(1/R; + 1/R, + 1/R3) is the sum of the conductances connected to node a. Similarly,
Gpp= (1/R3 + 1/R4 +1/Rs) is the sum of the conductances connected to node b. Gap=(-1/R3) is
the sum of the mutual conductances connected to node a and node b. Here all the mutual
conductances have negative signs. Similarly, Gpa= (-1/R3) is also a mutual conductance
connected between nodes b and a. I, and I, are the sum of the source currents at node a and
node b, respectively. The current which drives into the node has positive sign, while the

current that drives away from the node has negative sign.



Example 3.8 for the circuit shown in the figure 3.18 write the node equations by the
inspection method.

Fig 3.18
Solution:-
The general equations are
GaaVatGapVo=l1 (3.45)
GbaVa + GppVp=I2 (3.46)

Consider equation 3.45

Gaa=(1+ 1/2 +1/3) mho. The self conductance at node a is the sum of the conductances
connected to node a.

Gpp = (1/6 + 1/5 + 1/3) mho the self conductance at node b is the sum of conductances
connected to node b.

Gap =-(1/3) mho, the mutual conductances between nodes a and b is the sum of the
conductances connected between node a and b.

Similarly Gp, = -(1/3), the sum of the mutual conductances between nodes b and a.

1,=10/1 =10 A, the source current at node a,



1,=(2/5 + 5/6) = 1.23A, the source current at node b.
Therefore, the nodal equations are
1.83V,-0.33V,=10 (3.47)

-0.33V,+0.7V},= 1.23 (3.48)
SUPERNODE ANALYSIS

Suppose any of the branches in the network has a voltage source, then it is slightly difficult to
apply nodal analysis. One way to overcome this difficulty is to apply the supernode
technique. In this method, the two adjacent nodes that are connected by a voltage source are
reduced to a single node and then the equations are formed by applying Kirchhoff’s current
law as usual. This is explained with the help of fig. 3.19

V1 V, + _ V3

)

W 2 ./ 3
R2 VX
| QD R, Rs3 R, Rs
— Vv
4
FIG 3.19

It is clear from the fig.3.19, that node 4 is the reference node. Applying Kirchhoff’s current
law at node 1, we get

|:(V1/R1 ) + (Vl-Vz)/Rz

Due to the presence of voltage source V, in between nodes 2 and 3 , it is slightly
difficult to find out the current. The supernode technique can be conveniently applied in this
case.

Accordingly, we can write the combined equation for nodes 2 and 3 as under.



(Vz-Vl)/Rz + V,o/R3 + (V3-Vy)/R4 +V3/Rs=0
The other equation is

Vz-Vg :VX

From the above three equations, we can find the three unknown voltages.

Example 3.9 Determine the current in the 5 Q resistor for the circuit shown in fig.

3.20
2Q
V1 V, + = V3
20V
1Q 5Q
GDO A3Q
10V
Solution. At node 1
10= V1/3 + (V1-V2)/2
Or  Vi[1/3 +1/2]-(V2/2)-10=0
0.83V;-0.5V,-10 =0 (3.49)

At node 2 and 3, the supernode equation is
(V2-V1)I2 + Vo1 + (V3-10)/5 +V3/2 =0
Or  —Vi/2 +Vo[(1/2)+1]+ V3[1/5 + 1/2]=2
Or -0.5Vi+1.5V,+0.7V3-2=0
The voltage between nodes 2 and 3 is given by

Vz-V3:20

(2.50)

(3.51)

2Q

fig. 3.20



The current in 5 resistor Is =(V3-10)/5
Solving equation 3.49, 3.50 and 3.51, we obtain
V3 =-8.42V

Currents Is=(-8.42-10)/5 = -3.68 A (current towards node 3) i.e the current
flows towards node 3.

SOURCE TRANSFORMATION TECHNIQUE

In solving networks to find solutions one may have to deal with energy sources. It has
already been discussed in chapter 1 that basically, energy sources are either voltage sources
or current sources. Sometimes it is necessary to convert a voltage source to a current source
or vice-versa. Any practical voltage source consists of an ideal voltage source in series with
an internal resistance. Similarly, a practical current source consists of an ideal current source
in parallel with an internal resistance as shown in figure3.21. R, and R; represent the internal
resistances of the voltage source Vs, and current source Is respectively.

Rv

Vs (3 s ) 1

b fig.3.21 b

Any source, be it a current source or a voltage source, drives current through its load
resistance, and the magnitude of the current depends on the value of the load resistance. Fig
3.22 represents a practical voltage source and a practical current source connected to the
same load resistance R,.

Rv



A

(a) (b)
Figure 3.22
From fig 3.22 (a) the load voltage can be calculated by using Kirchhoff’s voltage law as
Var=Vs-ILRy

The open circuit voltage Vo.=Vs

.. V
The short circuit current lge=_°_
R

v

from fig 3.22 (b)

| =1s-1=16-(Van/Ry)
The open circuit voltage Vo= IsR;
The short circuit current ls.=Is

The above two sources are said to be equal, if they produce equal amounts of current
and voltage when they are connected to identical load resistances. Therefore, by equating the
open circuit votages and short circuit currents of the above two sources we obtain

Voc=IsR1=V5
l«.=1s=VJ/Ry
It follows that
Ri=R\=Rs;  V=IsRs

where R is the internal resistance of the voltage or current source. Therefore, any
practical voltage source, having an ideal voltage Vs and internal series resistance Rs can be
replaced by a current source 15=V¢/Rs in parallel with an internal resistance Rs. The reverse



tansformation is also possible. Thus, a practical current source in parallel with an internal

resistance R can be replaced by a voltage source Vs=IsRs in series with an internal resistance
Rs.

Example 3.10 Determine the equivalent voltage source for the current source shown in fig
3.23

5SA 5Q

Figure 3.23

Solution: The voltage across terminals A and B is equal to 25 V. since the internal resistance
for the current source is 5 €2, the internal resistance of the voltage source is also 5 €. The
equivalent voltage source is shown in fig. 3.24.

5Q

Fig 3.24

Example 3.11 Determine the equivalent current source for the voltage source shown in fig. 3.25

W ’/\‘

30 Q

@D




Solution : the short circuit current at terminals A and B is equal to

I=50/30 =1.66 A

1.66 A

30Q2

Fig 3.26

Since the internal resistance for the voltage source is 30€2, the internal resistance of
the current source is also 30 Q. The equivalent current source is shown in fig. 3.26.



NETWORK THEOREMS

Before start the theorem we should know the basic terms of the network.
Circuit: It is the combination of electrical elements through which current
passes is called circuit.
Network: It is the combination of circuits and elements is called network.
Unilateral :It is the circuit whose parameter and characteristics change with
change in the direction of the supply application.
Bilateral: It is the circuit whose parameter and characteristics do not change
with the supply in either side of the network.
Node: It is the inter connection point of two or more than two elements is
called node.
Branch: It is the interconnection point of three or more than three elements is
called branch.
Loop: Itis a complete closed path in a circuit and no element or node is taken
more than once.
Super-Position Theorem :
Statement :" It states that in a network of linear resistances containing more than
one source the current which flows at any point is the sum of all the currents
which would flow at that point if each source were considered separately and
all other sources replaced for time being leaving its internal resistances if any".

R, R,
MWW MWW
EZ.-_
6T R -
Explanation :

Considering E; source

R

Step 1.
R,&r are in series and parallel with R; and again series with Ry



(Ratr2) || Rs
_ (Ry+ )Ry m
R,+r,+R,

="

(say)

'Rt

| = I, xR,

? R,+1,+R,

1, = IL(R, +1,)
R,+1,+R,

Step—-2

Considering E2 source,R,&r, are series and R; parallel and R, in series

(Ry+r1) || Rs
_ (Ri+1)R; n
R+ +R,
| =2
2 Rt
14 = Ly (R + 1)
R+r+R

(say)

FrT
1 1 3
I/=_1,xR
R¥TTR

1 1 3

Step —3
Current in R; branch = 1-1/

Current in R, branch = 11/
. 2

Current in Rz branch = 1-1 ?
3

3

The direction of the branch current will be in the direction of the greater value
current.

Thevenin’s Theorem :

The current flowing through the load resistance R; connected across any two

terminals A and B of a linear active bilateral network is given by
Viy \4

| = — oc
L= R+R R+R
th L i L

Where Vi = V. is the open. circuit voltage across A and B terminal when R, is
removed.

Ri =Ry, is the internal resistances of the network as viewed back into the open
circuit network from terminals A & B with all sources replaced by their internal
resistances if any.




Explanation :

Step — 1 for finding V¢
Remove R temporarily to find V..

R;
—AWW f
E-— [
g - R: lqc
1= F
R+ R,+r
V.= IR,

Step — 2 finding Ry,
Remove all the sources leaving their internal resistances if any and viewed from

open circuit side to find out R; or Ry,.

R,

s .

Ri=(Ri+ 1N [IR,
R = (R + NR,
R,+r+R,

Step—3

Connect internal resistances and Thevenin’s voltage in series with load
resistance R,.



Where Ry,=thevenin resistance
Vn=thevenin voltage
l.n=thevenin current

Ri=R;+1) IR,
_ Vth _ Voc
" RytR.  R+R,
Example 01- Applying thevenin theorem find the following from given
figure
(i)  the Current in the load resistance R, of 15 A
3Q A
7 20
24V T
r=1Q
B

Solution : (i) Finding Voc

— Remove 15A resistance and find the Voltage across A and B
30

—W—————

24v L
=107

2120

V. IS the voltage across 12 A resister
= 24x12_ gy
12 +3+1

(i)  Finding Ry,
Ry, is calculated from the terminal A & B into the network.

The 1 A resisterand 3 A in are seriesand then
parallel 30
Ri = 3+1// 12 L it
2120 2120
4 x12
_aXe _a

16




18
(ili) lp==—r%C = =1A.
R.+R 15+3

Example 02: Determine the current in 1Q resistor across AB of the network
shown in fig(a) using thevenin theorem.
Solution:The circuirt can be redrawn as in fig (b).

S =
: _ fig (a),(b),(c),(d) respectively

Step-1 remove the 1Q resistor and keeping open circuit .The current source IS
converted to the equivalent voltage source as shown in fig (c)
Step-02 for finding the Vy, we'll apply KVL law in fig (c)
then 3-(3+2)x-1=0
x=0.4A
Vin=Vag =3-3*0.4=1.8V
Step03-for finding the Ry,,all sources are set be zero
Rin=2//3=(2*3)/(2+3)=1.2Q
Step04- Then current 14,=1.8/(12.1+1)=0.82A



Example03: The four arms of a wheatstone bridge have the following
resistances .

AB=100Q,BC=10Q,CD=4Q,DA=50Q.AA galvanometer of 20Q
resistance is connected across BD. Use thevenin theorem to compute the current
through the galvanometer when the potential differencelOV is maintained
across AC.

Solution:
a
e "2y o
T
.
' S‘EV;I,AMJL
&
| D

step 01- Galvanometer is removed.
step02-finding the Vy, between B&D.ABC is a potential divider on which a
voltage drop of 10vtakes place.
Potential of B w.r.t C=10*10/110=0.909V
Potential of D w.r.t C=10*4/54=.741V
then,
p.d between B&D is V4#,=0.909-.741=0.168V
Step03-finding Ry,
remove all sources to zero keeping their internal resistances.



Ri =Rgp=10//100+50//4=12.79Q
Step04;
lastly l4,.=V/Ryn+R=0.168/(12.79+20)=5mA

Norton's Theorem
Statement : In any two terminal active network containing voltage sources and
resistances when viewed from its output terminals in equivalent to a constant
current source and a parallel resistance. The constant current source is equal to
the current which would flow in a short circuit placed across the terminals and
parallel resistance is the resistance of the network when viewed from the open
circuit side after replacing their internal resistances and removing all the
sources.
OR
In any two terminal active network the current flowing through the load
resistance R, is given by
I, = I xR,
R; x R.
Where R; is the internal resistance of the network as viewed from the open ckt
side A & B with all sources being replaced by leaving their internal resistances
if any.
I, is the short ckt current between the two terminals of the load resistance
when it is shorted

Explanation :
ﬂkﬂ” " A

e -

B

Step—1
A &B are shorted by a thick copper wire to find out I
l,=E/(R,+7)



Step—2
Remove all the source leaving its internal resistance if any and viewed from

open circuit side A and B into the network to find R; .
A

*B

Ri=R,+ 1R,
R=R,+NR,/(R,+r+R,)

e (D) gRi gm

Step—3

Connect s, & R; in parallel with R,

I . xR,
| ==

R, +R,
Example 01:Using norton's theorem find the current that would flow through
the resistor R, whenit takes the values of 12Q,24Q&36Q respectively in the fig
shown below.
Solution:



| | \ =

N

Step 01-remove the load resistance by making short circuit. now terminal AB
short circuited.
Step 02-Finding the short circuit current I
First the current due to E; is =120/40=3A,and due to E, is 180/60=3A.
then 1,=3+3=6A
Step 03-finding resistance Ry
It is calculated by by open circuit the load resistance and viewed from open
circuit and into the network and all sources are taken zero.
Rn=40//60=(40*60)/(40+60)=24Q
1) when R =12Q, 1, =6*24/(24+36)=4A
||) when RL:24Q,IL:6/2:3A
iii) when R =36Q,1, =6*24/(24+36)=2.4A

Maximum PowerTransfer Theorem

Statement : A resistive load will abstract maximum power from a network
when the load resistance is equal to the resistance of the network as viewed
from the output terminals(Open circuit) with all sources removed leaving their
internal resistances if any

Proof : x
|, = Vth II_
" R+R, 2
Power delivered to the load
resistance is given by Ri
PL: I 2|_R L .
v 0 'th
=00"OR, B
OR+R.O



V ?R

_ L
(R+R)?
Power delivered to the load resistance R, will be maximum
dP, _
dR,
d « VIR <«
= d-R—o(ﬁ#R%e 0
V2 (R+R) —v R><2(R+R)

= th i 0
(R+R)4
:>v (R+R)— 2R><2(R+R) 0

L
:>V2(R+R) 2V2R(R+R) 0
th i L
=V?R+R)’= ZVZR(R+R)
th i L
=R, +R, =2R,
=R, =2R, -R,
:RizRL
Y, Vi o/
(P ) max =r——R,
<R+R)%

TV 20
_D th jR
4R

MILLIMAN’S THEOREM :

According to Millimans Theorem number of sources can be converted
into a single source with a internal resistance connected in series to it,if the
sources are in parallel connection.

According to the Milliman’s theorem the equivalent voltage source

Exl+Ex1LEx




EGl+EGz+EG3+..
G,+G,+G;+

E,_E E,
_ Rl Rz Rs
- G+ G,+ G+ ...
I PR P P
- G,+G,+ G+ ...
Example — Calculate the current across 5 resistor by using Milliman’s Thm.
Only

A
20 SR R
R EEen @@ TR
Ri- 9
E, —— 6V Ex o 12y
i B
Solution :- Given ,
R1=2Q, R2:6Q ) R3:4Q, RLZSQ
E1: oV, E2 =12v
the resistance R, is not calculated because there is no voltage source
E, E, E;
“ROR
= E— ! 2 3
Vol 1 T 1
4+ —
R1 RZ RS
§+0+172
_ 4
1,11
2 6 4
3+0+3 _6 ,
“6+2+3 1 oW
12
R 1 P12 000 1090 3 T
1,1t un ‘ e R
Re R, Ry 12 ‘ 5Q
Voc 6.54 . "
" 1.09+5 1.09+5 P —
COMPENSATION THEOREM :
Statement :

It’s states that in a circuit any resistance ‘R” in a branch of network in
which a current ‘I’ is flowing can be replaced. For the purposes of calculations
by a voltage source = - IR

OR



If the resistance of any branch of network is changed from R to R +4R
where the current flowing originaly is i. The change current at any other place
in the network may be calculated by assuming that one e.m.f — | ® R has been
injected into the modified branch. While all other sources have their e.m.f.
suppressed and ‘R’ represented by their internal resistances only.

1

_>_"Wr

Ri1=5 ir2.5A i3 -2.5A
= 75v R, 2200 R; =200
Exp —(01)

Calculate the values of new currents in the network illustrated , when the
resistor Rj is increased by 30%.

Solution :- In the given circuit , the values of various branch currents are

l, = 75/(5 +10) = 5A

11
=1, =222 _2 5Amp. sl b
- ey T 1'1:‘
Now the value of Rs, when it increase 30% g sk
R,= 20 + (20 x 0.3) = 26 R T 26Q
IR = 26 — 20 = 67 1 g
V=-I®R T
=-25x%x6 1 1 .
CAAAA 13 =2Amp
=_15V VWY T
l: 2.6A 1
5 [ 20n = 5x 2o=_100 _un so Ta."gRs
5+20 25 200 T 2692
)= L _15_ 0.5Amp TV
4426 30 i\
. 05x5 —L15v
I2 = =0.1Amp T
| ':O'§§20:0.4Amp
25

l,"=5—-0.4 = 4.6Amp

l,"=0.1+ 2.5 = 2.6Amp
I,"=25-05=2Amp
RECIPROCITY THEOREM :
Statement :




It states that in any bilateral network, if a source of e.m.f ‘E’ in any
branch produces a current ‘I’ any other branch. Then the same e.m.f ‘E’ acting
in the second branch would produce the same current ‘I’ in the 1% branch.

Step — 1 First ammeter B reads the current in this branch due to the 36v source,
the current is given by

4 12=21%_3,
16 _
R=2+4+3=0x e e
I = ﬁz 4 Amp
9 : 1Q
——"36\' -
4x12 48 =
= =—=3Am 2 2
° 12+3+1 16 P 12Q
Ig =current through 1 A resister 4Q B
Step — (11) Then interchanging the sources
and measu(rsinjgztheéurrent
6A12A= =" =4n
6+12 18
R=4+3+1=8h
| = 3_6: 4.5Amp, | = 4512 _ 3Amp Transfer resistance = V_= 36_212/\.
8 A B+2 I 3

COUPLED CIRCUITS

It is defined as the interconnected loops of an electric network through the
magnetic circuit.
There are two types of induced emf.

(1) Statically Induced emf.

(2) Dynamically Induced emf.

Faraday’s Laws of Electro-Magnetic :

Introduction — First Law :—>

Whenever the magnetic flux linked with a circuit changes, an emf is induced in
it.



OR
Whenever a conductor cuts magnetic flux an emf is induced in it.
Second Law :(—»
It states that the magnitude of induced emf is equal to the rate of change of flux
linkages.
OR
The emf induced is directly proportional to the rate of change of flux and
number of turns
Mathematically :

e oC dg
dt
e c N
Or e =-N de
dt
Where e = induced emf
N = No. of turns
¢ = flux

‘- ve’ sign is due to Lenz’s Law
Inductance :—>

It is defined as the property of the substance which opposes any change in

Current & flux.
Unit :— Henry
Fleming’s Right Hand Rule:—

It states that “hold your right hand with fore-finger, middle finger and
thumb at right angles to each other. If the fore-finger represents the direction of
field, thumb represents the direction of motion of the conductor, then the middle
finger represents the direction of induced emf.”

Lenz’s Law : >

It states that electromagnetically induced current always flows in such a
direction that the action of magnetic field set up by it tends to oppose the vary
cause which produces it.

OR

It states that the direction of the induced current (emf) is such that it
opposes the change of magnetic flux.
(2) Dynamically Induced emf :—



sl Y

g
’

U

In this case the field is stationary and the conductors are rotating in an
uniform magnetic field at flux density ‘B” Wb/mt® and the conductor is lying
perpendicular to the magnetic field. Let ‘I’ is the length of the conductor and it
moves a distance of ‘dx’ nt in time ‘dt’ second.

The area swept by the conductor = 1. dx
Hence the flux cut = ldx. B

Change in flux in time ‘dt’ second = %
E =Blv
Where V =%
dt
If the conductor is making an angle ‘0’ with the magnetic field, then
e = Blvsing

(1) Statically Induced emf :—

Here the conductors are remain in stationary and flux linked with it
changes by increasing or decreasing.

It is divided into two types .
(i)  Self-induced emf.
(i)  Mutually-induced emf.
(i) Self-induced emf : — It is defined as the emf induced in a coil due to the
chang@i of its own flux linked with the coil.

(00000

v
If current through the coil is changed then the flux linked with its own
turn will also change which will produce an emf is called self-induced emf.

Self-Inductance :—»



It is defined as the property of the coil due to which it opposes any
change (increase or decrease) of current or flux through it.

Co-efficient of Self-Inductance (L) :—
It is defined as the ratio of weber turns per ampere of current in the coil.
OR
It is the ratio of flux linked per ampere of current in the coil
1st Method for ‘L’ :—
=

Where L = Co-efficient of self-induction
N = Number of turns
¢ = flux
| = Current

2nd Method for L :(—>
We know that
Ng
L =
|
= LI =N¢
= -LI=—Ng
= —LE =-N %

g
=-L__ =-N ¢

8‘ dt

=-L =e
d *
= Ld—I =
dt
—_— eL
di
dt
Where L = Inductance
eL= -N d¢ is known as self-induced emf.

_eL

=L=

dt
dl
When —= lamp/sec.
dt
e=1volt

L =1 Henry



A coil is said to be a self-inductance of 1 Henry if 1 volt is induced in it.
When the current through it changes at the rate of 1 amp/ sec.
3rd Method for L :—»

M M AN?
|
Where A = Area of x-section of the coil

N = Number of turns

L = Length of the coil
(i)  Mutually Induced emf :—

It is defined as the emf induced in one coil due to change in current in
other coil. Consider two coils ‘A’ and ‘B’ lying close to each other. An emf will
be induced in coil ‘B’ due to change of current in coil ‘A’ by changing the
position of the rheostat.

{E :B
Mutual Inductance :—»

It is defined as the emf induced in coil ‘B’ due to change of current in coil
‘A’ 1s the ratio of flux linkage in coil ‘B’ to 1 amp. Of current in coil ‘A’.
Co-efficient of Mutual Inductance (M)

Coefficient of mutual inductance between the two coils is defined as the
weber-turns in one coil due to one ampere current in the other.
1st Method for ‘M’ :—>

VLA

I,

N, = Number of turns

M = Mutual Inductance

¢, = flux linkage

I, = Current in ampere
2nd Method for M :—»

We know that
VLA

1,
= MI, =N,
= —Ml, =N,

L=



Where e, =N, %is known as mutually induced emf.

ey = —1volt
Then M =1 Henry

A coil is said to be a mutual inductance of 1 Henry when 1 volt is
induced when the current of 1 amp/sec. is changed in its neighbouring coil.
3rd Method for M :—

M = MM ANN,

I

Co-efficient of Coupling :

Consider two magnetically coupled coils having N; and N, turns
respectively. Their individual co-efficient of self-inductances are

M M AN
L1 —_Llor 2
|
M M AN 2
L2 — Llor I2
The flux ¢; produced in cpil ‘A’ due to a current of I; ampere is
Ll MM AN I
— 11 _Lhor 1y 1
YN, | N,
_ M;M, AN, 1,
e
Suppose a fraction of this flux i.e. K;¢; is linked with coil ‘B’
Then M= "1""xN= K1N1N2 """"""""""""" (1)

, % 1/MMA
Similarly the flux ¢, produced in coil ‘B’ due to I, amp. Is

M,M, AN, |

¢2: 1"Vir I 22
Suppose a fraction of this flux i.e. Ky, is linked with coil ‘A’
Then M= "2"2xN= K,NuN, 2

1, L I/MMA
Multiplying equation (1) & (2)



2 KKNZNZ
M =1éTM—1LLM—£2 ANl
0 r
,2OMMAN?2 IMMAN?L
:KDDor 1:‘:0 r 2D

0 = g0 0
., [QKi=K=K]
M2=K2L.L
12
K2 M2,
L.L,
ko M
L,.L,

Where ‘K’ is known as the co-efficient of coupling.
Co-efficient of coupling is defined as the ratio of mutual inductance
between two coils to the square root of their self- inductances.

Inductances In Series (Additive) :—

Fhuxes are in the same durection

Let M = Co-efficient of mutual inductance
L, = Co-efficient of self-inductance of first coil.
L, = Co-efficient of self-inductance of second coil.
EMF induced in first coil due to self-inductance

¢ =-h d(:_l
Mutually induced emf in first coil
_ w4
o, dt
EMF induced in second coil due to self induction
e, =—L,d
L, Zdt
Mutually induced emf in second coil
A
o dt

Total induced emf
ezeL1+eL2 +eM1+eM2

If ‘L’ is the equivalent inductance, then



di
L d di u

-M—-L, -
dt Lat dt at dt
dI dI

_(L-L -2m)
2
d dt ‘?

=L=L+L,+2M

Inductances In Series (Substnactlve) —

f‘mﬁf“mm

(Fluxes are opposﬂe in direction)

Let M = Co-efficient of mutual inductance
L, = Co-efficient of self-inductance of first coil
L, -= Co-efficient of self-inductance of second coil
Emf induced mdlflrst coil due to self induction,
e =-L
L 1&
Mutualely T%Ee& amf in N1l‘|5$t coil

l

" il m
L - - d
Emf induced inoﬁecond coil due to self-induction
=-L
eL2 2 E
Mutually ind@ceﬁl/l%mﬁ inl\ﬁe(gond coil
e =— - =

M Tt dt
Total induced emf
e=e O TEELVIE -
dl dl dl dl dl
Then - L —=-1L + M
en - L dt adl Mg dt
—>-L =-"(L+L 2|v|) —=L=L+L —2M
2
dt dt t ? !

Inductances In Parallel :—>



L

Let two inductances of L, & L, are connected in parallel
Let the co-efficent of mutual inductance between them is M.

l=i+1,

dt dt dt
— di di
€= L1—1+ M=%
dt dt
d|2 d|l

ddt

N =L d'z v

ldt oIIdt 2dt di dt
=(L-M) =L -M)_7?

! dt 2 dt

diy (L= M) Oy oo
dt  (L,—M) dt
didi, di,
dt dt dt
=M di, di,
(L,—M) dt dt

dl OL-M  Cdi,

= dt =L —M +1ldt --------mmmmmmmmm-

1 [

If ‘L’ is the e uivalent inductance

e =L__ _LiMdiZ
di

dt dt dt
L_— L dll M dl

g Tdt o dt o
:dlzlq dll_l_ dlz,m(4)

dt Lo tdt dtﬂ
Substituting the value of

d|=1_YL L,— M+M/dI2

dt L <t L-M })OE
Equating equation (3) & (5)

()



YUL,~M+ ¥gi, = 1L 0L, di,
EDL_MJrYogﬁ LEl L MﬂrMoél
f

<] 0o < 0

1 N
L,— M 1Y L, -M0 /
1 +1=" 4-1@1 %"'Mfo
|_ MiL-m M —LMeLM-MZ/

— 1 - _, 12 1 1
= =

U

o0
L,—M L< L,—M 7
L+L-2M 1YLL-M?/

1 2 - _, 12
= = _

LM L< LM
=L+L-2M= _ILL M2]
2 L

2

L bLbL-M"
L +L,—2M

When mutual field assist.
LL-M?
| =Ll 2
L,+L,+2M
When mutual field opposes.
CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS

—  The Loop equation are from fig(a)
V=L di ygdie
vt dt dt

L,- ) +

LL_'-M) 4,
\ 1'2
*\,l M n
| .

=  The loop equatlon are from fig(b)
d
V,=(L, M)—+M _(| +1y,)



diy
dt
Which, on simplification become
v=L dh, ydi
dt dt
yor, gy dh
dt dt
So called conductively equivalent of the magnetic circuit . Here we may

represent Zp = L;-M .

d .
Vo=(L, M)—=+M a(il+|2)

g = (LZ-M) and Zc=M
In case M is + ve and both the currents then Z, = L1-M , Zg = L,-M and Z¢ =
M, also , if is — ve and currents in the common branch opposite to each other
Zpn=L+*M | Zg=L,+Mand Zc = - M,
Similarly, if M is —ve but the two currents in the common branch are additive,
then also.
Zpn=Li+tM, Zg = L,+M and Zc=-M.

Further Z5 , Zg and Zc may also be assumed to be the T equivalent of the
circuit.
Exp.-01:

Two coupled cols have self inductances L;= 10x10°H and L,= 20x10" *H.
The coefficient of coupling (K) being 0.75 in the air, find voltage in the second
coil and the flux of first coil provided the second coils has 500 turns and the
circuit current is given by i; = 2sin 314.1A.
Solution :

M=K /L,L,

M = 0.7540 x10~° x 20 x10°

= M=10.6x10"°H

The voltage induced in second coil is
v =M di =M di
2 dt dt

=10.6 x1073 i(Z sin 314t)
dt

—10.6 x107° x 2 x 314 cos 314t.
The magnetic CKt being linear,
M = Naf2 _ 500 x (K¢)
Iy Iy

_ M . 10.6x107°

¢ xi, =
500 xK 500 x 0.75
=5.66 x107 sin 314t

x2 sin 314t




¢=5.66 x10™ sins 314t
Exp. 02

Find the total inductance of the three series connected coupled
coils.Where the self and mutual inductances are
L, =1H,L,=2H, Ly;=5H
M12= 05H, M23 = lH, M13 =1H
Solution:

La  =Li+Mp+ My

=1+205+1
=2.5H

Le =Ly+Myu+Myp

=2+1+05
= 3.5H

Lc =Ls+My+ My

=5+1+1
=7H

Total inductances are

I—ea = I—A + I—B + I—c

=25+35+7
= 13H (Ans)
Example 03:

Two identical 750 turn coils A and B lie in parallel planes. A current
changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate
the mutual inductance of the arrangement .If the self inductance of each coil is
15mH, calculate the flux produced in coil A per ampere and the percentage of
this flux which links the turns of B.

Solution: We know that

_ Mal,
=T
11.25
M =Fn = —— =7.5mH
df
/ ]f;df 1500
now,
Ly=2f o & Bl 15200 2 94 10-5WH/A
&y i ?"l'l. =i
M 75«10 0.5 = 50%

- JTL 15+10°



A.C FUNDAMENTAL

Direct Current

Alternating Current

N

1

t—>

il

(

{ —>

1)

()
3)

(4)

D.C. always flow in one
direction and whose magnitude
remains constant.

High cost of production.

It is not possible by D.C.
Because D.C. is dangerous to the
transformer.

Its transmission cost is too high.

1)

(2)
3)

(4)

A.C. is one which reverse
periodically in

direction and whose magnitude
undergoes a definite cycle changes
in definite intervals of time.

Low cost of production

By using transformer A.C. voltage
can be decreased or increased.

A.C. can be transmitted to a long
distance economically.

Definition of A.C. terms :-
Cycle : It is one complete set of +ve and —ve values of alternating quality

spread over 360° or 2] ] radan.

Time Period : It is defined as the time required to complete one cycle.
Frequency : It is defined as the reciprocal of time period. i.e. f=1/T

Or

It is defined as the number of cycles completed per second.
Amplitude : It is defined as the maximum value of either +ve half cycle or —ve

half cycle.

Phase : It is defined as the angular displacement between two haves is zero.




OR

Two alternating quantity are in v

phase when each pass through their zero I

value at the same instant and also attain v T
their maximum value at the same instant in

a given cycle. it t—y
V =V, sin wt
I =1, sin wt

Phase Difference :- It is defined as the angular displacement between two
alternating quantities.
OR
If the angular displacement between two waves are not zero, then that is
known as phase difference. i.e. at a particular time they attain unequal distance.

v

5 o— NS

OR

Two quantities are out of phase if they reach their maximum value or
minimum value at different times but always have an equal phase angle between
them.

Here V =V, sin wt

I = I sin (wt-¢)

In this case current lags voltage by an angle ‘¢’.

Phasor Diagram :
Generation of Alternating emf :-

Consider a rectangular coil of ‘N” turns, area of cross-section is ‘A’ nt’ is
placed in
x-axis in an uniform magnetic field of maximum flux density Bm web/nt>. The
coil is rotating in the magnetic field with a velocity of w radian / second. At
time t = 0, the coil is in x-axis. After interval of time ‘dt’ second the coil make
rotating in anti-clockwise direction and makes an angle ‘0’ with x-direction.
The perpendicular component of the magnetic field is ¢ = ¢n cos wt

According to Faraday’s Laws of electro-magnetic Induction



e=-N d¢
dt
=-N__(¢ cos wt)
de "
=—N (—¢,w cos wt)
= Nwd, sin wt
= 27N ¢, sin wt(Qw = 2f)
= 27fNB,, Asin wt
e=E,sin wt
Where E, = 22fNB, A
f —frequency in Hz
Bn— Maximum flux density in Wh/mt
Now when 0 or wt = 90°
e=E,
i.e. En=2nfNB,A

2

Root Mean Square (R.M.S) Value :—

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which
when flowing through a given circuit for a given time produces same heat as
produced by the alternating current when flowing through the same circuit for
the same time.

Sinuscdial alternating current is

i=lysinwt=1,sin0

The mean of squares of the instantaneous values of current over one

complete cycle, 2 4

=I0 (27— 0)
The square root of this value is
T 2.de
2n

0

(1, sin 0)

o'—.



_ /|_mzyﬁ—sin29/2(g
Nz 2 fo

I 22w H
- \/ [ron- s'”:ﬂw

Average Value :—>

The average value of an alternating current is expressed by that steady
current (d.c.) which transfers across any circuit the same charge as it transferred
by that alternating current during the sae time.

The equation of the ?Ig%rnating currentisi=Iysin 0

Iav = _[ (7[_0)

0
ZIHMC’@ —th Igin 0. do
0 71-0

_'n [~cosd]" = n [ cos 7 - (cos0°]
0
T

o[1-0¢1)]

21

T
| - 2 x Maximum Current

av

av

T
Hence, 1,,=0.6371,

The average value over a complete cycle is zero



Amplitude factor/ Peak factor/ Crest factor :- Itis defined as the ratio of
maximum value to r.m.s value.
Ka — MaximumValue _|

J2=1414
R.M.S.Value

m_
1o

V2

Form factor : - It is defined as the ratio of r.m.s value to average value.

K = r.m.s.Value _0.7071, _ J2 = 1.414
Average.Value 0.6371,
Kf=1.11

Phasor or Vector Representation of Alternating Quantity :—
' A Ay

ary
!j

An alternating current or voltage, (quantity) in a vector quantity which
has magnitude as well as direction. Let the alternating value of current be
represented by the equation e = E,, Sin wt. The projection of E,, on Y-axis at
any instant gives the instantaneous value of alternating current. Since the
instantaneous values are continuously changing, so they are represented by a
rotating vector or phasor. A phasor is a vector rotating at a constant angular
velocity

Att, e, =E,sinwt,

Att,, e,= E,sinwt,

Addition of two alternating Current :—

Let e,=E, sinwt
e,=E,sinwt - ¢) E
The sum of two sine waves of the same
frequency is another sine wave of same o
frequency but of a different maximum value and ' = >

Phase.

e :\/ef+ e 2ee £osg
Phasor Algebra :—>
A vector quantity can be expressed in terms of
(i)  Rectangular or Cartesian form
(i) Trigonometric form
(iii)  Exponential form



(iv) Polar form

E sin g

E=a+jb
=E(cos @+ jsin @)

Where a = E cos 8 is the active part Ecos g
b = E sin 0 is the reactive part

0= tan‘lDL_ab:D = Phase angle

U o
j =+/-1(90°)
j% =—1(180°)
i =-j(70°%)
j*=1 (360

fﬁ. n

(i)  Rectangular for :-
E=a+jb
tand=b/a

(i)  Trigonometric form :-
E =E(cos@+jsin )

(ili) Exponential form :-
E=Ee*’

(iv) Polar form :-
E=E/+te (E=+a’+b?)

Addition or Subtration :-
E.=a,+ jb,
E,=a,+jb,

E,xE,=(a,+a,) £ (b,+b,

_q0 b1+b2
g=tan a+a

b1 20
Multiplication : -
Eix E,=(a,+]a;) = (a,+jb,)
= (a3, — bib,) +j(a;a,+ byb,)



4= tan 15 ab,+ bya, U

[J12 12[]
E,=E,Z6,
E,=E,Z6,
E,xE,=EE, Zé+ ¢,
Division :-
E,=E,Z6,
E,=E,Z6,
E_Es/0 ="20-0
1
E, E,/6 E

1 2

A.C. through Pure Resistance :—>

Let the resistance of R ohm is connected across to A.C supply of applied
voltage

-—9 I
p
AWV
Ai
X7
) e = Emsin Wt or v = Vpmsin wt
e=E, sinwt (1)
Let ‘I’ is the instantaneous current .
Heree = iR
=i=elR
I = Epsinwt / R---------mmomm e (2)

By comparing equation (1) and equation (2) we get alternating voltage
and current in a pure resistive circuit are in phase
Instantaneous power is given by

P=ei
=E,sinwt. |, sin wt e = Emsin Wt
= Eml I, SiN° Wt [ = Imsin wt
="M 2sin® wt T

2I
= 1 — cos 2wt)

l |

P=_T T — = " cos 2wt

2 2 fTC
V|

N

) (1
le. P=-2 0 0S 2wt
J2 - TE



Where Vo In_is called constant part of power.

722
(VA ) )

—m m eos 2wt IS called fluctuating part of power.
7 g partofp

The fluctuating part %.cos 2wt of frequency double that of voltage and current

waves.
i (VA
Hence power for the whole cycleis P=-"m. m_=Vv |
p y \/E‘ \/5 rms* " rms

= P = VI watts

A.C through Pure Inductance :—
Let inductance of ‘L’ henry is connected across the A.C. supply

iﬂﬁtﬁ
B LLLL0)

41

()
N

v = Vmsin wt

v=V,sinwt Q)
According to Faraday’s laws of electromagnetic inductance the emf induced
across the inductance

V = Lﬂ
di dt v = Vmsin wt
| .
__Is the rate of change of current i I (w71
dt
V sinwt = Lﬂ

m dt
di V_sinwt oL
i an S

=di= V—Ii“sin wt.dt

Integrating both sides,
[di= j\ﬁsin wt.dt
L
. Vm[] coswt(]
= g 0
Lo w




i:_Vmcoswt

wL
A
I =——"cos wt
i:—“Wmsiant—ED
" 0 ﬁ]
VWL L gl
=— "sin- wt—= " [QX =2afL=wL]
— 0 L
Xi l 21
Max um value o ||s
Y hen hi ZUjs unity.
m — sinCJwt 0
Xy O 20

Hence the equation of current becomes i =1, sin(wt — 7/ 2)
So we find that if applied voltage is rep[resented by ~ v=V,sinwt, then current
flowing in a purely inductive circuit is given by

i=1,sin(wt— x/2)
Here current lags voltage by an angle =/2 Radian. N

Power factor = oS ¢
= cos 90°
=0 E)
Power Consumed = VI cos ¢ v
=VIx0
=0
Hence, the power consumed by a purely Inductive circuit is zero.
A.C. Through Pure Capacitance : —»

C i =1 sn{wt— 7/2)
, .' v = Vmsin wt
11
Y
) NS
\=/ —riy— T2
= Vmsin wt

Let a capacitance of ‘C” farad is connected across the A.C. supply of applied

voltage
v=V,sinwt @)

Let ‘g’ =change on plates when p.d. between two plates of capacitor is ‘v’
q=cv

g = cVp sin wt



d d
_q= c_(V sinwt)

dt dt "

I = ¢V, sin wt

= wcV,, cos wt

= = COos wt
1/ wce

_ Vi =coswt [ox _1_1 Is known as capacitive reactance
Xc ¢ wc 2afc

in ohm.]
=1, cos wt

=1,sin(wt+ z/ 2)
Here current leads the supply voltage by an angle /2 radian.

Power factor = oS ¢
=cos90° =0

Power Consumed = VI cos¢
=VIx0 =0

The power consumed by a pure capacitive circuit is zero.
A.C. Through R-L Series Circuit : >

L
8 (00000 ___
——AW
. VR ¥ VL —>
(=)
Ny

e=FE_sn wi

The resistance of R-ohm and inductance of L-henry are connected in series

across the A.C. supply of applied voltage
e=E, sinwt ----====-mm-===mmmmmmmmmooe (1)
V V + V L Y

$=tan
TR—T
R{]
Wq& tant XLl
L

— 1 RZ+X2/ ¢5=tan-mx§HRWH
: R
X 0 0
—1Z/g=tant L Vi=IX:
0—-120
DR
v
0

Vr=1R



Where z=R*+ X}
=R +jX_ Is known as impedance of R-L series Circuit.
V. _E,sinwt
744 2/¢
I =1, sin(wt— @)
Here current lags the supply voltage by an angle ¢.
Power Factor :— It is the cosine of the angle between the voltage and current.
OR
It is the ratio of active power to apparent power.
OR
It is the ratio of resistance to inpedence .
Power :—
=V.i
=V, sin wt.l , sin(wt — @)
=V, I, sinwt.sin(wt — ¢)

= I 2sin wt.sin(wt — ¢)

mm

N PN e

Vi [cosg — cos 2(wt — ¢@)]

mm

Obviously the power consists of two parts.

(i) aconstantpart VI cosg which contributes to real power.
2 mm

. . 1 : .
(i)  apulsating component “V 1 cos(2wt - ¢) which has a frequency twice
2 mm
that of the voltage and current. It does not contribute to actual power since its
average value over a complete cycle is zero.
Hence average power consumed

VI cos¢

N

:ﬁ I_mcos¢
V2 2

= VI cos¢
Where V & | represents the r.m.s value.
A.C. Through R-C Series Circuit : —»
The resistance of ‘R’-ohm and capacitance of ‘C’ farad is connected across the
A.C. supply of applied voltage



e = E,,sin wt

- 0

Ve

¥

+ Vr = 3

(=)

V:VR+(_jVC)
= |R+(—j|XC)
=1 (R—jxc)

V=IZ

N

Where Z=R-jX.= yR*+ X2 is known as impedance of R-C series Circuit.

Z=R-jX,
— §25X02
Z—g=tant "€
—10
TR
V=I1Z24£-¢
Vv
Y
_ E,sinwt
2/-¢
E. .
=_"sin(wt + ¢)
Z/
= I =1,sin(wt + @)

=1

Here current leads the supply voltage by an angle ‘¢’.

A.C. Through R-L-C Series Circuit : >

Let a resistance of ‘R’-ohm inductance of ‘L’ henry and a capacitance of ‘C’
farad are connected across the A.C. supply in series of applied voltage




- - -

e=Vs+V + V.
=Vg + V. = V¢
=Ve + j(VL = V¢)
=l + jIX | =1X¢)

=R+ j(X | =X¢)]
= = £+ g=tant KT Xeh
\/R + (X=X ) 0 0
0 R

=1Z/+ ¢
Where Z=1,/R®+(X-X.)* isknown as the impedance of R-L-C Series

Circuit.
If X, > X, then the angle is +ve.
If X <X, then the angle is -ve.

Impedance is defined as the phasor sum of resistance and net reactance

e=12£+¢
= yzseg =ESMWE L Sinwt £ g)
Z2/+¢ 7.+ ¢

(1) If x >Xc,then P.f will be lagging.
(2) If X <X, then, P.f will be leading.
(3) If X =X, then, the circuit will be resistive one. The p.f. becomes unity
and the resonance occurs.

REASONANCE
_It is defined as the resonance in electrical circuit having passive or active
elements represents a particular state when the current and the voltage in the
circuit is maximum and minimum with respect to the magnitude of excitation at
a particular frequency and the impedances being either minimum or maximum
at unity power factor
Resonance are classified into two types.
(1)  Series Resonance
(2) Parallel Resonance
(1) Series Resonance :- Let a resistance of ‘R’ ohm, inductance of ‘L’
henry and capacitance of ‘C’ farad are connected in series across A.C. supply



e

p—

e=E_sn wt
e = E,,sin wt

The impedance of the circuit

Z=R+j( X =Xc)]
Z=JRP+(X-X.)
The condition of series resonance:
The resonance will occur when the reactive part of the line current is zero
The p.f. becomes unity.
The net reactance will be zero.
The current becomes maximum.
At resonance net reactance is zero
X, —Xc=0
=X =X

1
27\ LC

Resonant frequency (f,) =

=f=

1 1
27" \JLC
Impedance at Resonance

Zo =R
Current at Resonance

Power factor at resonance

pf.=R_R_y [z =R]
Z, R °

0



Resonance Curve :-

Unity p.f.(up.f) ©b

Lagging
P.f

fo fo
At low frequency the X is greater and the circuit behaves leading and
at high frequency the X_ becomes high and the circuit behaves
lagging circuit.
If the resistance will be low the curve will be stiff (peak).
o If the resistance will go oh increasing the current goes on decreasing and

the curve become flat.
Band Width :(—»

At point ‘A’ the power loss is I¢R.
The frequency is f, which is at resonaancha.

At point ‘B’ the power loss is R
The power loss is 50% of the power loss at point

A

‘A”/ o

Hence the frequencies
corresponding to point ‘B’ is known as half power frequencies f; & fs.
f; = Lower half power frequency
f,=f,— R
4nl
F, = Upper half power frequency

f,= f0+i

Band width (B.W.) is defined as the difference between upper half power

frequency ad lower half power frequency.

BW.= f,—f=
27



Selectivity : —>
Selectivity is defined as the ratio of Band width to resonant frequency

Selectivity = BW. _R_ Selectivity = R
f, 27 2, L

Quality Factor (Q-factor) :—

It is defined as the ratio of 27 x Maximum energy stored to energy dissipated
per cycle

0

27 % 1 LI?
" 0

factor =-—2
Q | °RT
Alarlf
T IPRT
_al.21?

| °RT
_aL.21?

| °RT

27

T RT

1.
Quality factor = = 27, L. ¥Q= —= fo/
R <1 F

Quality factor is defined as the reciprocal of power factor.
Q factor == L
oS ¢

It is the reciprocal of selectivity.
Q-factor Or Magnification factor _ Voltage across Inductor.
Voltage across resistor

W, L

- factor = =
Q R

Q-factor factor _ Voltage across Capacotor.
Voltage across resistor

_IO Xc
I,R




R
_ 11
274,C 24,CR
Q-factor= _*
W,CR
(QZZVVOL>< 1
R WCR
1
2 _
=rec
1
Q= R2
RVC

Graphical Method :—

(1) Resistance is independent of frequency It represents a straight line.
(2) Inductive Reactance X, = 2nfL

It is directly proportional to frequency. As the frequency increases , X,
Increases
1

3) Capacitive Reactance Xc = =——
(3) Cap c S C

f  —
It is inversely proportional to frequency. As the frequency increases, Xc
decreases.

When frequency increases, X, increases and Xc decreases from the
higher value.




fo

NS

-Xc
At a certain frequency. X_ = X¢
That particular frequency is known as Resonant frequency.
Variation of circuit parameter in series resonance:

(2) Parallel Resonance :- Resonance will occur when the reactive part of the
line current is zero.

- 11

| i
P
LS

At resonance,
lc — I.sin (1) =0
l.=1.sin ¢

Vv
- _ =

Vv :
sin ¢
Xe  JRP+X?
_V_ V.o ox X,
Xe  JRZ+X?2 [RE4+X? TLcos 4
1

= = X L I]_Silld) ¢
Xc R? +X|_2 I

=R*+X%=X X

L C

1
= Z%==X X, =W,Lx

0



z2-b
C
L
RZ+X ==
= L C
L
~ R+ (AL =—
T
SR Ar?fLi=_
C
:>47r2}§2|—2:——R2
= %= 1 —DL—RZ‘
0 iy f02|_2 EE @
1 |1 R
=f= — =
2zVLC L

f,= Resonant frequency in parallel circuit.
Current at Resonance = I cos¢

v R
JRZ+X 2 JRP 4 X7
VR
R+ X2
VR
- z?
VRV
" L/C L/RC
Vv

Dynamic Impedence
L /RC — Dynamic Impedance of the circuit.
or, dynamic impedances is defined as the impedance at resonance frequency in
parallel circuit.
Parallel Circuit :—>

The parallel resonance condition:



When the reactive part of the line current is zero.
The net reactance is zero.

The line current will be minimum.

The power factor will be unity

Impedance  z,=R,+jX,

Z,=R,— jXc
Admittance Y,= ="
Z, RgjX |
_ (Ry+jX\)
(Ry+JX )R =X 1)
:Rl+jXL
R12+XL2
R, . X,
1= 52 7)) 2 >
R+ X R+ X,
Admittance v,= — =
Z, Ry+jXc
_ (R +jX¢)
(R2;— jXc)(Ry+ Xe)
:R2+jX|_
RS+ XS
R, 0] Xe
277572 2 > 2
R™+X R,” + X ¢
i ' 101 1
Total Admittance Admittance HZH 2
=0 1 2
=>Y=Y+Y,
R, XL 4 R2 . X
=Y="p 71— 2 R22+XC2+ =7 w2
Fi +XL Rl +XL R2 +XC
R R2 0OX, X, O

:Y:R1+X L +W_j%z+XLZ: R2+X .

cll

At Resonance,
X, . Xe =0
RZ+X % RZ+X/S2
X X
TRZiXZ RZ+ X2
1 L 2 C
=x (R4 %7 )=X.(R2+x2)
= 24L0R %+ 1 0= 1 (R2+47[2f2|_2)
- ° agifctl 2aC ¢
R: 27l
=14
24C C

, 0L
= 27fLR," 2 £C2



2
LR

_Tu_ 276LR
2A4CZ 2a4C _° -
N 1 DL_RZD DL_RZD
—0O— .0 0~ 0
24CiC L oc ?7up

2
= 472f2Lc=C L - CR,
" -R?% L-CR?
C ,
,., 1UL-CR’C
=4z fc=__ U
LCHL-CR,
, 1 UL-CRZC
= f = 0
2
471LCL-CR, [
—~f= 1 [[L-CR""
27yJLC \ L -CR,}

il _CR%? T
. 1\/951'- CR

22

IfR?=0
_ 2
Then f=2_|" ZCR
2z\ L*C
1 [L-CR{

24 C
1L,
_ZM_\/; R

1 [ L R?

“22\V1%C L2

1 [L R?
f:_/___l
22\ LC — L2

If R, and R, = 0, then
=t L

T TR

Ll
22VLC  27yLC

“’C-LCR,%’
f is called Resonant frequency.

Comparison of Series and Parallel Resonant Circuit :—

Item

Series ckt (R-L-C)

Parallel ckt (R- L and
C)




% Impedance at Resonance

Minimum

Maximum

% Current at Resonance

\Y

Maximum= g

Y
Minimum= (_; cR)

< Effective Impedance R C—LR
< P.f. at Resonance Unity Unity
1
¢ Resonant Frequency 1 /1 R
2/ LC 27[\/ LC L2
% It Magpnifies Voltage Current
s Magnification factor % %

Parallel circuit ;>

I R mmu

IS A CI '
it i
L

v.f

Z, =R, + X = RZ+X. 2 2¢

Z,=R, jXc=+R22+X2Z-¢
e

"= = 4_¢1=|14_¢1

V72792
1 1 1

%
Where — =VY
z,

Here Y, — Admittance of the circuit
Admittance is defined as the reciprocal of impedence.




\'

l,=VY,= ———
' ' R+ jX |

\Y

2

Y =Y, =10l

T Z,/-¢2, Z,

| =12+ 1,24 21,1, cos(¢ + )

I=1LZ-¢+1,Lp

A IS $,

T, 8ind, 1;gm¢1

-

The resultant current “I” is the vector sum of the branch currents I; & I,
can be found by using parallelogram low of vectors or resolving I, into their X



—and Y- components ( or active and reactive components respectively) and then
by combining these components.

Sum of active components of I, and I, = I, cos ¢,+ I, cos ¢
Sum of the reactive components of I, and I, = I, sin ¢, - |1 Sin ¢,

EXP-01:
A 60Hz voltage of 230 V effective value is impressed on an inductance of
0.265 H
(i)  Write the time equation for the voltage and the resulting current. Let the
zero axis of the voltage wave be att = 0.
(i)  Show the voltage and current on a phasor diagram.
(iii)  Find the maximum energy stored in the inductance.
Solution :-
V. =/2V= /2 x 230V
f=60Hz, W=2af =27x60=2377rad/s.
X, = Wl =377 x 0.265=100A
(i)  The time equation for voltage is V (t)= 230\/-23in 377t
| =V _ /% =230/2/100.=2.3\3
¢=90° (lag ).
QCurrente quation is.
i(t) = 2.3 Asin(377t - 7/ 2)
or =2.3y2cos377t

(i) Iti .

(iii) or E = Ll%m="x0.265x (2.3 /2 =1.4]
max 2 2

Example -02 :

The potential difference measured across a coil is 4.5 v, when it carries a
direct current of 9 A. The same coil when carries an alternating current of 9A at
25 Hz, the potential difference is 24 v. Find the power and the power factor
when it is supplied by 50 v, 50 Hz supply.

Solution :
Let R be the d.c. resistance and L be inductance of the coil.
R=V/1=45/9=05x



With a.c. current of 25Hz, z = V/1.

24 _ 2661
9
x=+Z%-R? =+2.66%—-0.5
= 2.621
X, =27 25xL

At 50Hz
X, = 2.62x 2 = 5.241

Z =~0.5% +5.24°
=5.06 A
| =50/5.26 =9.5 A
P =1°/R = 9.5% x 0.5 = 45 watt.
Example — 03 :
A 50- uf capacitor is connected across a 230-v, 50 — Hz supply. Calculate
(@)  The reactance offered by the capacitor.
(b)  The maximum current and
(¢)  The r.m.s value of the current drawn by the capacitor.
Solution :
1 _ 1 _ 1
@ x=—-=—= = 63.61
wc 2mnfe 2mx50x50x10
(c)  Since 230 v represents the r.m.s value
Ql ,,s=230/x =230/63.6=3.62A

) 1 =1, .x J2=362xv2=511A

Example — 04 :
In a particular R — L series circuit a voltage of 10v at 50 Hz produces a

current of 700 mA. What are the values of R and L in the circuit ?
Solution :
(i)  z=R2+(@rx50L)
=+R? +98696L2
V=1z
10 = 700x107° |/(R? +98696L2)
J(R? +98696L2) = 10/ 700 x10° =100/ 7
R? + 98696L2 =10000/ 49 -----n==smmmmmmmmmv (1
(i)  Inthe second case Z= |/R?+ (27 x 75L)?
Q10 =500x10%,/R? + 222066L.%) = 20
JR? +222066L2) = 20




R? + 22206612 = 400 ~-------==-nnmmmmmmmmmmmemmm e (1)
Subtracting Ea.(I) from (i), we get,
222066L% — 98696L2 = 400 — (10000 / 49)

— 123370L% = 196
(2196

123370

L | 9 _0.0398H = 40 mH.
123370

Substituting this value of L in equation (ii) we get R 2+ 222066L° (0.398)* = 400
—R=6.9.

Example — 04 :
A 20 resistor is connected in series with an inductor, a capacitor and a

ammeter across a 25 —v, variable frequency supply. When the frequency is
400Hz, the current is at its Max™ value of 0.5 A and the potential difference
across the capacitor is 150v. Calculate
(a) The capacitance of the capacitor.
(b) The resistance and inductance of the inductor.
Solution :
Since current is maximum, the circuit is in resonance.
%=V./1=150/0.5=300A
(@) x,=1/27fe=300=1/27x400xC
— c=1.325x10"° f=1.325// .
(b)  x=x =150/0.5=300A
21 x 400 x L =300
=L =0.49H
(c) Atresonance,
Circuit resistance = 20+R

= V/Z = 25105
= R =30A
EXxp.-05

An R-L-C series circuits consists of a resistance of 10004, an inductance
of 100MH an a capacitance of wy puf or 10PK
(i)  The half power points.

Solution :

6
1 _10° 159KHz

; fo=
) 2740t x10% 27




1[L_ 1 |10
N == = =— X == _ =100
i) ¢ R\/; 1000 V107

R 1000

i) fi= fo-—=159x10° - - =158.2KHz
47 47 x10"
f,= fo —%: 159 x107%+ 1000_1 = 159.8KHz.

47x10
Exp. -06

Calculate the impedance of the parallel —turned circuit as shown in fig.
14.52 at a frequency of 500 KHz and for band width of operation equal to 20
KHz. The resistance of the coil is 5A.
Solution :

At resonance, circuit impedance is L/CR. We have been given the value
of R but that of L and C has to be found from the given the value of R but that
of L and C has to be found from the given data.

BW = 20 x10%= —>or | = 39,H
24 27 x|
fo—i= L_R_‘=i\/ 1 - 5*
27 VLC L2 22\39x10°°C (39 x107°)
C=2.6x10"
Z = L/CR = 39x10°/2.6 x10? x5
=3 x10°A

Example: A coil of resistance 20Q and inductance of 200uH is in parallel with
a variable capacitor. This combination is series with a resistor of 8000€2.The
voltage of the supply is 200V at a frequency of 10°H,.Calculate

1) the value of C to give resonance

i) the Q of the caoil

i) the current in each branch of the circuit at resonance

Solution:

-
") 3
~

X =2nfL=21*10°%200*10°=1256Q
The coil is negligible resistance in comparison to reactance.

1
[ =
ZmyIC




L
2ry20g - O 107

‘e iy . —d4
i) Q=2‘Rﬂ = 21 = 10° = 200 » ——=62.8

iii) dynamic impedance of the circuit Z=L/CR=200*10"%/(125*10
1220)=80000Q
total Z=80000+8000=883000€2

1=200/88000=2.27mA

p.d across tuned circuit=2.27*10°*80000=181.6V

. . 1818 _
current through inductive branch——ﬁ_w 144.5m4
current through capacitor branch=wl’C

=181.6*21*10°*125%10712=142.7mA

POLY-PHASE CIRCUIT
Three-phase circuits consists of three windings i.e. R.Y.B

E T E

O~ —

Es
120°

1207

120°
Ev

Er=E,sinwt=E_ £0
E,=E,sin(wt - 120) =E, £ - 120
Eg=E,sin(wt - 240)=E, £ - 240=E,, £120



3 - ¢ Circuit are divided into two types
e Star Connection
e Delta Connection

Star Connection :—

/RY
=~ - - - Neutral

VN

Y

B

If three similar ends connected at one point, then it is known as star connected
system.

The common point is known as neutral point and the wire taken from the
neutral point is known as Neutral wire.
Phase Voltage :—>

It is the potential difference between phase and Neutral.
Line Voltage : —»

It is It is the potential difference between two phases.
Relation Between Phase Voltage and Line Voltage :—




VN

Line VolatageVy, = Vey— Vi

V, = \/VRN +V,,, —2V,Y(£0s60°

1

2
:\/vph+v2 =2V, x>

- \/37% = \/;VPh
V= \/;VPh

Since in a balanced B —phase circuit Vey= Vyn = Van=Vph
Relation Between Line current and Phase Current :-
In case of star connection system the leads are connected in series with
each phase
Hence the line current is equal to phase current
||_ = Iph
Power in 3- Phase circuit:-

P=V oh | ph €08 ¢ per phase
=3V oh I oh €0 ¢ for 3 phase

V
=3-L| cos $(QV, = \/§Vph

J3 L
P =+/3V/ cos¢
Summaries in star connection:
i) The line voltages are 120~ apart from each other.
i) Line voltages are 30 ahead of their respective phase voltage.
iii) The angle between line currents and the corresponding line voltage is 30+o
Iv) The current in line and phase are same.

Delta Connection :-



R 1 —
-\
/
W,—a,,,
f g \——\Y
.

If the dissimilar ends of the closed mesh then it is called a Delta
Connected system

Relation Between Line Current and Phase Current :-

- -

Line Currentinwire—1= 'R-'y

- -

Line Currentinwire-2="'y-'B

oy

Line Current in wire—3 ="'B-'

\/I +1,% =215 1, cos60°

=J|ph2+ L2 =20,k x%
:él ph ? ) IL = VBIth

I, =+3L;

Relation Between Line Voltage & Phase Voltage : —»
Vo=V,

Power = = /3V, I  cos¢

Summaries in delta:




i) Line currents are 1207 apart from each other.
ji) Line currents are 307 behind the respective phase current.
i) The angle between the line currents and corresponding line voltages is 30+o
Measurement of Power : —
(1) By single watt-meter method
(2) By Two-watt meter Method
(3) By Three-watt meter Method
Measurement of power By Two Watt Meter Method :-

Phasor Diagram :-
Let VR, Vy, V3 are the r.m.s value of 3-¢ voltages and Ig,lv,lg are the r.m.s.
values of the currents respectively.
Current in R-phase which flows through the current coil of watt-meter
Wl = IR
And W,=ly

Potential difference across the voltage coil of W, =V, = V-V,

- -

—

And W, =V, =V,—-V,
Assuming the load is inductive type watt-meter W, reads.
W, = Vgg 15€0S(30 — ¢)
W, =V, I, c0S(30— @) ------=-=====mmmmmmmmmmees (1)
Wattmeter W, reads
W, =V 1,c0S(30 + ¢)
W, =V, 1, COS(30+ @) -----=-=====n=mmmmmmmmmee- (2)
W, +W, =V, 1, cos(30—-¢) +V, I, cos(30+ ¢)
=V I [cos(30—¢) +V, I, cos(30+ ¢)]
=V, [ (2 cos 30° cos¢)

=VL|L(2xi2_3€08¢)

W, +W, = +/3V, 1, cosg/(3)
W, - W,=V,_I [cos(30 — @) — cos(30 + ¢)



=V, [ (2 sin 30° sin ¢)
:VL|L(2 ><§1 x Sin ¢@)

W,—W,=V,_I sing
W,-W, V.l sing
W,+W, 3V I cosg
1
—=tan
N ¢

W, — W, -
= tan ¢= W W
1 2 []

-1 3W _WZ::
= ¢=tan [ W+ W

[] 1 2 [
Variation in wattmeter reading with respect to p.f:

Pf W; reading W, reading
n=0,cos 0o=1 +ve equal +ve equal
0=60,cos ©=0.5 0 +ve
0=90,cos o0=0 -ve, equal +ve equal
Exp.:01

A balanced star — connected load of (8+56). Per phase is connected to a
balanced 3-phase 100-v supply. Find the cone current power factor, power and
total volt-amperes.

Solution :

Z ;=8 +6° =10A

V,,=400/+3=23/v

I n= V! Z jy=231/10 = 23.1A
i) IL = Zpn=23.1A
i)  P.f.=cos0 = Ry/z,n = 8/10 = 0.8 (lag)

iii) PowerP = «/§VL I cosé
=4/3x400x23.1x0.8

=12, 800 watt.

iv)  Total volt ampere s =V3 VI,

= 3 x 400x 23.1

=16, 000 VA.




Exp. -02
Phase voltage and current of a star-connected inductive load is 150V and

25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3-wire
and power is measured using two watt meters, find the readings of watt meters.
Solution :

Voh = 150V
V|, =3 x 150
loh = 1L = 25A

Total power = V3 VI, cos ¢ = V3 x 150x V3 x 25 x 0.707 = 7954 watt.
W; + W, =7954.00, cos ¢= 0.707
d =cos™ (0.707) = 45°, tan 45° = 1
Now for a lagging power factor,
tan ¢=/3(W, — W, ) [(W, + W,)
=1= s(Wi-W;)

¥ -

¥ 7054

S (W, — W,) = 4592w
From (i) and (ii) above, we get

Wl = 6273w W2 = 1681w




TRANSIENTS

Whenever a network containing energy storage elements such as jnductor or capacitor is
switched from one condition to‘another,either gchange in agplled source or change in
network elements,the response current and v Ita(ljge hange from one state to the other
state.The time taken to change from an injtial steady state t0 the final steady state is known
as the transjent period.ThiS response Is_ known-as transient response or.
transients. The response ofthe network afteritattainsatinal steadyvalue isindependent
oftimeandis calledthe steady- state response.The complete response of the networkis
determined with the help of a differential equation.

STEADY STATE AND TRANSIENT RESPONSE

In a network containing energy storage elements, with change in excitation, the currents and
voltagesinthe circuitchange from one state to other state. The behaviour of the voltage
or currentwhenitis changed from one state to another is called the transient state. The time
takenforthe circuitto ch; n?efrom one steady state to another steady state Is called the
transienttime. The afPfl'Ca lon of KVL and KCL to circuits containing energ_y storage .
elementsresultsindifrerential, rﬂtherthan algebralc equations. whenwe consider a circuit
containing storage elements which are indeépendent of the sources, the response
depends Upon the nature of the circuit and is called natural response. Storage elements
deliver their energy to the resistances. Hence, the resgonse changes, gets satUrated after
some time,andisrteferred to as the transientrespaonse. When we Consider a source actin
onacircuit, the response depends on the nature of the source or sources.This response |
called forced response. In other words,the complete response of a circuit consists of two
parts;theforcedresponse andthetransientresponse.Whenwe consideradifferential
equation, the complete solution consists of two parts: the complementary function and the
particular sqlution. The complementaryfunction dies outafter shortinterval, andisreferred to
asthetransient resPonse or source free response. The particular solution is the steady state
response, or the forced response. The first step in finding the complete solution of a circuit is
to form a differential equation for the circuit. By obtaining the ditferential equation,
several methods can be used to find out the complete solution.

DC RESPONSE OF AN R-L CIRCUIT

Consideracircuitconsisting ofaresistance andinductance as showninfigure.The inductor
inthecircuitisinitiallyuncharged andisinserieswiththe resistor. Whenthe switch Sis
closed ,we can find tHe compléte solution for the current. Application of kirchoff's voltage
law to the circuit results in'the following differential equation.

Xe__ R

vy f | D a:.




Figure 1.1
V=Ri+L <
[wy=
at .
............. RV 1108 = + 1=
L L )
1.2
In the above equation, the current lis the solutionto be found and Vis the applied constant
voltage. The voltage Vis applied to the circuit only when the switch Sis closed. The above equation

is a linear differential equation of first order.comparing it with a non- homogenious differential
equation

d.
P X K oo, 1.3
i

whose solution is
X = @7FF [EE™F Ot +Comfe e 1.4

Where c is an arbitrary constant. In a similar way , we can write the current equation as

— - R
. —-l=p N ELY (Ea LR
i=ce 2l 4eTizh _J’Eew-'[‘ dt
R -y
Hence,1=C¢g L/ FARRECRTRITRERTRETIERITE 1.5
|

Todetermine the value of cin equation ¢, we use the initial conditions .In the circuit shownin
Fig.1.1,theswitchsisclosed att=0.att=0-,i.e. justbeforeclosingtheswitchs, thecurrentinthe
inductoriszero. Since the inductor does not allow sudden changesin currents, at t=o+ just after
the switch is closed, the current remains zero.

Thusatt=0,i=0

Substituting the above conditioninequationc, we have

O=c+ -

E

Substituting the value of c in equation ¢ , we get

i=f Y e
w i
v 1 iy
=— (1- et
" (- 6T
i=1I, (1- &Tr) (where [, = r'—;}
i=I, (1- er) (where r= Tf-;—p—z.g.:gns?qn?:% P 1.6



a1

0 1 2 3 4 5 &8 1C
Figure 1.2

: =t
Equationdconsistsof twoparts, thesteadystatepart ©f; =V/R) and the transientpart [, ¢t .

WhenswitchSisclosed, theresponse reaches asteady state value aftera timeinterval as
shown in figure 1.2.

Here the transition period is defined as the time taken for the current toreachits final
or stedy state value from its initial value.In the transient part of the solution, the
quantity L/Risimportantin describing the curve since L/Ris the time period required
forthe currenttoreachitsinitial value of zeroto thefinalvalue 1, =V/R. The time

constant of a function i, ¢ T isthetimeatwhichthe exponentof eisunity, wheree
isthe base of the natural logarithms.The term L/Ris called the time constant and is
denoted by t.

L
So, T=-— sec

w

Hence, the transient part of the solution is

. =Rt ., =t

1(r)=-’_;?"e—7 = Lot =-0.3687
Similarly,
i(2t)=-%ﬁ~': =-0.1352
i(3t)=-%g-'3 = -0.0498=
Iy LI}
i(51) = -Zg-2 =-0.0067=
4 LH

After 5 TC the transient part reaches more than 99 percent of its final value.



Infigure Awe canfind out the voltages and powers across each element by using the current.

Voltage across the resistor is

I
=3

v==Ri=R ;.;_? (1- 6T

-
Hence, vz =V (1- ¢1T)

Similarly, the voltage across the inductance is

P _Be B
:"5=LF=L gl =Vel

' 2]
-
it

r 2

)

The responses are shown in Figure 1.3.

Figure 1.3

Power in the resistor is

Fa=vgi= V(1-¢0) (1— &L )xs

T =fc Y
=—(1-2e0 )+ &L

Power in the inductor is

The responses are shown in figure 1.4 .



Figure 1.4

Problem : 1.1

sov oy

Figure 1.5

Aseries R-L circuit withR=30Q and L = 15 H has a constant voltage V=50V applied at t=0 as
showninFig. 1.5. determine the current i, the voltage across resistor and across inductor.

Solution :
ByapplyingKirchoff’svoltage Law, weget
15 +30i =60
== '=_ +2i=4
4
Thegeneral solutionfor alinear differential equationis
j=ce '+ o7F" [ KeFodt
where P=2,K=4
putting the values
j=ce™ 2"+ 8% [ 4e”¥dt

== i=CE_:r + 2



At t=0, the switch s is closed.

Since theinductor never allows sudden changein currents. At t=07 the currentin the circuitis
zero. Thereforeat t=07, i =0

==0=c + 2

=>C=-2

Substituting thevalue of cinthe current equation, we have
i=2(1-e7*%) A

voltage acrossresistor (Vz) =iR =2(1- e=F) x 30=60(1- e~27) v

voltage acrossinductor (Vz) = L'% =15 §2(1- e” %) = 30 287 v= 45087

DC RESPONSE OF AN R-C CIRCUIT

Consideracircuit consisting of a resistance and capacitance as showninfigure., The capacitorinthe
circuitis initially uncharged-and js in series with the resistor.When the switch Sis closed att=0, we
can find the comlplet_e solution for the current.Application of kirchoff’s voltage law to the circuit
results in the following differential equation.

. £
o ' M

v
e - C
i@
Figure 1.6
V=Ri+ 2 idt
c
....................................................................... 1.7 By
differentiating the above equation, we get
e i
0= Rdj + ?| ......................................................
...... 1.8
Or
ﬂ + i | ZO ......................................................

@ RC 1.9



Eciuationcisalineardifferen_tial equationwith onlythe complementary function. The particular
solutionfortheabove equation iszero. The solutionforthistype of differential equation is

Todetermine the value of cin equation ¢, we use the initial conditions .In the circuit shownin
Fig. theswitchsisclosed at t=0. Since the capacitor does not allow sudden changesinvoltage, it
will act as a short circuit at t=o0+ just after the switch is closed.

So the current in the circuit at t = 0+ J:s
Thus at t = 0, the current i =
L

Substituting the above condition in equation c , we have

-'_.=C

Substituting the value of ¢ in equation ¢ , we get

oW _fE]
T =7 N 1.11
it

i<

Figure 1.7

When switch Sisclosed, the response decays as shownin figurre.
The term RC is called the time constant and is denoted by t.
So, T = RC sec
After 5 TC the curve reaches 99 percent of its final value.
Infigure Awe can find out the voltage across each element by using the current equation.

Voltage across the resistor is



vy =R i=Rx- ¢iC
i

Hence, wvz=V &if

Similarly, voltage across the capacitor is

Att=0,voltageacrosscapacitoris zero
So,c=V
And

-

V=V (l— &%)

[T e -y

R

Pc

PR

0 1 2 3 4 5 8 TE'
Figure 1.8

Power in the resistor is

Ro=vai=Veme . o

3
L

Power in the capacitoris

o

F,:=:",_~i=V(1-@.=Tf:}; on



ve o =L =i
='—?(€'EE-€EE)

The responses are shown in figure 1.9.

P

2l

Figure 1.9

Problem : 1.2

Aseries R-C circuit withR=10Q and C=0.1F has a constant voltage V =20V applied at t=0 as
shownin Fig. determine the current i, the voltage across resistor and across capacitor.

§8
®

Ks

~0.1F

il

i e Lt

Figure 1.10
Solution :
ByapplyingKirchoff’svoltage Law, weget
10i + — [1dt=20
Differentiatingw.r.t. t weget

10£+21=0

o

== ':_+ i=0
i

The solution for above equation is



i=ce™"
At t=0, the switch s is closed.

Since the capacitor neverallowssudden change involtages. At t=07the currentin the circuitis
i=V/R=20/10=2 A

. Therefore at t=0, i =2 A
== the current equation is i=2e7*

voltage acrossresistor (Vz) =iR=2 e7*x 10=20 e™*v

voltage across capacitor (V) = Vil = e%:m 20(1-e" 7)) V

DC RESPONSE OF AN R-L-C CIRCUIT

Consider a circuit consisting of aresistance, inductance and capacitance as showninfigure.The
capacitorandinductorinthe circuitisinitially uncharged and are in series with the resistor.When the
switch Sisclosed att=0, we canfind the complete solutionfor the current. Application of
kirchoff’s voltage law to the circuit results in the following differential equation.

. SR

i —=c

Figure 1.11
V= Ri+ 1%+ 214t
¢ -
....................................................................... 1.12 By
differentiating the above equation, we get

0=RE £+ Zio 1.13

AR



The above equation c is a second order linear differential equation with only the complementar)(],
function. The particular solution for the above equation is zero. The charactéristics equation for this
type of differential equation is

DP40D 4L =0 i, 1.15
The réots o?;quation 1l.15are

By, Dy =- .

By assuming X, =- | and Kz= | (—”T —ﬁ

By=K;~ K:and Dy =g _ K

Here K> may be positive,negative or zero .

. . g 1
Casel: K3 isPusitive [:iT > —

2L L

Then, the roots are Real and Unequal and give an over damped Response as shown in figure
1.12.

The solution for the above equation is: i= C; glfatalt+ (, glifi=Ha's

A

Figure 1.12

-

- . Ey= 1
Casell: K; is Negafive [%] =

Then, therootsare Complex Conjugate, and give an under-damped Response as shownin
figure 1.13.

ey




Figure 1.13

The solution for the above equation is: i= ™) cosK,t +C; sin Kot}
Case lll: g 15 Zarp EET: - 1

Then , the roots are Equal and give an Critically-damped Response as shown in figure 1.14.

if

Figure 1.14
The solution for the above equation is: i= e¥{C, + ¢t}

Problem :1.3

Aseries R-L-C circuit withR=20Q, L=0.05H and C = 20 pF has a constant voltage V=100V
applied at t=0 as shown in Fig. determine the transient currenti.

100V

Figure 1.15

Solution :
ByapplyingKirchoff’svoltage Law, weget

100=30i 0.05 . > [ia:

de  20x 1 E

Differentiating w.r.t. t we get

.ﬂ.....-+20Iif+ 1 1=0
005c "¢ /ar de 2Ex10m#



=2 qli/de +400¢4: + 19%i =0
=w(pet 400D + LE&i =0
Theroots of equation are

Dy, Dy =22 iﬂ[ﬁT - 1¢¢

= -200+,/ 720007 = 10F

fl; =-200+j979.8

0; = -200-j979.8
Therefore the current

i=e"%F[C cosK, 4+ CooosK,r]

i=e" [0 co979 B+ CrEn 9798 ] A

At t=0, the switch s is closed.

Since the inductor never allows sudden change in currents. At t=07 the currentin the circuitis
zero. Thereforeat t=07, i =0

== i=0=(1) [Ty coz O+ C; 2nd]

=2 G =0andi=e"28[C, sin 7988 ] A

Differentiating w.r.t. t we get

% = 0 [e™2"% 9798 c02979.8 ¢ + &~ 200 8in 972,82 ]
At t=0, the voltage across the inductor is 100V

N gt _
=2 L =100 or £ =2000
At t=0, j— = 2000=C,979.8 cozd

=> C;= 2 =2.04

The current equation is



i=e—2005(2 0dain 979.80) 4

ANALYSIS OF CIRCUITS USING LAPLACE TRANSFORM
TECHNIQUE

The Laplace transformis a powerful Analytical Technique that is widely used to study the
behaviorofLinear,Lumpedparametercircuits. Laplace Transformconvertsatimedomain
function f(t) toafrequency domain function F(s) and also Inverse Laplace transformation
converts the frequency domain function F(s) back to a time domain function f(t).

LEf(E)} = F(S) = 8™ (1) bnnseinneee e LT 1
I {F(S)}=F(t) =27 Fis) 255dS uvvineeeiiiii e LT2

DC RESPONSE OF AN R-L CIRCUIT (LT Method)

Let us determine the solutioniof the first order differential equation given by equation Awhich
is for the DC response of a R-L Circuit under the zero initial condition i.e. currentiszero, i=0 at
t=0"and hence i=0 at t=0" inthe circuitin figure Aby the property of Inductance not allowing

the current to change as switch is closed at t=0.

XK R
A
v—? i ) a L
Figure LT 1.1
Vo RIHFL e, LT 1.1

Taking the Laplace Transform of bothe sides we get,

P =RI(S) + LLSI(S) 1(0) Jevvveeeeeeeeeeeeeeeeeeeeeeeeeeeeens LT 1.2
-

3 =RI(s) +L[sI(s)] (1(0) =0 : zero initial current)

=:=»§ =1(s)[R +L s]



Taking the Laplace Inverse Transform of both sides we get,
=5 ()} = ) = 1

i(t)= L~ ﬁ} ( Dividing the numerator and denominator by L )

putting = = H/L we get

L 1 .1
S (G )3

i(t) = £

abrra}

i(t)= L E (%_ u;.vni:f:r‘:;-

}f?:} (again putting back the value 0%}

. ¥l 1w W =Rt -kt %
i(t)= E.'i{g (3~ .;_rns:.-';;-f’} =E(1' e )=I,(1-eT) (where |, = L

i()=Fo(1- €7) (where 7=Timeconstant="5) e, LT1.4

It can be observed that solution fori(t) as obtained by Laplace Transform technique issame as
that obtained by standard differential method .

DC RESPONSE OF AN R-C CIRCUIT(L.T.Method)
Similarly ,

Letus determine the solutioniof the firstorder differential equation given by equation Awhich
is for the DC response of a R-C Circuit under the zero initial condition i.e. voltage across
capacitor is zero, 1 =0 at t=0"and hence V. =0 at t=07 in the circuit in figure A by the property

of capacitance not allowing the voltage across it to change as switch is closed at t=0.
o A

i (#)

=

Figure LT 1.2

V:Ri+%,|‘.fa‘z ....................................................................... LT 1.5

Taking the Laplace Transform of both sides we get,

=R I(s) + %[ ]—5] (1(0) =0 : zero initial charge)

EE
¥

=I9)[R+=]=1(s)[ =1



- i &g ¥e
R O R (s e S —— AT1.7

Taking the Laplace Inverse Transform of both sides we get,

=> EHIS)} = 88} = L)

(ECsatd
KE
i(t)= 7L —i} (Dividing the numerator and denominator by RC )
“'RE
putting Lo 1we get
T RC

: -1 VR L
i(t) =L l{m] =Ce =

i(ty=7 it ( putting back the value ofi )

i

i(t) =i, (where [, = EJ ..................................... LT1.8

i(t)= . r.-?_T:) (where t=Time constant= RC)

It can be observed that solution fori(t) as obtained by Laplace Transform techniquein q is

same as that obtained by standard differential method in d.

DC RESPONSE OF AN R-L-C CIRCUIT (L.T. Method)

i~ =

Figure LT 1.3

Similarly ,

Letusdetermine the solutioniof the first order differential equation given by equation Awhich
isfor the DC response of aR-L-C Circuit under the zeroinitial condition i.e. the switch sis closed
att=0.att=0-,i.e. justbefore closing the switchs, thecurrentin theinductoriszero. Since the
inductor does not allow sudden changesin currents, at t=o+ just after the switchis closed, the
currentremainszero. alsothe voltageacrosscapacitoriszeroi.e. 1. =0 at t=0"and hence . =0

att=07 inthecircuitinfigure by the property of capacitance not allowing the voltage acrossit

1% to suddenly change as switch is closed at t=0.

V = RIH L Fore g eeseeeeeeseeseeseseeseeseseeeens
E+ L_J PED

Taking the Laplace Transform of both sideswe get,



3 =RI(s) ++ L [sI(s) -l (0)]+%[ SN o) R LT 1.10
= ?F =R I(s) + L[z I 3,1]+—[ 2ie] (160} = Q:zero initial current & 1(0) =0: zero initial
charge)
=» L =I(s)[R+Ls+ L= I(s)[ ARz
£ =
=2(s) = é[lzac_“f;:ﬂ_] =.;:cf=f.i;cf=1,= ..................................... LT1.11

Taking the Laplace Inverse Transform of both sides we get,

- FE
== HI(s)} = ) = LM

i(t)= L ¥ —[—‘ﬁ‘v—-} ( Dividing the numerator and denominator by LC))
R TP WAL

putting & = i: ard = \'I‘I_l‘.' weget
](t .1{ E_;__'ﬂ-.‘,:__'u_.{'l}

Thedenominator polynomial becomes = [5* -I-2 225 - ca®]

PRy — -
where, s, , 5, = —m=ioi TS - K —wf = £ §

where, =& ; = "JI_ and 57 JE—wt

27
x

By partial Fraction expansion , of I(s) ,

¥ ¥
= L = - L
CEg—g} WEmEg
v
_ f 1 - 1 "
I(s) = (8= 5g! ( LE=Fy LE=Fn

Taking the Inverse Laplace Transform



i(t) =4, ef+ Spe%t

Where A; and A, are constants to bedetermined and g, and s, aren the roots of the
equation.

Now depending upon the values of =; and =; ,wehavethreecasesoftheresponse.

CASE | : When theroots are Real and Unequal, it gives an over-damped response.

Eo i 0 =

= — or ; In this case, the solution is given by
ar wl BT
i(t) =™ (& et &™) LT 1.12
or i(t)=4A; gif+ A eff fort= 0

CASE Il : When the roots are Real and Equal, it gives an Critically-damped response.

i = ﬂjltl—c or ©=uw ;Inthiscase, thesolutionisgivenby
or
i(t) =™ (A+ &t ) fort=0.icciiiiiriiniinninnnnn. LT1.13

CASE Il : When the roots are Complex Conjugate, it gives an under-damped response.

— == or ==« ;Inthiscase,thesolutionisgivenby
i(t)=4; #F+ Age™® fort . 0

=-1m15 -t

j— "
where, 5, .55 = = —WIvRT—we

let Vot —w® =4=T4W7—-g¢ =j wg; where j=+«=Tand wg= Q" —x*

Hence, i(t) =e™e(a, @9y Ay gTIER)

- . o [glwdl ap=Jfaigl ~ - (ol - g=lirgt
R O T L o

i(t)=8""" [(% + A )cosomgt +16(84 — &) sinwat ]

i(t) =e™" By cogargt + B maigt) v LT1.14

)))HH))))))))))1))”!))””’)””}”}))))))))))))))’H)H)HH)HH))XXXXXXXXXXXXXXXXX))))))))))))))))))H)HU)HHHHH})))))))1”



TWO PORT NETWORKS

Gen rall}/,angnetwork may be represented schematicall _b%/arectan ular box. A network may be
usedforreprésenting either Source or Load, orforavarie yof{)_uré) ses, Apairofterminals at
which a sighal may enter or leave a network is called a port. Aportis defined asanlypalroftermlnals
into whjc energﬁwnhdrav_vn,orwhereth netyork variables may be measured.Onesuch
n

network having only one pair of terminals (1- 1’)is shown figure I.1.

Network

+o—= 1 ag bel——2— 4»
Py, V. I
port ! 2 port
- _.—_.a_f bf.'__'_'_'zf

I =4

Figure 1.1

Atwo- port network is simply a network a network inside a black box, and the network has only two
pairsofaccessible terminals; usually one one pairsrepresents the inputandthe otherrepresents the
output. Such abuilding blockis very commoninelectronic systems, communication system,
transmission and distributionsystem. fig 1.1 shows atwo- portnetwork,ortwoterminalpair
network,inwhjchthefourterminals havebeenpairedintoports1- 1'and2- 2'.Theterminals1- 1
together constitute a port. Similarly, the terminals 2- 2’ constitute another port. Two ports containing
no'sourcesintheirbranchesare called passive ports ; among them are power transmission lines and
transformers. Two ports cantaining source intheir branches are called active %oorts_. Avoltagte and
currentassigned to each of the twoports. The voltage and currentatthe inputterminalsare vy and /-;
whereas -"and are entering into the network are 13, ';;and Iy, {-. Two of these are
dependent variable, the other twd are indepent variable. The number of possible combinations
8enerated by four variable, taken two at time, is six. Thus, there are six possible sets of equations
escribing a two- port network.

OPEN CIRCUIE IMPEDANCE (Z) PARAMETERS

A general linear two- port network is shown below in figure 1.2.
The z parameters of atwo- port network for the positive direction of voltages and currents may be

r

defined by expressing the port voltages Tf}and V5 in terms of the currents I and . Here Viand V5
are twodependentvariablesand 5"and - are two independent variables.

Il IZ
to——2 1 4 bo—Li_z

Input | V. Output
port 1 2 port
" —e————1ag” b'.’__._._.f

I’ =<

Figure 1.2

The voltage atport1- 1’isthe response produced by the two currents I; and 1-.
thus

B o= B T Bl 1.1
| i - £ TR 1.2

2,22, 2y and Z;; arethe network functions, and are calledimpedance(Z) parameters, and are
defined by equations 1.1 and 1.2.



These parameters also can be represented by Matrices.
We may write the matrix equation [V] = [Z][l]

£

whereVisthe columnmatrix= [ TLT' ]

_ By Eyg
Zis asquare matrix = [;:: ;,-1;'“]

i . I
and wemaywrltel’| inthe columnmatrix= = ;;]

14 Z Ziza b
Thus, [ [,;; 1= [Zi;l z;;] [ g; ]

The individual Z parameters for a ,gl en network can be defm?d bg setting each of the port currents
equalto zero. suppose port 2- 2"s left open circuited, then 1z =0.

Thus Z44 :r_r-| Io=1
AR

where

Sh’nlgﬁlwg driving point impedance at port 1 — 1 with port 2 —
if < opeil ciienited. It 1z called the open clroudt Input Inpedancs.
:-i_
where.
Z;q 1z thetransfer impedanceat port 1 — 1'withport 2 —

2'open circulted. It iz called the open clrenlt forward transfer lmpedance

}[:=ﬂ



Suppose port1- 1’isleftopen circuited, then /; =0.

ThUS, z‘l:: Ve ‘E'], =0

where

<7 lathe transfer Impedanceatport 2 — 2" withport 1 -
dimiarlyircuited. It iz called the open clreult reverse transfer Impedance
Zun=k
iz
where

f-1=q

Zoo lzthe o%a-n clremitdriving point impedance at port 2 — 2'with port 1 —

A RS A MR AP BB Rpalrs L1an0 12, oper

—» ,1 ff— fz L]
1 2"
T Z11 Zy; T
V1 V!
| Zizby AN Zwh
1 o
Eie 910 3
Figure 1.3

If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

Sp=0- 4p=0
by ]

or

2y = 2y

It is observed that all the parameters have the dimensions of impedance. Moreover, individual
parameters are specified only when the currentin one ofthe portsis zero. This corresponds to one of
the ports being open circuited from which the Z parameters also derive the name open circuit
impedance parameters.

Problem 1.1



Find the Z parameters for the circuit shown in Figure 1.4

-
b

S e oAy,
":"‘:-a-;.y,:

M SRR

Figure 1.4
Solution The circuit in the problem is a T network. From Eqgs 16.1 and 16.2 we have
1.'?-1 = Zn 1-1 -+ 21: I: and 1'-": = 2:-11-1 'f'E::[:
When port b- b’ is open circuited,
= 4&

o - -
Vhere 15 = I, {z. + =)

o Zp =i+ -’-er)
2y ='[_| I,=0
=
Where I-'Ig = f-l 2;, i zg-]_ = 2.";,
When porta- a’isopen circuited, 11=0

where ¥ = Li{Z,+ Z;)

Zyy = (Zy+Z)
213 ='_-‘ L=0
where 15 =2, and 2,5 = Z

Itcanbeobservedthat z,. = z.,, ,sothe networkis abilateral network which satisfies the

principle of reciprocity.

SHORT-CIRCUIT ADMITTANCE (Y) PARAMETERS




— 1 2 =+— 2
1 + -
Linsar
Vi network V2
1'. - — r
Figure 1.5

A general two- port network which is considered in Section 16.2 is shown in Fig 16.5The Y
parametersofatwo- portforthe positive directions of voltagesand currents may be defined by
expressing the port currents I3 and ¥z in terms of the voltages tiand V2. Herely, 12 are dependent
variables and V3and V: are independent variables. /1 may be considered to be the superposition of
two components,one causedby 1; andthe otherby 17%.

Thus,
I = T T g 1.3

Similarly, Iz =¥V TV 14

¥y1, T ¥y and ¥:; are the network network functions and are also called the admittance

(Y) Parameters. They are defined by Eqs 16.3 and 16.4. These parameters can be represented by
matrices as follows

[=[YIIV]
where I:[E]; Y=[‘E: “?] andV:[::_:Iﬂ
]Thus , _
[};]z[T%: %i][ﬁi]

Theindividual Y parameters for a given network can be defined by setting each portvoltage to zero. If
we let ¥z be zero by short circuifing port 2- 2’ then

131 isthe driving point admittance at port 1- 1’, with port 2- 2’ short circuited.ltis also called the
short circuit inputadmittance.

Tz1 isthetransfer admittance atport 1- 1’, with port2- 2’ short circuited.Itis also called the short
circuited forward transfer admittance. Ifwelet Vi be zero by short circuiting port 1- 1’,then



r Ll..
T2 = v,l Vi=0

Tiz isthe transfer admittance at port 2- 2’, with port 1- 1’ short circuited. Itis also called the short
circuited reverse transfer admittance.

1
115-_": = ﬁ k] =0

Tz; isthe shortcircuit driving point admittance at port2- 2’, with port1- 1’ short circuited. Itis also
called the short circuited output admittance.The equivalent circuit of the network governed by
equation 1.3 & 1.4 is shown in figure 1.6.

— Iy - - o

11 Tz

e Dl

L M . 2
Figure 1.6

N

If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

It is observed that all the parameters have the dimensions of admittance. Moreover, individual
Pharameters_are specified only when the voltage in one of the portsis zero. This corresponds to one of

e ports being short circuited from which the Y parameters also derive the name short circuit
admittance parameters.

Problem 1.2 Find the Y- parameters for the network shown in Fig.1.7

a AVAVAY AYAVAY b
T o h o1 5 G T



Figl.7

Solution ;

When b- i2"is short circuited, V> = 0 and the network looks as shown in Fig. 1.8(a)

a AYAYAY, SVAVAY . I b
T “h 19 P 2
Vi — Zgg 210 Vo=
a. | o b’
Fig.1.8(a)
v. =hZg
2972
SO, V)= 11 Z
Yy = v =0 ==l
Ty = v ™0

so,- I =¥
- :-'l =0 =-1

e 2

similarly, whenporta- a'is short circuited, V== 0 and the network looks as shown in Fig. 1.8(b)



_.-':1 "‘_."2
a A" A 1 b
1Q 20 T
Vi=0 2Q 4Q Vo ~— Za4
, b

I
"f,.,,., = =3y =
2= =0

V;=lzZ&:g where ¢ isthe equivalentimpedance as viewed from b- b".

=]
Eeq: E.q
V. :I: Kg
= -
(i I - E
1'.i'-'-- = i Wy =0 =

- =L|.. =
Ti2 ﬁl‘r'i 0

witha- & isshortcircuited ,- Iy =2 Iz

) W
Since I, =5 =

W o]

The describing equations in terms of tye admittance parameters are

Transmission (ABCD) parameters




Figure 1.9

Transmission parameters or ABCD parameters are widely used in transmission line theory and
cascaded networks. In describing the transmission OParameters, the input variables Vi and f; at port
1- 1’,usually called the sending end are expressed interms of the output variables Vjand  at port
2- 2’,called, the receiving end.The transmission parameters provide a direct relationship between
input and output. Transmission patameters are also called general circuit parameters, orzhain
nparameters. They are defined by

1.?-1 = .*'I:'I-':: - Bf:

. =CV,— D)
...................................................................................... 16

The negative signisusedwith >, and not for the parameter B and D. Both the port currents /; and -

1. aredirectedtotheright, i.e. withanegative signinequationaandbthe currentsat port2- 2’
whichleavesthe ﬁort isdesignated as positive.The parameters A,B,C and dare called Transmission
parameters. In the matrix form, equation a and b are expressed as,

W, & By, V2
[p1=0g pll-f]
The matrix [‘é IB;] is called Transmission Matrix.

For a given network, these parameters can be determined as follows. With port 2- 2’ open circuited
i.e. I;=0;applyingavoltage Vi atthe port 1- 1’, using equ a, we have

A=¥
-

2

=@ andC=xn

'z

f:='§1

1 Wy
hence, - =7
- rig

Iy =0 =gg ;=0

1/Ais called the open circuit voltage gain a dimension less parameter. And * = ELL =g~ Zaul 4.

=0 is called open circuit transferimpedance. with port 2- 2’ short circuited, v e , applying

voltage Vy at port 1- 1’ from equn . b we have

-B=. a and - D3¢

- g =
L

g =
i



1
= =|wa=0 Tuli
-B =%y = =0 is called short circuit transfer admittance
and ,
I R a = v =0 is called short circuit currentgain a dimension less parameter.
—_ = s = 21| ¥
D Il - -

Problem 1.3

Find the transmission or general circuit parameters for the circuit shown in Fig.1.10

] - 5
ar AAA- AV b
T T
Vi 5Q Vo
| i
a
Fig. 1.10

Solution : From Equations 1.5 and 1.6 , we have
1.}-1 = J"':I-':: - Bf:
I"_ - E’ﬁlF: - D]:

whenp- b’is open circuitedi.e. Iz =0,we
= . mi

hav&A =

Whereh_;r1 =61, and V.75, andhence, A=

% and C= =
Hp=0 -
wherb- b’is shdrtcircuitedi.e. 1> =0, we

have B =- and D =-

I
= . =

Inthegrclu:it? %g =E 3 antl'so, Bl 0
! -

L=}

L}



T

similarly, Iy =—= V1 and - I 5 V4

and hence D &

Hybrid parameters

Hybrid parametersor h- parametersfind extensive use intransistor circuits. They are well suited to
transistor circuits as these parameters can be most conveniently measured. The hybrid matrices
describe atwo- portnetwork, when the voltage of one portand the current of other port are taken as
the independent variables. Consider the network in figure 1.11.

Ifthe voltage atport 1-_1’and currentatport2- 2’ are taken as dependent variables,we can
expressthemintermsof Iy and Vs .

W =hyyfy + g2V

The coefficientinthe above termsare called hybrid parameters.In matrix notation [

W, -hyq B i
I3 1= “hgy h::][‘f:]

1 F
1 2
+o—= 1l aa bel—<— 11

Py V. Jutput
port "1 2 port

. _ 1' . _.a_f. br.,_ _2,

Figure 1.11

fromequation aand b the individual h parameters may be defined byletting Iy = 0and Vz=0. when
V; = 0,the port 2- 2’ is short circuited.

Then ]’111 =¥ o
i =
impedance. ;3 ==0 = short circuit forward current

=0 = short circuitinput

)
gain lenﬁ"arly, byletting port1- 1'open, Iy =@
by = =0 = open circuit reverse voltage gain

'.Ii

-1

¥



¥
by = ﬁ 11 =0 = open circuited output admittance

Since h- parameters represent dimensionally an impedance, an admittance,a voltage gain and a
currentgain, they are called hybrid parameters . .An equivalent circuit ofatwo- portnetworkinterms of
hybrid parameters is shown below.

t | i fizq H. T
Vi | <D " | ez T

l 1y Vs

Figure 1.12

Problem 1.4
Find the h- parameters of the network shown in Fig 1.13.

a AN ’V\h .
b 8 20 o

Fig.1.13
Solution :
From equations 1.7 and 1.8 , we have

Ve N - = _A. — ¥ . _ I -
by =0 v =0 ;lzq —f 7 =0;hy; —:— f1=q i haz =5 41=0

Ifport b- Ia"is short circuited, ¥z = 0 and the network looks as shown in Fig. 1.14(a)



Fig.1.14(a)

¥
b1 :i V=0 =8 Za

Z.yisthe equivalentimpedance as viewed from porta- a‘ is 2Q

so,Vi=L2V

by =V:= 2Q
I
iy =k .. =Owhen,, =0;- I>3:and hence &z =-1

] 2 ]

b.f

If port -a-a.- is open circuited, 1 = 0 and the network looks as shown in Fig. 1.14(b) then

. I

AVAVAY -« AVAVAY
T h=E0 4
T 2Q ,

Vi gzn §4n

Fig.1.14(b)

=g andVy =1,2; 1,=2

V.
by =3
1",2 = Ix4 ; -Tx:

1z



vy 1 I 4
Bz =7, | li=e=; and Haz =% =0 =

INTER RELATIONSHIPS OF DIFFERENT PARAMETERS

Expression of z parameters in terms of Y parameters and vice-versa

From equations 1.1,1.2,1.3& 1.4, itis easy to derive the relation between the open circuit
impedance Parameters.and the short circuit admittance parameters b){ means of two matrix
equations of the respective parameters. By solvingequationaand bfor 1y and I; , we get

Vi 2 &y ¥
I-':[VE 2.,.1:] /&2 ; and I::[EE: 1;]/":"2

where 4. isthedeterminantof Z matrix

211 2z
b= lzy gl
Z Z
L = e 1.9
&z &z
L=- Ey o+ Iy
i bz 1 sz L

........................................................................ 1.10 comparing
equations 1.9and 1.10 with equations 1.3 and 1.4 we have

. Zzg - &g

Ty =7 Yu=- 3
z z
I, . Z

vy =, oy oA
g z

Inasimilar manner, the z parameters may be expressed interms of the admittance parameters by
solving equations 1.3 and 1.4 for V; and V-

g
oy

where A, isthedeterminantof Y matrix

v [ $21a, ;oand Vo= [ R1UA

. 1. T2
‘:'-_'. = [*1:' ‘i.-',_]
1= T =L 1.11
Yoo Tag
V;=- 0L et

.......................................................................... 1.12 comparing
equations 1.11and 1.12 with equations 1.1 and 1.2 we have



L=

General Circuit Parameters or ABCD Parameters in Terms of Z parameters
and Y Parameters

We know that

Vo =alp—-BlL; W =Iph +Igl Iy =1 Wy + T2V

L=CV;=-D) » V=250 +250 o [o =TV + T2 W

A:'% ;=4 C:,],+ =u B=-';l vz = ;Dz-:—ri“:=“r-J
rg - z -

Substituting the condition I; =0 in equations 1.1 and 1.2 we get

=g =

T

—_ 1*_

¥

Substituting the condition I, =0 in equations 1.4 we get,

— Ve
A_T

u

=t

}I: =1 Yau

Substituting the condition 1> =0inequations 1.2we get
1

2 "o
= .I!I: =
Sub'élitutingthe condition; | =0inequation 1.3and1.4andsolvingfor;_gives

C=

=l %Where A, is the determinant of the admittance matrix

=

¥

|.!.-.=I:[ :—-II'I'- :C

Substituting the condition V= =0 in equations 1.4, we get
'"’_’-lv_,=q =-1 =B
I = b4
Substituting the condition;;. =0inequation 1.1and1.2andsolvingfor;_ gives

=¥y == Where 4 is the determinant of the impedance matrix
=7



o

- &

I—"g=ﬂ —ﬂi =B

Substituting the condition V= =0 in equation 1.2 we get ,

- - Z:
'\.—‘:—':[ Z.. D

e

L

Substituting the condition V; =0inequations 1.3and1.4
we get

-1
—

I

‘.5:=':[ = _r_ =D

mﬂ representation
Atwo- port network with any number of elements may be converted into a two- portthree-
element network. Thus, a two- port network may be represented by an equivalent
]:If- ne;tLWfék, I.e.three impedances are connected togetherinthe formofa T as shownin
igure 1.15.

4 —
t— 1} {2
e Za Z, -/,
V‘I [] ZL" Vz
1 - = o
Figure 1.15

Itis possible to express the elements ofthe T- networkinterm of Z parameters,or ABCD
parameters as explained below.

Z parameters of the network




From the above relations, it is clear that

zﬂ. = E-l-l- z:'l
L, =25 e
=2y &
ABCD parameters ofthe network
w Eg +&
——i|[.=0 = 2=t
A ol ks 0 2
—— Vo=0
When 2- 2'is short circuited
1. = Vile
* ZylotZgiZptio)

_ 2.2
B _EE: “EEF:] + _E:h

- 2{
D :-:.]r 'Th_?:: 0
When 2- 2'is short circuited
7 . =S
L= L Zptdy
D = Z=L;
iy

From the above relations we can obtain

—A-1 . _ D=1 _1
EE_T ’Er'.:'_ o ’EE_E

Problem :1.6



The Z parameters of a Two- portnetwork are Z,, = 100, Z,, = 180, L, =Z,,=5Q.

Findthe equivalent T network and ABCD Parameters.
Solution :
The equivalent T network is shown in Figure 1.16
where Z_, = Z;; - Z,,=5Q
Zh: z:: - z-lg: 10 Q
and Z_. =5Q
The ABCD parameters of the network are
A=Z+1=2;B=( y BE=250

v z iR z v

& z_l:l'

C= =0.02;D=1 -§:3

1

In assimilar way a two- port network may be represented by an equivalent,- network, i.e.
three impedances or admittances are connected together in the form of as shown in Fig

1.17. T
— 11—
Zy Z,
=
+ —
| I *
I » Yy Iy =




Fig. 1.16

Itis possible toexpressthe elements ofthe . -

ABCD parameters as explained below.
Y- parameters of the network

= =0 = +
- ]_,-_ . Y, Y.
11 vl g = %.-: 2
X - -
13 :'3%1:{:0 = Yo+¥s
& L 3 -
1% = s 1=0= ¥,

From the above relations , it is clear that

Y=Y+ Ty
Vo=
:-& 23 + H 21

A= —iiz - 2 7is
Te

_ Vi _ Yadl

i Ty

from the above results, we obtain

D=1 . _1
"'![-1 3 ’1![': E1
A s=1
Wy = T

Fig.1.17

networkinterms of Y parameters or



CLASSIFICATION OF FILTERS

Afilteris areactive network that freely passes the desired band of frequencies while almost
totally suppressing all other bands. Afilteris constructed from purely reactive elements, for
otherwise the attenuation would never becomes zerointhe pass band of the filter network.
Filtersdifferfrom simple resonantcircuitin providing asubstantially constanttransmission
over the band which they accept; this band may lie between any limits depending on the
design. Ideally, filters should produce no attenuation in the desired band, called the
transmission band or pass band, and should provide total or infinite attenuation at all other
frequencies, called attenuation band or stop band. The frequency which separates the
transmission band and the attenuation bandis defined as the cut- offfrequency ofthe wave
filters, and is designated by fc

Filter networks are widelﬁ used in communication systems to separate various voice

channelsin carrier frequency telephone circuits. Filters alsofind applications in instrumentation,

telemetering equipmentetc. whereitis necessarytotransmitor attenuate alimited range of

frequencies. Afilter may, in principle, have any number of pass bands separated by attenuation

gan%s.ll-]owevter, they are classified into four commontypes, viz.low pass, high pass, band passand
and elimination.

Decibel and neper

The attenuation of a wave filter can be expressed in decibels or nepers.Neper is defined as the
natural logarithm of the ratio of input voltage (or current) to the output voltage (or current), provide
that the network is properly terminated in'its characteristic impedance Z, .

/4 I
o ————— @
T v, TVLO V!-;’/ort Vo T
— -
L
Fig .9.1 (a)

Fromfig. 9.1 (a) the number of nepers, N=log e [V1,V,] or loge [l/1,]. Aneper canalso be
exPressed interms of input power,P, and the output power P, as N=1/2 Io%e P./P,. Adecibelis
detined as tentimes the common logarithms of the ratio of the input power to the output power.

Decibel D=10 log;oP1/P-



The decibel can be expressed in terms of the ratio of input voltage (or current) and the output
voltage (or current.)

D=20 IOglo[Vl/Vz] =20 IOglo[llllz]
* One decibel is equal to 0.115 N.

Low Pass Filter

By definition alowpass (LP)filteris one which passes without attenuation allfrequencies
up to the cut- off frequency f. , and attenuates all other frequencies greater than f. The
attenuation characteristic of an ideal LP filter is shown in fig.9.1(b).This transmits currents of all
frequencies from zero up to the cut- off frequency. The band is called pass band ortransmission
band.Thus,the pass band for the LPfilteristhe frequency range 0tot..The frequency range
over which transmission does not take place is called the stop band or attenuation band. The stop
band for a LP filter is the frequency range above f; .

T Pass i T Attenuation
o Band Attenuation o Pass
Band Band Band
= —f fe ——F
Low Pass Filter High Pass Filter
o | Attenuation | pagg Attenuation o |Pass | Attenuation | Pass
Band Band Band Band | Band Band
4
£ fo—f fq f f
2

Band Pass Filter Band Elimination Filter

Fig.9.1 (b)

High Pass Filter

A high pass (HP) filter attenuates all frequencies below a desi%nated cut- off frequency, f; , and

Passes all frequencies above f. . Thus the pass band of this filter is the frecwency range above fcc, and

fhestgrztt)))and Isthe frequency range below f. . The attenuation characteristic of a HP filter is shown in
ig.9. .

Band Pass Filter



Aband Passfilterpassesfrequencies,betweentvvp designatedcut- off frequenciesand
attenuates all other frequencies. Itis abbreviated as BP filter. As shown in fig.9.1 (b), a BP filter has
two cut- off frequencies and will have the pass band f, —f;; f, is called the lower cut —off frequency,
while f, is called the upper cut- off frequency.

Band Elimination filter

Aband elimination filter passes all frequencies lying outside acertain range, while itattenuates
allfrequencies between the two designated frequencies. Itis also referred as band stop filter. The
characteristic of an ideal band elimination filter is shown in fig.9.1 (b). All frequencies between f;
and f, will be attenuated while frequencies below f; and above f, will be passed.

FILTER NETWORKS

_ ldeally afilter should have zero attenuationin theﬁ_ass band. This condition can_onl¥__be
satisfied if the elements of the filter are dissipationless.which cannot be realized in practice. Filters are
designed with anassumption thatthe elements of the filters are purely reactive. Filters are made of
symmetrical T, or Trsection. T and trsection can be considered as combination of unsymmetrical L
sections as shown inFig.9.2.

Ly Zq Zg Zq
2 2 2 2
=real o T st o U gt T ey i B oo

(]2 (]2 [z

(a) (b)
Pl it T

L—g 22, [ ] 22z E] 27, HE:

(©) (d)
Fig. 9.2

~ The ladder structure is one of the commonest forms of filter network. A cascade
connection of several T and mrsections constitutes aladder network. Acommon form of the ladder
network is shown inFig.9.3.

Figure 9.3(a) represents a T section ladder network, whereas Fig.9.3 (b) represents the 1rsection
ladder network. It can be observed that both networks are identical except atthe ends.



Z1 Z1 21

Z4
ﬂ = |L ﬁi' FEE e
] 22 22 22 22
(@)
’Z{ 21 Z1 21
] 1 ———
222 Zz Z2 22 222
(b)
Fig. 9.3

EQUATIONS OF FILTER NETWORKS

The study of the behavior of any filter requires the calculation of its i)ropagation constanty,
attenuation a, phase shift fand its characteristic impedance Z,.

T-Network

Consider a symmetrical T- network as shown in Fig. 9.4.

_22_'1_ Z4
e AAA A2
z2 Zo
14 ?,

Fig.9.4

. Iftheimage impedancesatport1- 1'andport2- 2'areequal to eachother,theimage
impedance is then called the characteristic, or the iterative m%pedance, Z,.Thus, if the networkin
Fig.9.4isterminated in Z, its inputimpedance will also be Z,. The value of input impedance for
the T- network when it is terminated in Z,is given by



y Z, 3
Z, Z, 2‘ +Z()J
A
1 — ?
5 +42 +ZO
also Zin = Z()
. Z
Z, 2z2[ 2‘ +Z(,J
ZO ——— —+
z, =2 (ZiZ, +22,7,)

2 Z,+2Z,+22,

| Z} 4227, +2Z,Zy+22,Z, +4Z,Z,

Zy
2(Z, +2Z, +22Z;)
478 =27 42,2,
22

The characteristic impedance of a symmetrical T- section is

,ZZ '
Zor = _‘:— +Z,Z,

(9.1)
Zor canalso be expressed interms of open circuitimpedance Zyc and short circuitimpedance Z
scOf the T—network . From Fig. 9.4, the open circuitimpedance Z oc =Z4/2+Z , and

Z 2 R
Zs(* el
)
2 2
3 zZ? +4z,Z,
i 2Z, +4Z,
Z2

c

Zoe X Zgo = Z1Z5 + -
Z()chc

(9.2)
Propagation Constant of T- Network
By definitation the propagation constant Yof the network in Fig.9.5 is given by Y=log ¢ l./I,



Writing the mesh equation for the 2nd mesh, we get

Z1_ Z1
2 2
1 ANAN/ AN ——— 2

2
z =

Zl
SL 17, 27,
7, o R e oY
1, Z,
"Z'L""Zz +ZO :Zze'y
2 - ; 2
Z, =2,(e -1)——5
The characteristic impedance of a T — network is given by
2
Z
Zor = 7|— + Z,Z,
4

Squaring Esq. 9.3 and 9.4 and subtracting Eq.9.4 from EQ.9.3, we get

(9.3)

(9.4)



2, vy 2 le Y le
Z3(" =1 + = Z,Zy(" — 1)~ =22, =0

Zi" -1 ~2,Z,(0 He" — D=0
Zi(—1)?>—-2,Z,e¥ =0
Z,(e¥—1)*>—-Ze"=0

(e‘Y 1)2 5l Zle‘y

ZZ

P BB Y LY. 4
Z5e5,

Rearranging the above equation, we have

e V(e +1—2eY)= =1L
ZZ

Dividing both sides by 2, we have

e’ +e Z
2Z,
coshy =1+ £
27,

(9.5)
Still another expression may obtained for the complex propagation constant in terms of
the hyperbolic tangent rather than hyperbolic cosine.



. 1 £l 62
sinhy=—,/Z7, sl i O
(9.6)
Dividing Eq.9.6 by Eq.9.5, We get
7 ‘
tanh vy = OTZ
2 2
Z
L
But Zz + R ZOC
2
Also from Eq. 9.2,
ZOT =/ ZOchc
h e Zsc
tanh vy = Zo.
Also sinh % == \/%(cosh v—1)
Where coshy —1+(Z£,/2Z,)

— Zl
N3z 9.7)
m -Network

Consider asymmetrical m— section shown in Fig. 9.6. When the network is terminated in Z o at port 2
— 2 " its input impedance is given by

Z4 2
1* — NN <
/14 / />
2Z> >7> Zo
17e =

Fig.9.6
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ZZZ‘Z‘ 2z 2+§ ] '
Dy L 2 0
mn
Z, + 2%3 2o oy
27, + Zo

By definition of characteristic
impedance, Z;, = Z,
2Z5 Zo
2Z, +Z,

£z 2o 3.0
2Z, 2y

7 [Zl +

ZO=

Zy¥

22x20 22,7, = 22,222 +ZoZ, + Y e Zs)
2Z, +Z, 2Z, + Z,)
27,2,Z, + Z,Z2 +2Z3Z, +4Z5Zy + 22520
2

—4Z,Z% +22ZZ,2Z, +4ZyZ;

ZyZ, +

Z2(Z, +42Z,)=4ZZ;
AL 4Z,Z;
" 2z +42,

Rearranging the above equation leads to
Z() = ZlZZ
14 Z /A Z;
@wihich is the characteristic impedance of a symmetrical mr-network
>

T 2,2,
Ot e =
& Wz | 4

From Eq. 9.1

ZZ
Zor =\/‘: + 2,2,

ZiZ
ZO1r == 1722
ZOT

(9.9)



Z onCan be expressed interms of the o‘)er] circuitimpedance Z oc and shortcircuitimpedance
Z sc of the Tnetwork shown in Fig.9.6 exclusive of the load Z ¢

From Fig.9.6, the input impedance at port 1- 1 when port 2 — 2 is open is given by
2ot 22,(Z, +22,)
40 ,‘ S =

Z,+4Z,

Similarly, the input impedance at port 1 — 1 when port 2 — 2 is short circuit is given by
27225
905t -
2Z, + Z,

AZi 25 anves. 2y %
Z,+4Z, 1+2Z,/4Z,

Hence Z,.%xZ, =

Thus from Eq. 9.8

Z()-n' == Z()c Zsc
(9.10)
Propagation Constant of m - Network

s ;_The propagation constant of a symmetrical TT— section is the same as that for a symmetrical T —
ection.

ie. cosh y= 14—
1 2%

CLASSIFICATION OF PASS BAND
AND STOP BAND

Itis possible to verify the characteristics of filters from the propagation constant of the network. The
propagationconstantV, beingafunctionoffreq uencal, thepassband, stolp bandandthecut- off
point, i.e. the point of separation between the two bands, can be identified. For symmetrical T or 1—
section, the expression for propagation constant Yin te{}ns of the hyperbolic functionsis given by Eqs
9.5and 9.7 in section 9.3. From Eq.9.7,sinh ¥/2 =~N(Z 1 /14Zy) .

If Z, and Z, are both pure imaginary values, their ratio, and hence Z, /4Z, , will be a pure real
number. Since Z; and Z, may be anywhere inthe range from- jito +j,, Z1/4Z, may also have any



real value between the infinite limits . Then sin h Y/2 =~Z , [N4Z, will also have infinite limits, but may
be eitherreal orimaginary depending uponwhether Z,/ 4Z, is positive or negative.

We know that the propagation constant is a complex function Y= a+Tj[3, the real partofthe
complex propagation constant a, is ameasure of the change in magnitude of the current or voltage in
the network ,known as the attenuation constant. Bis ameasure of the difference in phase
between the inputand output currents or voltages. Known as phase shift constant Therefore aand 8
take on different values depending upon the of Z,/ 4Z, . From Eq.9.7, We have

sinh L = sinh[g + ﬁ] = sinhgcos-Li +jCOSthinE
2 20 2 y I e 2

Z)
4z,

(9.11)
Case A

IfZ,and Z,arethe sametype ofreactances,then[Z,/4Z,]isrealandequalto say a+Xx.
The imaginary part of the Eq. 9.11 must be zero.
(9.12)

B

pe (84
sinh —cos— = x ; EMO
2 yin —

(9.13)
aand Bmust satisfy both the above equations.

Equation 9.12 can be satisfied if /2 = 0 or nr, where n =0, 1, 2,....., then cos 3/2 = 1 and sinh a/2= x
=\(Z,14Z,)

That x should be always positive implies that

L l
4,

(9.14)

>0 and o = 2sinh”




Since a#0, it indicates that the attenuation exists.
Case B

Consider the case of Z; and Z, being opposite type of reactances, i.e. Z,/ 4Z, is negative ,
making VZ, / 4Z, imaginary and equal to say Jx

*Thereal partofthe Eq.9.11 must be zero.

B

3 o
sinh —cos — =
4 2

(9.15)

o .
cosh—sin—=x
2 2

(9.16)

Both the equations must be satisfied simultaneously by aand 8. Equation 9.15 may be satisfied
when a= 0, or when B=1r. These conditions are conSidered separately hereunder

. (i) Whena=0;from Eq. 9.15, sinha/2=0.and from Eq.9.16 sin /2 =x="(Z,/4Z,) . Butthe
sine can have a maximum value of 1. Therefore, the above solution is valid only for negative Z,/4Z,
,and having maximum value of unity. Itindicates the condition of pass band with zero attenuation
and follows the conditionas

)= {‘ =< 0

=2

Z

B—2sint - [|=2=
a4z,

(9.17)
(ii) When B= 11, from Eq.9.15, cos /2 = 0. And from Eq.9.16, sin p/2 =+ 1; cosh a/2 = x = \(Z, / 4Z>)

Since cosh a/2 21, this solution is valid for negative Z, / 4Z, ,and having magnitude
greater than, or equal to unity. It indicates the condition of stop band since a#0.

—a< L <1

4z,
Zl
4z,

o — 2cosh !

(9.18)

__ltcanbe observed that there are three limits for case A and B. Knowing the values of Z,
and Z,, itis possible to determine the caseto be ap?lled tothefilter. Z, and Z, are made of
different types of reactances, or combinations of reactances, so that, as the frequency changes, a
filter ma)épass from one case to another. Case A and (ii) in case B are attenuation bands, whereas (i)
in case B is the transmission band.



Thefrequencywhich separatesthe attenuationbandfrom passbandorviceversais
calledcut- offfrequency. Thecut- offfrequencyisdenotedby fc,andisalsotermedasnominal
frequency. Since Zyisrealinthe pass band and imaginary in an attenuation band, fc is the frequency
atwhich Z, changes from being real to being imaginary. These frequencies occur at

Z

=Q0or Z, =0

422 9.18(a)
Zl
Az =—lorZ +4Z, =0
2 | 9.18
() The above conditions can be represented graphically, as in Fig.9.7.
foz (nepers) 4
Stop Pas St
Band Banz Bacr.ﬂi B (T
——————— 7T
; /2
2 e 4 Z1 :
a4z,

Fig. 9.7

CHARACTERISTIC IMPEDANCE IN
THE PASS AND STOP BANDS

Referring to the characteristic impedance of a symmetrical T- network, from Eq. 9.1 We have

7é 7
AR b iy i A o e
0r 4 1542 152 422

If Z, and Z, are purely reactive, let Z; = jx; and Z, = jx, , then



(9.19)
A pass band exists when x; and x, are of opposite reactances and

X
4x,

Substituting these conditions in Eqg. 9.19, we find that Zor is positive and real. Now consider
the stop band. A stop band exists when x; and x, are of the same type of reactances; then x,/4x, > 0.
Substitutingthese conditionsin Eq. 9.19, wefindthat Zoris purleyimaginaryinthis attenuation
region. Another stop band exists when x; and x , are of the same type of reactances, but with x,/4x,

<- 1.Then from Eq.9.19, Zo7 is again purly imaginary in the attenuation region.

—1<L <0

_ Thus,inapassbandifanetworkisterminatedinapureresistance Ro(Zor= Rg,th_e input
impedance Is Rp and the network transmits the power received from the source to the R without
any attenuation. In astop band Zqris reactive. Therefore, if the network is terminated ina pure
reactance (Zo = pure reactance), the inputimpedance is reactive, and cannot receive or transmit
power. However, the network transmits voltage and current with 90~ phase difference and with
attenuation. It has already been shown that the characteristics impedance of a symmetrical -
section can be expressed interms of T. Thus, from Eq.9.9,Zn= Z1Z,/Z¢1 .

~_ SinceZ;and Z,are purelyreactive, Zorisreal,if Zorisreal and Zyisimaginaryif Zor
is imaginary. Thusthe condifions developedfor T—section are valid for - sections.

CONSTANT -K LOW PASS FILTER

A ?ettwork, either T orTr, issaidto be ofthe constant—k type if Z, and Z, ofthe network satisfy the
relation

Z.Z = K
(9.20) e

Where Z, and Z, are impedances inthe T and trsections as shown in Fig.9.8.Equation 9.20 states
thatZ, and Z,areinverse iftheir productis a constant, independent of frequency. Kisareal
constant trllat |fs_|the resistance. kis often termed as designimpedance or nominal impedance ofthe
constant k —filter.



The constantk, T or mitype filter is also known as the prototype because other more complex

network can be derived from it. A prototype T and T— section are s

hownin

Z4 Z;
2 20 Z4
I T —— . .
L/2 L/2 fzﬂim -
i I
Z2 T¢C 2Z, T cl2 c/2 Jf 27,
(a) (b)

Fig.9.8

Fig.9.8(a) andf(b), where Z; =jw_and Z,=1/jwc . Hence Z;Z, = L /C =k*whichis

independent of frequency.

L ,
C \cC

(9.21)

Since the product Z, and Z, is constant, the filter is a constant — k type. From Eq.9.18 (a) the

cut- off frequencies are Z, /14Z, =0,

By
i-c. -_‘-—w LC —e O
4
i.e. f =0 and £ = ]
~ W2LC
—————— Rt _l

4
o~ 1

or T Y-
wNLC

(9.22)

The pass band can be determined graphically. The reactances of Z, and 4Z, will vary with
frequency asdrawninFig.9.9.The cut- offfrequency atthe intersection of the curves Z, and- 4z,is
indicatedasfc.Onthe X—axisas Z;=- 4Z,atcut- offfrequency, the passbandliesbetween

the frequencies at which Z, =0, and Z,; =- 4Z,.



Attenuation
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>

Fig.9.9

Allthe frequencies above fc lie in a stop or attenuation band, thus, the network is called a low-
pass filter . We also have from Eq.9.7 that

Ly Z /—szc JovJLC
sinh— = |[—— = =
2 \4z, 4 2

From Eq.9.22
NJLC = -
Soar
& 2 e 20 i
h-=>"—"=9—= j=*—
Sin > 211:,; 5/ j;,

We also know that in the pass band

e £} <0

4z,
2
4
2
—1<—[—L] <0
b
or L<1
i S
and B:Zsin"'[——];azO

In the attenuation band,
Z] <—-l,i-e.%'<1 %L> ,

a4z, %
o« = 2cosh ! L1 | = Fsoshs! b ;B=nr
4z, S

The plots of aand Bfor pass and stop bands are shown in Fig.9.10



Thus, from Fig. 9.10, o= 0, B= 2 sinh™* (f /fc ) for f < fc
a= 2cosh™* (f/fc); B= mrfor f > fc

—_—

fc

=
N -
—
- -
O
N

S N4
o

Fig .9.10

The characteristics impedance can be calculated as follows

=z
Zo,.:\[z,zz[1+4z‘2]
_Ji[l_szC]
= NC 4
f 2>
7)

%T=k1—[

(9.23)

_ - FromEQ.9.23, Zgrisraelwhen f<fc,i.e.in thepass bandatf="fc,Zor;andforf>fc, Zoris
imaginary inthe attenuation band, rising to infinite reactance atinfinite frequency . The variation of Zor
with frequency is shown in Fig.9.11
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Fig.9.11
Similarly, the characteristics impedance of a T— network is given by

= ZIZZ o k

Z. =
Oar Z() . >
7
(9.24)
_ Thevariation of ZoywithfrequencyisshowninFig.9.11. Forf<fc, Zonisreal; atf=fc, Zoris
infinite , and for f >f¢ , ZoyIs imaginary . Alow pass filter can be deagnecffrom the specifications of
cut- off frequency ané) Toad resistance.

At cut- off frequency, Z, = - 47,

—4
Jw C
w2f2LC = 1

Jo L =

v

Also we know that k = +/L / C is called the design impedance or the load resistance

o
C.
w32 k2C2 = 1
C = —— gives the value of the shunt capacitance
T/,
. Kt . £
and L =k’C=— gives the value of the series inductance.

wf

J e

Example 9.1.

Design a low pass filter (both Trand T — sections ) having a cut- off frequency of 2 kHz

to operate with a terminated load resistance of 500 Q.

solution. Itisgiventhat k= V(L/C) =500 Q, and f =2000
Hz we knowthat L =k/mfc =500/3.14 x 2000 =79.6
mH

C = 1/mfck = 1/3.14.2000.500 = 0.318 pF



The T and 1m— sections of this filter are shown in Fig.9.12 (a) and (b) respectively.

L/2 = 39.8 mH L/2 = 39.8 mH L =796 mH
——BB60 B —— S LR
= L =
>3 B3
- C =0.3189 uf o g = s g
S (&3
(@) (b)
Fig.9.12
Constant K- high passfilter can be obtained by changing the positions of series and shunt arms of
the networks shown in Fig.9.8.The prototype high pass filters are shown in Fig.9.13,where Z; =- jlw¢
and Z, = jwL .
2:6 2C C
- e 1 ;
Z1 Z1 Z1
2 2
L S22 2L D 2% 2L Q 22
° ° e .
(@) (b)
Fig.9.13

_Again, itcan be observed thatthe product of Z; and Z, isindependent of frequency, and the
filter design obtained will be of the constant k type .Thus, Z,Z, are given by

pLY B Yy
CANT e oy S
5 SR

(=
C

The cut- off frequencies are given by Z; =0and Z, = - 47, .
Z; = 0 indicates j/wC =0, or w—a



FromZ,=- 47,
- jlwC = - 4 jwL
w’LC =1/4

|

41r\[L—C

or f=

(9.25)

The reactances of Z; and Z, are sketched as functions of frequency as shown in Fig.9.14.

Z>

Reactance —-
N

425
—— Passband —

Fig.9.14

As seen from Fig.9.14, the filter transmits all frequencies between f = fc and f = a. The point f¢
from the graph is a point at which Z;= - 4Z, .
From Eq.9.7,

Bl vocijone:1

sinh—!: 20, | pm——
47, 40’ LC

From Eq. 9.25,



4 LC
VLC = . -
4avf .

2/ r\2
P g —(m) (£ /—/—
2

4(02 v j
In the pass band, - 1< Z,/4Z, < 0, a= 0 or the region in which fc / f < 1 is a pass band B= 2 sin "' (fc/ f
)
In the attenuation band Z,/4Z,< - 1,i.efc/f>1
a= 2 cosh * [Z, / 4Z,]
=2cos Y(fc/f);B=-T

._.>f

Fig.9.15

The plots of aand Bfor pass and stop bands of a high pass filter network are shown in Fig.9.15.

A high pass filter may be desi%\ed sim\i/lar to the low pass filter by choosing a resistive load r
equal tothe constantk , suchthatR =k =+L/C



k 1
L 4mwCk
Since = £,
k
L= L2 and C = 1.
4rf, dmf k

The characteristic impedance can be calculated using the relation

]

o ’2[ ] \/c 42 LC]
2

w1

Similarly, the characteristic impedance of a T— network is given by

Zy

T SN el B Bty ket o - B e
(9.26) Zor =
Fig,9.16

0 —
The plot of characteristic impedanfes with respect to frequéncy is shown in

Example 9.2.



Design a high pass filter having a cut- off frequency of 1 kHz with a load resistance
of 600 Q.

Solution. Itis giventhat R =K =600 Qand fc =1000 Hz

L =K /47if,=600/4xTTx 1000 =47.74
mH C = 1/47rkfc = 1/411x 600 x1000 =
0.133pF

The T and 11— sections of the filter are shown in Fig.9.17.

2C = 0.266 1F 2C = 0.266 nF C = 0.133 nF
—} s = I} —
=
L=47.74 mH 2L © 2 95.48 mH
o
D
(a) (b)
Fig.9.17

m - DERIVED T - SECTION FILTER

Itis clear from Figs.9.10 and 9.15 that the attenuation is not sharp in the stop band for k- type filters.
The characteristicimpedance, Z,is a function of frequency and varies widely in the transmission
band. Attenuation can be increased in the stop band by using ladder section, i.e.by connecting two or
more identical sections. In ordertojoin thefilter sections, itwould be necessary thattheir ~
characteristic impedances be equal to each other at all frequencies. If their characteristic
impedances match atall frequencies, they would also have the same pass band . However,
cascading is not a proper solution from a practical point of view .

~ This is because practical elements have a certain resistance, which gives rise to
attenuation in the pass band also. Therefore, any attempt to increase attenuation in stop band b
cascading also results in an increase of ‘a’ in the'pass band .If the constant k section is regarded as
the prototype, itis possible to design afilter to have rapid attenuation in the stop band , and the.
same characteristic impedance as the prototype at all frequencies . Such afilter s called m — derived
filter. Stg) ose a prototype T—network shown in Fig.9.18(a) has the series arm modified as shown in
Fig.9.1 &)) ,where misaconstant. Equating the characteristicimpedance ofthe networksin
Fig.9.18, we have




Z4/2 2412 mZ4/2 mZ4/2

Z, li iiz’z
) (b)

(a

Fig.9.18

Zot=Zot’

Where Zor ,is the characteristic impedance of the modified (m — derived) T — network.

ZZ 222
,/—4#+Z,Z =\/”’4' +mZ,Z}

ZZ 222
422, = 34—‘- +mZ,Z,

Z2
A -4¢(1—m2)+ Z.Zs

74 Z
Z} =L (1l—m?)+~%
4m m

(9.27)
It appears that the shunt arm 2Z " consists of two impedances in series as shown in Fig.9.19.

=472 m=4/2
s 57,7 VT e oo ik G5k
Z>frry

Z4(1—mm>)
grr

Fig.9.19



_ From Eq.9.27, 1 — m%4m should be positive to realize the impedance Z , physically ,
i.e.0<m<1.Thus m-derived section can be obtained from the prototype by modifying its series and
shuntarms.The sametechnlcaue canbe appliedtotrsection network. Sul?pose aprototype m—

network shown in Fig. 9.20 (a) has the shunt arm modified as shown in Fig. 9.20(b).
Z1 Z/1
p [ R Y gt g -
o { ¢ 0 l | 0
22 2 22,/ 22,/
(a) (b)
K Fig.9.20
ZoT[: Z

0
Where Z o4is the characteristic impedance of the modified (m — derived) 17— network.

2
1+ '
\ 4-Z,/m



Squaring and cross multiplying the above equation results as under.

4aZZ N z7!

m

(42,Z, + mZ|Z,) =

Z, 422 2
—+—=—-mZ, |=4Z,Z,
m m i

Z\Z,
Z, i Z, mZ,
4m m 4
Z,\Z,

or le =3

s Z
2 +—La-— mz)
m 4m
2 -
4m : le 7Z2 4m
(1—m"°)

(1—m? )
Z, 4m?

Z,4m
m(1 —m?) (1—m?)

272,

+Zm mZ +

(9.28)

Itappeays that the series arm of the m —derived rsection is a parallel combination of mZ; and
4mZ,/1 —m* . The derived m section is shown in Fig.9.21.
m - Derived Low Pass Filter

In Fig.9.22 , both m —derived low pass T and Trfilter sections are shown. For the T —section shown in
1|::Ig. .22(a)f, the shunt arm is to be chosen so that it is resonant at some frequency f,above cut- off
requency fc .

Ifthe shuntarm is series resonant ,itsimpedance will be minimum or zero .Therefore , the
outputis zero and will correspond to infinite attenuation at this particular frequency . Thus, atf,

1/mw,C = 1 — m%4m w, L , where w, is the resonant frequency



mZ4

L 2 D
2Z>/m ;im_ z, 2Z5/m
- 3
Fig.9.21
—_m2
s
mil/2 mil/2 s
mc
¥l miL |
A iiid mei2 == == mc/2
am L F f
(a) (b)
Fig.9.22
e .
aA—m?)LC

1
T amJLca—m?)

<

Since the cut- off frequency for the low pass filter is f. = 1/VLC

e
fom
1—m?
(9.29)
2
or m= 1—[%]

(9.30)



Ifasharp cut- offisdesired,f,should be neartof.. From Eq.9.29,itis clear that for the
smallerthevalue of m,f,comesclosetof..Equation 9.30 shows thatiff.andf,are specified, the
necessary value of m may then be calculated. Similarly, for m —derived trsection, the inductance

and capacitance in the series arm constitute aresonantcircuit. Thus, atf,a frequency corresponds to
infinite attenuation, i.e. at f,

1

2
[ 1,_ ” ]w,.C
A

> <1

W, =

— L.C(1 —rnz)
1

mw, I —

Sy =
'n'\/LC(l — m?> )
: ; 1
Since, Jo =
N LC
S

(9.31)

Thus for both m — derived low pass networks for a positive value of m(0<m < 1), f,>f. .

Equations 9.30 or 9.31 can be used to choose the value of m, knowing f.andf, Afterthe value of
mis evaluated, the elements of the T or —networks can be found from FI%_QI%/Z. The variation of

attenuationforalowpass m —derived section can be verifiedfroma=2 cos Z,14Z,forf<f<f,.
For Z; =jwL and Z, = - j/wC for the prototype.
a = 2cosh™’ —‘—2—
7
S
m-=-
and B = 2sin"! i) = 2sin~! Je

1

2
\/l —[/f] (1—m)?

C

Figure 9.23 shows the variation of a, Band Z, with respect to frequency for an m —derived
low passfilter.



feka = 0y

Example 9.3

_ Design am—derived low pass filter having cut- offfrequency of 1kHz, design
impedance of 400 Q, and the resonant frequency 1100 Hz.

Solution. k=400 Q, f-=1000Hz; f,=1100
Hz From Eq.9.30

it i J [1000 Z
m ,/ [f,] 1 1100] 0.416

LetusdesignthevaluesofLand Cforalowpass, K—typefilter (prototypefilter).

Thus,
k 400
L= = =127.32
Ty, T =< 1000 MRS
1 1
C = = = 0.795 wF

wkf.. ar < 400 < 1000

The elements of m —derived low pass sections can be obtained with reference to Fig.9.22.
Thus the T- section elementsare



mL _ 0.416x127.32x10"°
2 2

= 26.48 mH
mC = 0.416 X 0.795 X 106 = 0.33 uF

1—m? Vg 1—(0.416)7

- %127.32%107> = 63.27 mH
4m 4-0416

The ar-section elements are

mC _ 0.416x0.795x10"°

— 0.165 pF
2 2

L=m* 1—(0.416)°
==
4m 4x0.416

%0.795%10 % = 0.395 uF

mL = 0.416 X 127.32 X 103 = 52.965 mH

The m —derived LP filter sections are shown in Fig.9.24.

52.965 mH

26.48 mH 26.48 mH — 8000
W i -

=
s l 0395 uF | &
- T°
63.27 mH o T o
(a) (b)

Fig.9.24

m — Derived High Pass Filter

In Fig.9.25 both m — derived high pass T and 17— section are shown.

~Ifthe shunt arm in T — section is series resonant, it offers minimum or zero
impedance.Therefore, the outputiszeroand, thus, atresonance frequency or the frequency
corresponds to infinite attenuation.



w, =
4m
”m »,———>C
1 —m
4m_L
1—m?
2CIm 2C/Im
e e fl el - | %
L/im c/m
2L/m
_4m o~ 2L/m
o T 1-m? e £ =
(a) (b)
Fig.9.25
2
R i Nk 1 S l—m
G e g 4m . 4LC
m1—m?>

_\ll—m2 7 _\/l~mz

W, = ———Oor R AT L
: 2JLC 4m~JLC

9.25, the cut — off frequency fc of a high pass prototype filter is given by

From Eq
o T
"% AanJLC
foo = fiN1—m?
(9.32)

m=_|{|l—|—

Je

_Similarly,for the m —derived 1—section , the resonant circuit is constituted by the series
arm inductance and capacitance . Thus, at f,

(9.33)



i1 i .L——]—-—
1 — 2

oo ;_ el _l_ L |
f | |
o | |
Atten'uatioL IPass band
Band I
|
l
l
0 | ,
-—ff,x fc s i f
(a)
Fig.9.26

Thus the frequency corresponding to infinite attenuation is the same for both sections.

Equation 9.33 may be usedto determine mforagivenf,andf.. The elements ofthe m—
derived high pass T or m— sections can be found from Fig.9.25. The variation of a, Band Z, with

frequency is shown in Fig. 9.26.

B
ol Te he 7
|
|
3¢ I' Pass band——_
Attenuation

Band T -

(b)

Fig.9.26



Example 9.4.

_ Designam- derived high passfilter witha cut- offfrequency of
impedance of 5Qand m = 0.4.

Solution .For the prototype high pass filter,

k 500

L:' -
Anf.  4xarx10000

= 3.978 mH

el fars |
Amkf., 47 x500x10000

= 0.0159 uF

The elementsofm- derived high pass sections can be obtained with reference to Fig.9.25.Thus,

the T- section elementsare

2C _ 2x0.0159%10"°

10kHz; design

—— O. N
Tt i 0795 wF
L _3978x10 ° S
” 0.4 TR =
4 4><0.4
——C=——""_30.0159%10-% — 0.
T 1—(0.9) 0302 wF

The rr-section elements are

2L _ 2x%x0.0159x103
V72 0.4

= 19.89 mH

4m 4<0.4
S 2% LZ—*Z
1—m 1—(0.4)

C  0.0159
T rea 107 ° = 0.0397 uF

=<3.978%<10 3 = 7.577 mH

0.4
T and Trsections of the m —derived high pass filter are shown in Fig.9.27.
7.5777 mH
0.0795 pF 0.0795 uF 5508
eEe—— = e
= [ teese e
9.945 mH £ 0.0397 puF [
D D
< o
D D
0.0302 nF e =
~ 2 % 807 a
(a) (b)



Fig.9.27

BAND PASSFILTER

Asalready explained in Section 9.1, aband passfilter is one which attenuates all frequencies below
alower cut- off frequency f; and above an upper cut- offfrequency f,. Frequencies Iylnﬁy between
f,and f,comprise the pass band ,and are transmitted with zero attenuation .A band pass filter may
be obtained by using a low pass filter followed by a hlgf;_h pass filter in which the cut- off frequency of
the LP filter isabove the cut- off frequency of the HP filter , the overlap thus allowing only a band of
frequenciesto pass . This is not economical in practice; itis more economical to combine the low

and high pass functions into a single filter section .

Consider the circuitin Fig.9.28, each arm has a resonant circuit with same resonant
frequency, i.e.theresonantfrequency of the series arm and the resonant frequency of the shunt
arm are made equal to obtain the band pass characteristic.

Ly Ly
2 2Cq 2C4 24 C1 L4
<500 1 =T 000> = AP oy o g
i o foups f0»
CZ L_ﬂ_- L2 C2/2 L__ 2L2 C2/2 ‘[ 2L2
(a) (b)
Fig.9.28

For this condition of equal resonant frequencies.

For this condition of equal resonant frequencies.

o — = ——— for the series arm
2 2wy(C

from which, ®?,L,C, =1
(9.34)



and _l- = gl for the stunt aiin
0yC,

from which,  gL,C, =1
(9.35)

WL Cy =1 = w3 L,C,

L,C, = L,C,
(9.36)

The impedance of the series arm, Z, is given by

) e gl * £ > . (‘)Zl’lcl_l
ol a‘a]—f[ G

The impedance of the shunt arm, Z, is given by

- 1
w MO 1509
bl 12 Secs® X745y,
ZSas F 2
ijz i 7-_1___‘ 1—w L2C2
JoC,
2 i
| @ C; —1 w
lez = Jj Ll 1 J 21’2

Crio|b=w?LiC,
From EQ.9.36
L,Cy = L,C,

2122=%=%=k2
1 2

Wherek s constant. Thus, thefilterisaconstant k—type . Therefore, foraconstant k—typeinthe
pass band.

o )

< 0, and at cut-off frequency

2

Z2=—-42,Z, = —4k*
Z = 2k



i.e.the value of Z, atlower cut- off frequency is equal to the negative of the value of Z, at the upper
cut- off frequency .

1 1
— eeiabe S50 Jéy L
[jwlcl ¢ lL]] [ijCI s l}
1 1
7 Dy = Wit 47
Gl [ml : wncl] [wZCl e I]

(€3]
(1— i ;) = —(03L,C, — 1)
@y
(9.37)
From Eq.9.34, L,C; = 1 /wg?
Hence EQ.9.37 may be written as

2 2 2
W W5 —w W,

WowW, — W] W, =
wWo (W) + @) = W w, (w, + w,;)
wh = ww,

(9.38)

I |

@® I |

e P band

8§ | Pass ban | z

S |

P |

o l -4z,
f

f1 i fO f2 —_—f




Fig.9.29

~ Thus,theresonantfrequency isthefgeometric mean ofthe cut- offfrequencies. The
variation of the reactances with respect to frequency is shown in Fig.9.29.

If the filter is terminated in a load resistance R = K, then at the lower cut- off frequency.

1
——t jo, L, | = —2
[jw,C, AR <Jp
. Ly =K
—— — w —
G 144

Since L,C = —12—
Wq
2
w
- :"2)- = 2kw,C,
2
5 A
Jo
Ve o .
Lo /;-1/.2 :4'"'/{/1(/1 Gt :\/fi_/z)
Jo =Sy = 4Tk £5,C,
D s
Y Amko, fs
(9.39)
Since LG = L2
0
e 1 g awkf, />
= k
3 w(/f2 —N)

(9.40)



To evaluate the values for the shunt arm, consider the equation

225 = LA ENE
cioke;
T T (2 — 1)k

a7/, />

(9.41)
L ]

and Cy=—d=—e

ko m(fh =Nk
(9.42)

~ Equations 9.39through 9.42 are the design equations ofagrototype band passfilter. T he
variation of a, Bwith respect to frequency is shown in Fig.9.30 .
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! i e s

fy fo 2 —f P i fo
Fig.9.30

Example 9.5.

_ Design k—tme band pass filter having a design impedance of 500 Qand cut- off
frequencies 1 kHz and 10 kHz.

Solution .

k =500 Q; f; = 1000 Hz; f, = 10000 Hz
From EQ.9.40,

£ 200 32:90 mH = 16.68 mH

w(f,—f) w9000 m

Ll:

From Eq.9.39,

fo= ] 9000
Amkf,f,  4xmwx500x1000x10000



From EQ.9.41,

L, = C,k =357 mH

From Eq.9.42,
C, = % = 0.0707 wF

Each of the two series arms of the constant k, T — section filter is given by

ﬂ - m = 8.84 mH
2 2

2C, =2 X 0.143 = 0.286 nF
And the shunt arm elements of the network are given by
C, = 0.0707 wF and L, = 3.57 mH
For the constant-4, 1t section filter the elements of the series arm are

C, = 0.143 wF and L, = 16.68 mH

The elements of the shunt arms are

C, 0.0707
2

= 0.035 nF

2L, = 2 X 0.0358 = 0.0716 H

BAND ELIMINATION FILTER

Aband elimination filteris one which passes without attenuation all frequencies less than the lower
cut- offfrequency f;, and greater than the upper cut- offfrequency f, . Frequencies lying between f;
andf,are attenuated. Itis also known as band stopfilter. Therefore, a band stopfilter can be
realized by connectlnfglalqw passfilterin parallelwith ahigh pass section, inwhich the cut- off
frequencyof low pass filter is below that of a high pass filter. The configurations of T and rconstant k

band stop sectionsare showninFig.9.31. The band eliminationfilteris designedinthe same
manner as is the band pass filter.



L4/2 L4/2 L4

o000 — 00 ) B0 )
x| s — = L
2C; Lo 2C4 2L C1 -] N
T 02 T 02/2 _.[_ 02/2
(a) (b)
Fig.9.31

As for the band pass filter, the series and shuntarms are chosen to resonate atthe same
frequency wy . Therefore, from Fig.9.31 (a), forthe condition of equal resonantfrequencies

7 40 5
2ot 2 for the series arm
2 2‘”0C1
1
or (.0(2) -
L,
(9.43)
ol , = 2 for the shunt arm
oS
S 1
T2 L8
(9.44)
1 >3 1 2
1, L,C5
Thus L, C, = L,C,
(9.45)
It can be also verified that
Z,Z5 = L = L — k2
, (&
(9.46)
nd =T
J J1/2
(9.47)

At cut- off frequencies, Z, = - 4Z,
Multiplying both sides with Z, , we get



k
Z,=%j—
2 J )
(9.48)
If the load is terminated in a load resistance, R = k , then at lower cut- off frequency
4 k
Zz—.l[ —‘”11'2]21—
w,C, 2
1 —(.olLZ = —k"
G,
2 k
From Eq.9.44,
1
L,C, = o
@Wo
2
w; k
Deand TN C
(.o(z, 2“’1 2
f 2
1—|=L| =%nf;C
(4] “rmics
ol g ) _[_f_,]
katf, Jo
Since Jo = NNJ>
neilbig i, L]
kav | f, />
RN N1 —f.l
kw| fi/>
(9.49)
From Eq.9.44,
o
LZCZ
piool i L8 VoA Us
h S =y =i 2 3y baon
WO wq /> J)
Since Jo==al i S
e k
am(f2 — )

(9.50)



Also from Eq. 9.46,
et L
ol 6

L, =k*C, = -f;[———j ‘2/.—/'."‘i ]
J1J2

(9.51)
L,

and C; = e

(9.52)
1 1
amk(f, — 1)

Z4
Pass

\ Attenuation Pass

f1 fo f2 R f

Fig.9.32

Thevariation of reactances withrespecttofrequencyis showninFig.9.32. Equation 9.49
through Eq.9.52 isthe design equations of a prototype band elimination filter. The variation of a,f3
with respect to frequency is shown in Fig.9.33 .
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Fig.9.33

Example 9.6.

 Designaband elimination filter having a designimpedance of 600 Qand cut- off
frequencies f; =2 kHz and f, =6 kHz.

Solution. (f, — f;) = 4 kHz

Making use of the Eqs.9.49 through 9.52 in Section 9.10, we have

>




lei Lmfi) . 600x4000 2o
1wl Gl 1w % 2000 % 6000
1 1
C, = = = 0.033 wF
dk(fy — f;)  4xwx600(4000)
Fii 1 o GO0 IR S
amk(fy — f;)  4w(4000)
C, = L5 97 Bl 1) P il ]:0.176;’.17
kw| fif, | 600x[2000x 6000

Each of the two series arms of the constant &, 7-section filter is given by
A =31.5mH
2

2C, = 0.066 nF
And the shunt arm elements of the network are
L, =12mH and C, = 0.176 wF
For the constant £, r-section filter the elements of the series arm are
L, =63 mH, C, = 0.033 nF

and the elements of the shunt arms are

2L, = 24 mH and % = (0.088 wF



