
LEARNING MATERIAL

ON

DATA STRUCTURE

(3RD SEMESTER)

DEPARTMENT OF INFORMATION TECHNOLOGY

Prepared by
Ms. Manalisa Giri
Lect. IT
Govt.Polytechnic,Bhubaneswar

 Subject Name : Data structure 3rd semester IT

 1.0 INTRODUCTION

Section 1.1Data:

Data can be defined as a representation of facts, concepts, or instructions

in a formalized manner, which should be suitable for communication,

interpretation, or processing, by human or electronic machine. Data items

refer to single unit of values. Data are characteristics or information, usually

numerical that are collected through observation. In a more technical

sense, data is a set of values of qualitative or quantitative variables about

one or more persons or objects. They are quantities, characters, or

symbols on which operations are performed by a computer, which may be

stored and transmitted in the form of electrical signals and recorded on

magnetic, optical, or mechanical recording media.

Information:

Information is organized or classified data, which has some meaningful
values for the receiver. Information is the processed data on which
decisions and actions are based.

For the decision to be meaningful, the processed data must qualify for the

following characteristics −

• Timely − Information should be available when required.

• Accuracy − Information should be accurate.

• Completeness − Information should be complete.
Data types:

A data type is the most basic and the most common classification of data. It

is this through which the compiler gets to know the form or the type of

information that will be used throughout the code. Data Type is the kind or

form of a variable which is being used throughout the program. It defines

that the particular variable will assign the values of the given data type only.

Some basic examples are integer, float, double, character, string etc

Section 1.2 Data structure

Data may be organized in many different ways; the logical or

mathematical model of a particular organization of data is called data

structure. A well-designed data structure allows a variety of critical

operations to be performed, using as few resources, both execution time

and memory space, as possible. Data structure introduction refers to a

scheme for organizing data, or in other words it is an arrangement of data

in computer's memory in such a way that it could make the data quickly

available to the processor for required calculations.

A data structure should be seen as a logical concept that must

address two fundamental concerns.

1. How the data will be stored, and

2. What operations will be performed on it.

Computer programmers decide which data structures to use based

on the nature of the data and the processes that need to be performed on

that data. Some of the more commonly used data structures include lists,

arrays, stacks, queues, trees, and graphs.

Classification of Data Structures:

Data structures can be classified as

• Simple data structure

• Compound data structure

• Linear data structure

• Non linear data structure

Simple Data Structure: Simple data structure can be constructed with the

help of primitive data structure. A primitive data structure used to represent

the standard data types of any one of the computer languages. Variables,

arrays, pointers, structures, unions, etc. are examples of primitive data

structures.

Compound Data structure: Compound data structure can be constructed

with the help of any one of the primitive data structure and it is having a

specific functionality. It can be designed by user. It can be classified as (i)

Linear data structure and (ii) Non-linear data structure

Linear Data Structure: Linear data structures can be constructed as a

continuous arrangement of data elements in the memory. It can be

constructed by using array data type. In the linear Data Structures the

relationship of adjacency is maintained between the data elements.

Non-linear Data Structure: Non-linear data structure can be constructed

as a collection of randomly distributed set of data item joined together by

using a special pointer (tag). In non-linear Data structure the relationship of

adjacency is not maintained between the data items. Data structure

operations

The data appearing in our data structures are processes by means of

certain operations. In fact the particular data structure that one chooses for

a given situation depends largely on the frequency with which specific

operation s are performed. The followings are the operations that can be

performed on Data Structures:

1. Creation: Creating a data structure according to the requirement.

 eg: an integer array of 5 values.

 int ar[5]; //ar is the name of array

2. Insertion: Inserting values into data structure. There can be three ways to

insert elements into data structure: at the beginning, at the end and at the

desired location.

3. Traversal: Accessing each record or Visiting each element of the data

structure at least once.

4. Search: Finding the location with a given key value or Searching of an

element in the given number of elements. The elements can be searched

in two ways:

a. Linear Search: Simplest way of searching an element.

b. Binary Search: It works on divide and conquer rule.

5. Sorting: Rearranging the elements in a particular order, ascending or
descending order. There are several sorting algorithms: a. Bubble
Sort

b. Selection Sort

c. Quick Sort

d. Merge Sort

e. Heap Sort

6. Merging: Combining the data items of two sorted files into single file in

the sorted form.

7. Updation: Updating the current value in the data structure with some new

value.

8. Deletion: Deleting the undesired value from the data structure. There are
3 ways to delete a value from data structure. These are: from the
beginning, from the end and from the given location.

9. Copying: To make a duplicate of the data structure.

10. Concatenation: Simple joining of two or more strings to make a single

string.

Section 1.3 Abstract data type
An abstract data type, sometimes abbreviated ADT, is a logical

description of how we view the data and the operations that are allowed

without regard to how they will be implemented. This means that we are

concerned only with what data is representing and not with how it will

eventually be constructed. By providing this level of abstraction, we are

creating an encapsulation around the data. The idea is that by

encapsulating the details of the implementation, we are hiding them from

the user’s view. This is called information hiding. The implementation of an
abstract data type, often referred to as a data structure, will require that we

provide a physical view of the data using some collection of programming

constructs and primitive data types.

 An abstract data type is defined by its behavior (semantics) from

the point of view of a user, of the data, specifically in terms of possible

values, possible operations on data of this type, and the behavior of these

operations.

Section 1.4 Algorithms and its complexities

An algorithm is a well defined list of steps for solving a particular

problem. Sometimes, there is more than one way to solve a problem.

Algorithm is a step-by-step procedure, which defines a set of instructions to

be executed in a certain order to get the desired output. Algorithms are

generally created independent of underlying languages, i.e. an algorithm

can be implemented in more than one programming language.

Characteristics of an Algorithm

Not all procedures can be called an algorithm. An algorithm should have the

following characteristics −

• Unambiguous − Algorithm should be clear and unambiguous. Each of its
steps (or phases), and their inputs/outputs should be clear and must lead to
only one meaning.

• Input − An algorithm should have 0 or more well-defined inputs.

• Output − An algorithm should have 1 or more well-defined outputs, and

should match the desired output.

• Finiteness − Algorithms must terminate after a finite number of steps.

• Feasibility − Should be feasible with the available resources.

• Independent − An algorithm should have step-by-step directions, which

should be independent of any programming code.

We need to learn to develop efficient algorithm for the processing of
our data. It is required to compare the performance of different algorithms
and choose the best one to solve a particular problem. While analyzing
algorithms, we mostly focus on two major measures of the efficiency of an
algorithm:

1. Space

2. Time

Algorithm Complexity

Suppose X is an algorithm and n is the size of input data, the time and space
used by the algorithm X are the two main factors, which decide the efficiency
of X.

• Time Factor − Time is measured by counting the number of key
operations such as comparisons in the sorting algorithm.

• Space Factor − Space is measured by counting the maximum
memory space required by the algorithm.

The complexity of an algorithm f(n) gives the running time and/or the
storage space required by the algorithm in terms of n as the size of input
data.

The Complexity of an algorithm is the function or measure which gives
the amount of running time and/or space required by an algorithm for an
input of a given size (n). Time complexity of an algorithm quantifies the
amount of time taken by an algorithm to run as a function of the length of
the input. Similarly, Space complexity of an algorithm quantifies the amount
of space or memory taken by an algorithm to run as a function of the length
of the input.

• Time complexity of an algorithm quantifies the amount of time

taken by an algorithm to run as a function of the length of the

input.

• Similarly, Space complexity of an algorithm quantifies the

amount of space or memory taken by an algorithm to run as a

function of the length of the input.

Time and space complexity depends on lots of things like

• Hardware, Operating system, Processors,.

• Input

• Programming language

• Coding skill

• compiler

However, we don't consider any of these factors while analyzing the
algorithm. We will only consider the execution time of an algorithm.

Three types of complexity could be considered when analyzing algorithm

performance.

• Worst-case complexity Best-case complexity, and

Average-case complexity.

Only worst-case complexity has found to be useful.

The best-case complexity of the algorithm is the function defined by the

minimum number of steps taken on any instance of size n. It represents the

curve passing through the lowest point of each column.

(A)Time Complexity

Time complexity of an algorithm signifies the total time required by the
program to run till its completion.

The time complexity of algorithms is most commonly expressed using the

big O notation. It's an asymptotic notation to represent the time

complexity. For example, if the time required by an algorithm on all inputs

of size n is at most 5n 3 + 3n, the asymptotic time complexity is O(n 3).

Time complexity is commonly estimated by counting the number of

elementary operations performed by the algorithm, where an elementary

operation takes a fixed amount of time to perform. Thus the amount of time

taken and the number of elementary operations performed by the algorithm

differ by at most a constant factor.

And since the algorithm's performance may vary with different types of
input data, hence for an algorithm we usually use the worst-case Time

complexity of an algorithm because that is the maximum time taken for
any input size.

Now various notations used for Time Complexity are

1. Big Oh denotes "fewer than or the same as" <expression> iterations.

2. Big Omega denotes "more than or the same as" <expression> iterations.

3. Big Theta denotes "the same as" <expression> iterations.

4. Little Oh denotes "fewer than" <expression> iterations.

5. Little Omega denotes "more than" <expression> iterations.

(B)Space Complexity

Space complexity of an algorithm represents the amount of memory space
required by the algorithm in its life cycle. The space required by an algorithm
is equal to the sum of the following two components −

• A fixed part that is a space required to store certain data and variables
that are independent of the size of the problem. For example, simple
variables and constants used, program size, etc.

• A variable part is a space required by variables, whose size depends
on the size of the problem. For example, dynamic memory allocation,
recursion stacks space, etc.

Space complexity S(P) of any algorithm P is S(P) = C + SP(I), where C is
the fixed part and S(I) is the variable part of the algorithm, which depends
on instance characteristic.

Section 1.5Time Space Tradeoff

In computer science, the algorithms are evaluated by the

determination of the amount of resources (such as time and storage)

necessary to execute them. Most algorithms are designed to work with

inputs of arbitrary length. Usually, the efficiency or running time of an

algorithm is stated as a function relating the input length to the number of

steps (time complexity) or storage locations (space complexity).

The space-time tradeoff refers to a choice between algorithmic

solutions of a data processing problem that allows one to decrease the

running time of an algorithmic solution by increasing the space to store the

data and vice versa. We may take several examples of searching and

sorting techniques to compare their time and space complexity to measure

the Time-Space trade-off.

Example- while printing a telephone directory every year, a separate
temporary file for new telephone customer is created and subsequently the
directory is updated.

CHAPTER 2.0 STRING PROCESSING

Section 2.1 Basic terminology

Each programming language contains a character set which is used to

communicate with the computer. This set includes the following:

Alphabets: A B C D E……Z, a b c d…..z

Digits: 0 1 2 3 4 5 6 7 8 9

Special Characters: + _ * / ? () & % $ # @ ! = - ‘ ”

A finite sequence S of zero or more characters is called String.

In computer programming, a string is traditionally a sequence of characters,

either as a literal constant or as some kind of variable. A string is generally

considered as a data type and is often implemented as an array data structure of

bytes (or words) that stores a sequence of elements, typically characters, using some

character encoding. ... When a string appears literally in source code, it is known as

a string literal or an anonymous string. Depending on the programming language

and precise data type used, a variable declared to be a string may either cause

storage in memory to be statically allocated for a predetermined maximum length or

employ dynamic allocation to allow it to hold a variable number of elements.

The number of characters in a string is called its length. The string with zero

characters is called the empty string or null string.

Examples ‘THE END’ length of the string is 7.

 ‘TO BE NOT TO BE’ length of the string is 15.

 ‘’ The length of the string is 0.

Let S1 and S2 are two strings.The string consisting of the characters of S1 followed by

the characters of S2 is called Concatenation. S1 and S2 are denoted by “S1 //S2”.

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Character_(computing)
https://en.wikipedia.org/wiki/Character_(computing)
https://en.wikipedia.org/wiki/Character_(computing)
https://en.wikipedia.org/wiki/Literal_(computer_programming)
https://en.wikipedia.org/wiki/Literal_(computer_programming)
https://en.wikipedia.org/wiki/Literal_(computer_programming)
https://en.wikipedia.org/wiki/Variable_(programming)
https://en.wikipedia.org/wiki/Variable_(programming)
https://en.wikipedia.org/wiki/Variable_(programming)
https://en.wikipedia.org/wiki/Dynamic_allocation
https://en.wikipedia.org/wiki/Dynamic_allocation
https://en.wikipedia.org/wiki/Dynamic_allocation

For Example

‘THE’ //’ END’ = ‘THEEND’

‘THE’ //’ E’ ‘ //’END’= ‘THE END’

The Small square is used for blank space.Clearly the length of “S1 //S2” is qual
to the sum of the lengths of the strings S1 and S2.

A string Y is called a substring of a string S if there exist strings X and Z such

that

S = X//Y//Z

If X is an empty string then Y is called an initial substring of S, and if Z is an

empty string then Y is called a terminal string.

STORING STRING

Strings are stored in three types of structure

1. Fixed length structure (Record oriented)

2. Variable length structure with fixed maximum

3. Linked structure

1. In Fixed length storage each line of print is viewed as a record where all records have

the same length. The disadvantages are

• Time is wasted reading an entire record

• Certain records may require more space than available

• Changing the misspelled word requires the entire record to be changed

2. The Storage of Variable length structure with fixed maximum can be done in two

general ways:

(a) One can use a marker such as two dollar signs ($$) to signal the end of the

string.

 Read *,J,K$$

IF(J.LE.K) THEN $$

(b)One can list the length of the string- as an additional item in the pointer

array. We define here the maximum length of the string. Here maximum length

is 20.

20

This method of storing strings will obviously save space and used in memory

when records are relatively permanent. The disadvantage is that storage are usually

inefficient when the strings and their lengths are frequently being changed.

3.The Linked Storage we mean a linearly ordered sequence of memory cells

called nodes, where each node contains two parts, one part contains DATA

and the other part called a LINK, which points to the next node in the list.

DATA LINK

Section 2.2 CHARACTER DATA TYPE:-

 The character data type is of two data type.

(1) Constant

(2) Variable

Constant String:

 The constant string is fixed & is written in either ‘single quote or

“double quotation. It stores fixed sequence of character. Ex:- ‘THE

END’ and “TO BE OR NOT TO BE”

These are string constants of length 7 and 18 characters respectively.

Variable String:

String variable are variables that contain not just numbers but also special

characters such as “/”,”-“ or “.” and so on anything a keyboard may produce.
String variable falls into 3 categories.

1. Static

2. Semi-Static

Read *,J,K

X . Y Z P

3. Dynamic

1.Static character variable:

Static character variable is defined before the program can be executed &

can not change throughout the program Example:

2.Semi-static variable:

Whose length variable may as long as the length does not exist, a

maximum value. A maximum value determine by the program before

the program is executed.

3.Dynamic variable:

A variable whose length can change during the execution of the program.

Section 2.3 String Operation:

There are four different operations.

1. Sub string

2. Indexing

3. Concatenation

4. Length

1.Sub string:-

Group of conjunctive elements in a string (such as wards, purchases

or sentences) called substring.

Accessing substring of a given string required 3 pieces of information.

a. The name of the string or the string itself.

b. The position of the first character of the substring in the given string.

c. The length of the substring of the last character of the substring.

We called this operation SUBSTRING.

The format of substring as follows:

SUBSTRING (String, initial, length)

To denote the substring of string ’S‘ beginning in the position ‘K‘ having a length

‘L‘.
SUBSTRING (S, K, L)

 Let string ‘TO BE NOT TO BE’ and K=4,L=7

For e.g.; SUBSTRING (‘TO BE OR NOT TO BE‘, 4, 7)

SUBSTRING=’BE OR N’

SUBSTRING (THE END, 3, 4) SUBSTRING = ’E EN’.

2. INDEXING:-

Indexing also called pattern matching which refers to finding the

position where a string pattern ‘P‘. First appears in a given string text

‘T‘, we called this operation index and write as INDEX (text, pattern)

If the pattern ‗P‘ does not appear in text ‗T‘ then index is

assign the value 0; the argument & text and pattern can either string

constant or string variable.

For e.g.; T contains the text.

‘HIS FATHER IS THE PROFESSOR‘

Then INDEX (T,‗THE‘) = 7

INDEX (T, ‘THEN‘) = 0

INDEX (T, ‘ESSO‘) = 23

3.Concatenation:-

Let S1 & S2 be the string then concatenation of S1 and S2

denoted by, S1 || S2 , each the string consist of the character of S1

followed by the characters of S2 .

Ex:- S1= ‘Sonali‘‗S2 ‘ ‘ and S3 = ‘Behera‘

S1 || S2 || S3 = Sonali Behera

4.Length operation:-

The number of character in a string is called its length. We will write

the format as

LENGTH (string).

For the length of a given string LENGTH (Computer). The length is 8.

Basic language LEN (STRING)

Strlen (string)

strrchr ()

last occurrence of given character in a string is
found

strstr ()

Returns pointer to first occurrence of str2 in
str1

http://fresh2refresh.com/c/c-strings/c-strrchr/
http://fresh2refresh.com/c/c-strings/c-strrchr/
http://fresh2refresh.com/c/c-strings/c-strrchr/
http://fresh2refresh.com/c/c-strings/c-strstr-function/
http://fresh2refresh.com/c/c-strings/c-strstr-function/
http://fresh2refresh.com/c/c-strings/c-strstr-function/

strrstr ()

Returns pointer to last occurrence of str2 in
str1

strdup () Duplicates the string

strlwr () Converts string to lowercase

strupr () Converts string to uppercase

strrev () Reverses the given string

strset () Sets all character in a string to given character

strnset ()

It sets the portion of characters in a string to
given character

strtok () Tokenizing given string using delimiter

http://fresh2refresh.com/c/c-strings/c-strrstr-function/
http://fresh2refresh.com/c/c-strings/c-strrstr-function/
http://fresh2refresh.com/c/c-strings/c-strrstr-function/
http://fresh2refresh.com/c/c-strings/c-strdup-function/
http://fresh2refresh.com/c/c-strings/c-strdup-function/
http://fresh2refresh.com/c/c-strings/c-strdup-function/
http://fresh2refresh.com/c/c-strings/c-strlwr-function/
http://fresh2refresh.com/c/c-strings/c-strlwr-function/
http://fresh2refresh.com/c/c-strings/c-strlwr-function/
http://fresh2refresh.com/c/c-strings/c-strupr-function/
http://fresh2refresh.com/c/c-strings/c-strupr-function/
http://fresh2refresh.com/c/c-strings/c-strupr-function/
http://fresh2refresh.com/c/c-strings/c-strrev-function/
http://fresh2refresh.com/c/c-strings/c-strrev-function/
http://fresh2refresh.com/c/c-strings/c-strrev-function/
http://fresh2refresh.com/c/c-strings/c-strset-function/
http://fresh2refresh.com/c/c-strings/c-strset-function/
http://fresh2refresh.com/c/c-strings/c-strset-function/
http://fresh2refresh.com/c/c-strings/c-strnset-function/
http://fresh2refresh.com/c/c-strings/c-strnset-function/
http://fresh2refresh.com/c/c-strings/c-strnset-function/
http://fresh2refresh.com/c/c-strings/c-strtok-function/
http://fresh2refresh.com/c/c-strings/c-strtok-function/
http://fresh2refresh.com/c/c-strings/c-strtok-function/

Strupper

(string)

String

upper

Strupr(‗
compute

r‘)

COMPUTER

String lower

Strlwr (‗COMPUTER‘)

COMPUTER

String

 concatenating Strcnt String Reverse Strrev

21

CHAPTER 3.0 ARRAYS

Section 3.1 Introduction:

An array is a collection of homogeneous (same type) data items stored in

contiguous memory locations. An array is a data structure for storing more than

one data item that has a similar data type. The items of an array are allocated at

adjacent memory locations. These memory locations are called elements of that

array.

An array is a collection of items stored at contiguous memory locations. The

idea is to store multiple items of the same type together. This makes it easier to

calculate the position of each element by simply adding an offset to a base value, i.e.,

the memory location of the first element of the array (generally denoted by the name

of the array).

Why we need an array?

Array is particularly useful when we are dealing with lot of variables of the same

type. For example, let’s say I need to store the marks in math subject of 100
students. To solve this particular problem, either I have to create the 100 variables of

integer type or create an array of int type with the size 100.

Obviously the second option is best, because keeping track of all the 100
different variables is a tedious task. On the other hand, dealing with array is simple
and easy, all 100 values can be stored in the same array at different indexes (0 to
99).

For example, if an array is of type “int”, it can only store integer elements and cannot
allow the elements of other types such as double, float, char etc.

22

As we know the linear array consists of ‘n’ number of homogeneous data elements

such that:

➢ The elements of the array are referenced respectively by an index set consists

of n consecutive numbers.

➢ The elements of the array are stored respectively in successive memory

locations.

The length or the number of data elements of the array can be obtained from the

index set by the formula:

 Length = UB – LB+1

Where UB is the largest index called upper bound and LB is the smallest index

called the lower bound of the array.

Therefore length = UB when LB = 1

We use the subscript notation in brackets. The number K in LA[K] is called a

subscript or an index and LA[K] is called a subscripted variable. Subscripts allow

any element of LA to be referenced by its relative position in LA. Let DATA is the

linear array having 06 elements.

DATA

Here DATA[1] = 247, DATA[3] = 429 and DATA[6] = 156

Section 3.2 Representation Linear Array in Memory

The following diagram represents an integer array that has 12 elements. The index

of the array starts with 0, so the array having 12 elements has indexes from 0 to

11.

247 56 429 135 87 156

 1 2 3 4 5 6

23

Let LA is a linear array in the memory of the computer. Recall that the memory

of computer is simply a sequence of addressed locations.

LOC (LA[K]) = address of element LA[K] of the array LA.

As previously noted, the elements of LA are stored in the successive memory cells.

Accordingly, the computer does not need to keep track of the address of every

element of LA, but needs to keep track only of the address of the first element of

LA, denoted by Base (LA)

and called the base address of LA. Using base address, the computer calculates the

address of any element of LA by the following formula:

Let LA is a linear array, Base (LA) is the base address i. e the address of the first

element of LA, the address of the Kth element of LA is defined by

LOC(LA[K]) = Base (LA) + (K – lower bound)

Here there is only single element in each location of the linear array LA.

When there is ‘w’ no. of elements are there in each location of the linear array LA,
then the address of the Kth element of LA is defined by

LOC (LA[K]) = Base (LA) + w (K - lower bound)

Where w is the number of words per memory cell for the array LA. When the lower

bound is ‘1’ then the address of the Kth element of LA is defined by

24

LOC(LA[K]) = Base (LA) + (K – 1) and

LOC (LA[K]) = Base (LA) + w (K - 1) DATA

Now address of the 3rd location will be

LOC(LA[3]) = Base (LA) + (3– 1) =Base(LA) + 2 after

base two location

Section 3.4 Two dimensional and Multidimensional Array

Multidimensional Array

1. Array having more than one subscript variable is called Multi-

Dimensional array.

2. Multi-Dimensional Array is also called as Matrix.

3. Consider the Two-dimensional array –

• Two Dimensional arrays are also called table or matrix; Two Dimensional

arrays have two subscripts Variable.

• One Subscript Variable denotes the ―Row‖ of a matrix
• Another Subscript Variable denotes the ―Column‖ of a matrix
• Two dimensional arrays in which elements are stored column by column is

called as column major matrix.

• Two-dimensional array in which elements are stored row by row is called as

row major matrix.

• First subscript denotes number of rows and second subscript denotes the

number of columns.

• The simplest form of the Multi-Dimensional Array is the Two Dimensional

 Array.

A two Dimensional array has a type such as integer [][] or String[][], with two pairs

of square brackets. ... The elements of a 2D array are arranged in rows and

247 56 429 135 87 156

 1 2 3 4 5 6

25

columns, and the new operator for 2D arrays specifies both the number of rows and

the number of columns.

Declaration and Use of Two Dimensional Array :

int a[3][4];

Use :

for(i=0;i<row;i

++)

for(j=0;j<col;j++)

{

printf("%d",a[i][j]);

}

Meaning of Two Dimensional Array :

1. Matrix is having 3 rows (i takes value from 0 to 2)

2. Matrix is having 4 Columns (j takes value from 0 to 3)

3. Above Matrix 3×4 matrix will have 12 blocks having 3 rows &

4 columns.

4. Name of 2-D array is ‗a‗ and each block is identified by the

row & column Number.

5. Row number and Column Number Starts from 0.

26

Cell Location Meaning

a[0][0] 0th Row and 0th Column

a[0][1] 0th Row and 1st Column

a[0][2] 0th Row and 2nd Column

a[0][3] 0th Row and 3rd Column

a[1][0] 1st Row and 0th Column

a[1][1] 1st Row and 1st Column

a[1][2] 1st Row and 2nd Column

a[1][3] 1st Row and 3rd Column

a[2][0] 2nd Row and 0th Column

a[2][1] 2nd Row and 1st Column

a[2][2] 2nd Row and 2nd Column

a[2][3] 2nd Row and 3rd Column

Let A be a two-dimensional MXN Array. The programming language will store the

array A either

• Column by column called Column –major order.

• Row by row called Row–major order.

When there is ‘w’ no. of elements are there in each location of the linear array LA,

then the address of the Kth element of LA is defined by

LOC(LA[K]) = Base (LA) + w (K – 1)

Where ‘w’ is the number of words per memory cell for the array LA.

27

Similar situations also holds good for any two dimentional MXN array ‘LA’.The
computer keeps track of Base(LA) – the address of the first element LA[1,1] of linear
array.Now we can represent the matrix in two different forms:

Row major and column major to compute address LOC(LA[J,K]) of LA[J,K]

A(1,1) COLUMN 1

A(2,1)

A(3,1)

A(1,2) COLUMN 2

A(2,2)

A(3,2)

A(1,3) COLUMN 3

A(2,3)

A(3,3)

A(1,4) COLUMN 4

A(2,4)

A(3,4)

(A) Column –major order

A(1,1) ROW 1

28

A(1,2)

A(1,3)

A(1,4)

A(2,1) ROW 2

A(2,2)

A(2,3)

A(2,4)

A(3,1) ROW 3

A(3,2)

A(3,3)

A(3,4)

(B) Row–major order

A similar situation also holds for any two-dimensional MXN array ‘LA’. We can
compute the address LOC(LA[J,K]) of LA[J,K] using the formula

1.Row – major order LOC(LA[J,K]) = Base(LA)+w[N(J - 1)+(K – 1)]

2. Column – major order LOC(LA[J,K]) = Base(LA)+w[M(K - 1)+(J – 1)]

Where there are M rows and N columns in the two-dimensional array. We can find

the address LOC(LA[J,K]) in time independent of J and K.

Pointers: A variable P is called a pointer if P points to an element in an array. P

contains the address of an element in array. An array PTR is called a pointer array if

each element of PTR is a pointer.

29

Section 3.3 OPERATIONS ON ARRAYS

Various operations that can be performed on an array

• Traversing

• Insertion

• Deletion

• Sorting

• Searching

• Merging

ARRAY TRAVERSAL ALGORITHM

Traversal in a Linear Array is the process of visiting each element once. Traversal

operation can be used in counting the array elements, printing the values stored in an

array, updating the existing values, increasing each element by value 2 or summing up all

the element values.

In traversing operation of an array, each element of an array is accessed exactly for once

for processing. This is also called visiting of an array.

Algorithm for Traversing a linear array:- Here LA is a linear array with lower bound LB
and Upper bound UB. This algorithm traverses LA applying an operation PROCESS to
each element of LA. PROCESS may be any operation which can be applied on each
element of the Array.

Step 1 [Initialize counter]

Set K := LB

Step2 [Loop structure]

Repeat steps 3 and 4 while K <= UB

Step 3 [Visit element]

Apply PROCESS to LA[K]

Step 4 [Increase counter]

Set : K = K+1

Step 5 [finish]

Exit

30

Here we can visit every location from the beginning and apply some operation on each and
every location. The visit is made exactly once and till we reach at the end of the Array.

Algorithm for Inserting an element into a linear array:-

INSERT (LA,N,K,ITEM)

Here LA is a linear array with N elements and K is a positive integer such that K<=N.This
algorithm inserts an element ITEM into the Kth position in LA.

Step 1 [Initialize counter] Set

J :=N.

Step2 [Loop structure]

Repeat steps 3 and 4 while J>= K.

Step 3 [Move the Jth element downward] Set

LA[J+1] := LA[J].

Step 4 [Decrease counter] Set

:J= J-1.

Step 5 [Insert element]

Set LA[K] := ITEM

Step 6 [Reset N]

 Set N :=N+1.

Step 7 [Finish]

 Exit.

31

Algorithm for deleting an element from a linear array:-

DELETE (LA,N,K,ITEM)

Here LA is a linear array with N elements and K is a positive integer such that K<=N. This
algorithm deletes the Kth element from linear array LA.

Step 1 [Move the Kth element from the array and store in ITEM] Set

ITEM:= LA[K].

Step 2 [Loop structure to move J+1st element upward]

 Repeat for J = K to N-1

 Set LA[J]:= LA[J+1].

Step 3 [Reset the number N of Elements in LA]

Set N :=N-1. Step 4 [Finish]

 Exit.

32

Section 3.5 Sparse Matrix

A matrix is a two-dimensional data object made of m rows and n

columns, therefore having total m x n values. If most of the elements of

the matrix have 0 value, then it is called a sparse matrix. ... Storage:

There are lesser non-zero elements than zeros and thus lesser memory can

be used to store only those elements.

When a sparse matrix is represented with a 2-dimensional array, we

waste a lot of space to represent that matrix. For example, consider a

matrix of size 100 X 100 containing only 10 non-zero elements. In this

matrix, only 10 spaces are filled with non-zero values and remaining

spaces of the matrix are filled with zero. That means, totally we allocate

100 X 100 X 2 = 20000 bytes of space to store this integer matrix. And to

access these 10 non-zero elements we have to make scanning for 10000

times.

The sparse matrix is represented using three one-dimensional arrays

for the non-zero values, the extents of the rows, and the column

indexes. Compressed Sparse Column. The same as the

Compressed Sparse Row method except the column indices

are compressed and read first before the row indices.

Sparse Matrix Representations

A sparse matrix can be represented by using TWO representations, those are

as follows...

33

1. Triplet Representation (Array Representation)

2. Linked Representation

Triplet Representation (Array Representation)

In this representation, we consider only non-zero values along with their

row and column index values. In this representation, the 0th row stores the

total number of rows, total number of columns and the total number of non-

zero values in the sparse matrix.

 For example, consider a matrix of size 5 X 6 containing 6 number

of non-zero values. This matrix can be represented as shown in the

image...

In above example matrix, there are only 6 non-zero elements (those are 9,

8, 4, 2, 5 & 2) and matrix size is 5 X 6. We represent this matrix as shown

in the above image. Here the first row in the right side table is filled with

values 5, 6 & 6 which indicates that it is a sparse matrix with 5 rows, 6

columns & 6 non-zero values. The second row is filled with 0, 4, & 9 which

indicates the non-zero value 9 is at the 0th-row 4th column in the Sparse

matrix. In the same way, the remaining non-zero values also follow.

Linked Representation

In linked representation, we use a linked list data structure to represent a sparse

matrix. In this linked list, we use two different nodes namely header node and

element node. Header node consists of three fields and element node consists

of five fields as shown in the image...

34

 In the above representation, H0, H1,..., H5 indicates the header

nodes which are used to represent indexes. Remaining nodes are used to

represent non-zero elements in the matrix, except the very first node which

is used to represent abstract information of the sparse matrix (i.e., It is a

matrix of 5 X 6 with 6 non-zero elements).

35

Schaum’s outlines data structure

Seymour lipschutz

Mc graw-hill publication

36

CHAPTER 4 STACKS AND QUEUES

A stack is a basic data structure that can be logically thought of as a linear structure

represented by a real physical stack or pile, a structure where insertion and deletion

of items takes place at one end called top of the stack.

A stack is an Abstract Data Type (ADT), commonly used in most programming
languages. It is named stack as it behaves like a real-world stack, for example – a deck
of cards or a pile of plates, etc.

A real-world stack allows operations at one end only. For example, we can place or
remove a card or plate from the top of the stack only. Likewise, Stack ADT allows all
data operations at one end only. At any given time, we can only access the top

element of a stack.

AAA BBB CCC DDD ……

 1 2 3 4 5 N-1 N

(TOP)

Stack has N no. of locations and TOP points the top most element in the stack.

Stack operations may involve the following two primary operations −

push() − Pushing (storing) or inserting an element into the stack.

 pop() – Deleting/Removing (accessing) an element from the stack.

The following diagram depicts a stack and its operations –

37

Stacks are dynamic data structures that follow the Last In First Out (LIFO) or
First in last out (FILO) principle. The last item to be inserted into a stack is the
first one to be deleted from it.

Stack can be visualized by

38

Section 4.2 Array representation of stack

Stack will be maintained by a linear array STACK; a pointer variable TOP, which

contains the location of the top element of the stack and a variable MAXSTK

which gives the maximum number of elements that can be held by the stack.

The condition

TOP = 0 or TOP = NULL will indicate the stack is empty.

AAA BBB CCC DDD

 1 2 3 4 5 6 7 8 9 10

 TOP[4] MAXSTK [4]

The operation of adding (pushing) an item onto a stack and the operation of removing
(popping) of an item from a stack may be implemented respectively by the procedure
PUSH() and POP() algorithm. While executing PUSH operation, it is required to see
whether space is there for the new data item. If no space then the condition of
“overflow” arises.

Similarly for POP operation, one must first check whether there is element in the
stack to be deleted. If no data item found in the stack then the condition is “underflow”.

39

Algorithm 1: PUSH (STACK, TOP, MAXSTK, ITEM) This

procedure pushes an item on to a stack.

1. [Stack already filled]? If TOP =

MAXSTK, then Print: OVERFLOW,

and Return.

2. [Increase TOP by 1].

 Set TOP := TOP + 1.

3. . [Inserts ITEM in new TOP position].

Set STACK [TOP] := ITEM

4. Return.

Algorithm 2: POP (STACK, TOP, ITEM)

This procedure deletes the TOP element of STACK and assigns it to the

variable ITEM.

1. [Stack has an item to be removed] If TOP = 0, then Print: UNDERFLOW and

Return.

2. [Assign TOP element to ITEM].

 Set ITEM :=STACK [TOP].

3. [Decrease TOP by 1].

 Set TOP := TOP – 1

4. Return.

 Exit

Section 4.3 Arithmetic Expressions;Polish Notation

40

An expression is a collection of operators and operands that represents a

specific value. In above definition, operator is a symbol which performs a

particular task like arithmetic operation or logical operation or conditional

operation etc., Operands are the values on which the operators can perform the

task.

An arithmetic expression is an expression built up using numbers,

arithmetic operators (such as +,* , -, / and) and parentheses, "(" and ")".

Arithmetic expressions may also make use of exponents.

An expression is a combination of one or more operands, zero or more operators,

and zero or more pairs of parentheses. There are three kinds of expressions:

1. An arithmetic expression evaluates to a single arithmetic value.

2. A character expression evaluates to a single value of type character.

There are three kinds of expressions:

• An arithmetic expression evaluates to a single arithmetic value.

• A character expression evaluates to a single value of type character. A logical

or relational expression evaluates to a single logical value.

The operators indicate what action or operation to perform.

The operands indicate what items to apply the action to. An operand can be any of

the following kinds of data items:

• Constant

• Variable

• Array element

• Function

• Substring

• Structured record field (if it evaluates to a scalar data item) An expression

Table: Arithmetic Operation

Operator Meaning

41

**
*

Exponentiation
Multiplication

/
-
+

Division

Subtraction or Unary Minus
Addition or Unary Plus

The way to write arithmetic expression is known as a notation. An arithmetic
expression can be written in three different but equivalent notations, i.e., without
changing the essence or output of an expression. These notations are −

 Infix Notation Prefix (Polish) Notation Postfix (Reverse-Polish)

Notation

These notations are named as how they use operator in expression. We shall learn

the same here in this chapter.

Infix Notation

We write expression in infix notation, e.g. a - b + c, where operators are used
inbetween operands. It is easy for us humans to read, write, and speak in infix notation
but the same does not go well with computing devices. An algorithm to process infix
notation could be difficult and costly in terms of time and space consumption.

Prefix Notation

In this notation, operator is prefixed to operands, i.e. operator is written ahead of
operands. For example, +ab. This is equivalent to its infix notation a + b. Prefix notation
is also known as Polish Notation.

Postfix Notation

This notation style is known as Reversed Polish Notation. In this notation style, the
operator is postfixed to the operands i.e., the operator is written after the operands.
For example, ab+. This is equivalent to its infix notation a + b.

The following table briefly tries to show the difference in all three notations −
Sr.No. Infix Notation Prefix Notation Postfix Notation

1 a + b + a b a b +

2 (a + b) c + a b c a b + c

42

3 a (b + c) a + b c a b c +

4 a / b + c / d + / a b / c d a b / c d / +

5 (a + b) (c + d) + a b + c d a b + c d +

6 ((a + b) c) - d - + a b c d a b + c d -

Infix Expression Prefix Expression Postfix Expression

A + B * C + D + + A * B C D A B C * + D +

(A + B) * (C + D) * + A B + C D A B + C D + *

 A * B + C * D + * A B * C D A B * C D * +

 A + B + C + D + + + A B C D A B + C + D +

Conversion of Infix Expressions to Prefix and Postfix

The first technique that we will consider uses the notion of a fully parenthesized

expression. Recall that A + B * C can be written as (A + (B * C)) to show explicitly

that the multiplication has precedence over the addition. On closer observation,

however, you can see that each parenthesis pair also denotes the beginning and the

end of an operand pair with the corresponding operator in the middle.

Look at the right parenthesis in the subexpression (B * C) above. If we were to move

the multiplication symbol to that position and remove the matching left parenthesis,

giving us B C *, we would in effect have converted the subexpression to postfix

notation. If the addition operator were also moved to its corresponding right

parenthesis position and the matching left parenthesis were removed, the complete

postfix expression would result (see figure).

Figure : Moving Operators to the Right for Postfix Notation

43

Infix expression: A+B*C Postfix expression: ABC*+

If we do the same thing but instead of moving the symbol to the position of the right

parenthesis, we move it to the left, we get prefix notation (see figure). The position of

the parenthesis pair is actually a clue to the final position of the enclosed operator.

Figure 7: Moving Operators to the Left for Prefix Notation

Infix expression: A+B*C Prefix expression: +A*BC

Example:

(A+B)/(C-D) = [+AB] / [-CD] = /+AB-CD (prefix)

(A+B)/(C-D) = [AB+] / [CD-] = AB+CD-/ (postfix)

Evaluation of a Postfix Expression

Suppose P is an arithmetic expression in postfix notation. The following
algorithm which uses a STACK to hold operands , evaluates P.

Algorithm: This algorithm finds the VALUE of an arithmetic expression P
written in postfix notation.

• Step 1. Add a right parenthesis “)” at the end of P.

• Step 2. Scan P from left to right and repeat steps 3 and 4 for each

element of P until the symbol “)” is encountered.

• Step 3. If an operand is encountered put it on STACK.

• Step 4. If an operator is encountered then:

(a) Remove the two top elements of STACK where A is the top
element and B is the next-to-top element. (b) Evaluate B A.

(c) Place the result of (b) back to STACK.

 [End of IF structure]

 [End of Step 2 loop]

https://runestone.academy/runestone/books/published/pythonds/BasicDS/InfixPrefixandPostfixExpressions.html#fig-moveleft
https://runestone.academy/runestone/books/published/pythonds/BasicDS/InfixPrefixandPostfixExpressions.html#fig-moveleft
https://runestone.academy/runestone/books/published/pythonds/BasicDS/InfixPrefixandPostfixExpressions.html#fig-moveleft

44

• Step 5. Set VALUE equal to the top element on STACK. Step 6.
Exit.

Example: Consider the following arithmetic expression Q in infix notation

Q : 5*(6+2)-12/4. Let us convert it into postfix form ‘P” and then evaluate it by the
algorithm.

 ‘P’ written in postfix notation. P: 5, 6, 2, + , *, 12, 4, / ,- ,)

While evaluating, the following shows the stack contents

Section 4.4 Application of Stack

The followings are the application of stack

1. Expression Evaluation and their Conversion

2. Recursion and Function Call

3. Backtracking

4. Parenthesis Checking

5. Memory Management

RECURSION

1. "Recursion" is technique of solving any problem by calling same function again
and again until some breaking (base) condition where recursion stops and it

https://www.thecoderpedia.com/blog/application-of-stack/#1_Expression_Evaluation_and_Conversion%E2%80%8B
https://www.thecoderpedia.com/blog/application-of-stack/#1_Expression_Evaluation_and_Conversion%E2%80%8B
https://www.thecoderpedia.com/blog/application-of-stack/#3_Function_Call%E2%80%8B%E2%80%8B
https://www.thecoderpedia.com/blog/application-of-stack/#3_Function_Call%E2%80%8B%E2%80%8B
https://www.thecoderpedia.com/blog/application-of-stack/#2_Backtracking%E2%80%8B%E2%80%8B
https://www.thecoderpedia.com/blog/application-of-stack/#2_Backtracking%E2%80%8B%E2%80%8B
https://www.thecoderpedia.com/blog/application-of-stack/#4_Parenthesis_Checking%E2%80%8B%E2%80%8B
https://www.thecoderpedia.com/blog/application-of-stack/#4_Parenthesis_Checking%E2%80%8B%E2%80%8B
https://www.thecoderpedia.com/blog/application-of-stack/#7_Memory_Management%E2%80%8B%E2%80%8B
https://www.thecoderpedia.com/blog/application-of-stack/#7_Memory_Management%E2%80%8B%E2%80%8B

45

starts calculating the solution from there on. For eg. calculating factorial of a
given number

2. Suppose ‘P’ is a procedure containing either a Call statement to itself or a Call

statement to a second procedure that may eventually result in a Call
statement back to the original procedure ‘P’. Then ‘P’ is called a Recursive
procedure. So that the program will not continue to run indefinitely, a
recursive procedure must have the following two properties:

• There must be a certain criterion called base criteria for which the
procedure does not call itself.

• Each time the procedure call itself (directly or indirectly), it must
be closure to the base criteria.

The recursive procedure with these two properties is said to be well-defined

3. Thus, in recursion last function called needs to be completed first.

4. Now Stack is a LIFO data structure i.e. (Last In First Out) and hence it is used to
implement recursion.

5. The High-level Programming languages, such as Pascal, C etc. that provides
support for recursion use stack.

6. In each recursive call, there is need to save the
1. current values of parameters,
2. local variables and

3. the return address (the address where the control has to return from the
call).

7. Also, as a function calls to another function, first its arguments, then the return
address and finally space for local variables is pushed onto the stack.

Example:

Let us calculate factorial 4 using non recursive definition

Procedure FACTORIAL (FACT, N)

Step1.If N=0

 Then FACT=1 and Return.

Step2. Set FACT=1.

46

Step3. Repeat for K = 1 to N

 Set FACT := K*FACT.

Step4. Return.

Let us calculate factorial 4 using recursive definition

Procedure FACTORIAL (FACT, N)

Step1.If N=0

 Then FACT=1 and Return.

Step2. Call FACTORIAL (FACT, N-1).

Step3. Set FACT := N * FACT.

Step4. Return.

47

Section 4.5 QUEUES

A queue is a linear list of elements in which deletions can take place only at one

end called the front and insertions can take place only at the other end called the

rear end. Queues are also called First in First out (FIFO) lists, since the first element

in the queue will be the first element out of the queue. In other words, the order in

which elements enter in a queue is the order in which they leave.

Example: Automobiles waiting to pass through an intersection form a queue, i.e
in which the first car in line is the first car through; People waiting in a line at the bank
form a queue.

48

Representation of queue

Queues may be represented by means of

(a) Array representation

(a) Linked list representation

Queues will be maintained by a linear array QUEUE and two pointer variables:

1. FRONT: containing the location of the front element of the

queue

2. REAR: containing the location of the rear element of the

queue

 The condition FRONT = NULL will indicate that the queue is empty.

Following figure shows the way the array will be stored in memory using

an array QUEUE with N elements. It also indicates the way elements will

be deleted from the queue and the way new elements will be added to

the queue.

49

Observe that whenever an element is deleted from the
queue, the value of FRONT is increased by 1; this can be
implemented by the assignment:

 FRONT: = FRONT + 1

Similarly, whenever an new element is added to the
queue, the value of REAR is increased by 1; this can be
implemented by the assignment:

REAR: = REAR +1

After N insertions the rear pointer will be incremented and the QUEUE

will occupy all N locations i.e QUEUE[N].

An ITEM is to be inserted and REAR = N we should not think that it is

full, rather we simply move the entire queue to the beginning of the array

changing FRONT and REAR pointer accordingly.

We assume QUEUE is circular i.e QUEUE[1] comes after

QUEUE[N] in array. Specifically instead of REAR to N+1, we reset

REAR = 1 and QUEUE[REAR] := ITEM

Similarly if FRONT = N and an element of QUEUE is deleted, we

reset FRONT = 1 instead of increasing FRONT to N + 1. For a special

case when FRONT= REAR ≠ NULL and suppose that element is deleted,
then we assign

FRONT :=NULL and REAR := NULL and indicate that Queue is

empty. For example let us have a Queue with N = 5 memory locations and

several operations are observed.

50

51

Algorithm: QINSERT(QUEUE,N,FRONT,REAR,ITEM)

This procedure inserts an element ITEM into the queue.

Step1.[Check Queue already full?]

 If FRONT = 1 and REAR = N

Or if FRONT = REAR + 1

Then write “OVERFLOW” and return
Step 2. [Find the new value of REAR] If

FRONT = NULL [for empty queue] Then

Set FRONT :=1 and REAR :=1.

 Else if REAR = N

 Then Set REAR :=1

 Else Set REAR := REAR + 1

Step 3. [Inserts the new element]

Set QUEUE[REAR] := ITEM.

Step 4. Return.

Algorithm: QDELETE(QUEUE,N,FRONT,REAR,ITEM)

This procedure delets an element from the queue and assigns it to the variable

ITEM..

Step1.[Check Queue already empty?]

 If FRONT = NULL

Then write “UNDERFLOW” and return

Step 2. [Take out the element to be deleted] Set ITEM

:= QUEUE[FRONT]. Step 3. [Find the new value of

FRONT] if FRONT = REAR [Queue has only one

element] then Set FRONT = NULL and REAR =

NULL.

 Else If FRONT = N

 Then Set FRONT := 1.

 Else Set FRONT := FRONT + 1.

52

Step 4. Return.

Section 4.5 Priority Queue

In computer science, a priority queue is an abstract data type similar to

regular queue or stack data structure in which each element additionally

has a "priority" associated with it. In a priority queue, an element with

high priority is served before an element with low priority. The

elements are deleted and processed comes from the following rules: 1.

An element with high priority is processed before an element with low

priority.

2. If two elements have the same priority, they are processed according

to the order in which they were added to the queue, while in other

implementations, ordering of elements with the same priority is

undefined.

Priority Queue is represented and maintained in two different ways:

(a) One-way List representation of a priority queue

(b) Array representation of a priority queue

(A) One-way List representation of a priority queue in memory is made

as follows;

➢ Each node in the list will contain three items of information

▪ An information field INFO

▪ A Priority number PRN

▪ Link number LINK

➢ A node X precedes a node Y in the list

▪ When X has higher priority than Y or

▪ When both have the same priority but X was added to the list before

Y i.e the order in the one way list corresponds to the order of the

priority queue.

Addition and Deletion operations in a priority queue is more

complicated.

53

(B)Array Representation of Priority Queue

 Another way to maintain a priority queue in memory is to use a

separate queue for each level of priority. Each such Queue will appear in

its own circular array and must have its own pair of pointers, FRONT and

REAR. If each Queue is allocated the same amount of space, a

twodimensional array QUEUE can be used instead of the linear arrays.

Front[K] and REAR[K] contain respectively the front and rear elements of

row K of QUEUE, the row that maintains the queue of elements with

priority number K.

54

55

Now we can compare stack and queue.

56

CHAPTER 5.0 LINKED LIST

Section 5.1 Introduction:

A linked list is a linear data structure, in which the elements are not stored at

contiguous memory locations. A linked list or one-way list is a dynamic data structure

consists of data elements (called a nodes) where the linear order is given by means

of pointers. Each node is made up of two items:

1. Information of the element or data, and

2. A reference/ link (or next pointer), which points to the address of the next node.

A linked list is a collection of nodes where each node is connected to the next

node through a pointer.A linked list is a sequence of data structures, which are

connected together via links

57

The data structure studied i.e Array, stack and queue where (A) Insert and

Delete operation is not done as per convenience or as required by user. It has

to follow either FIFO or FILO scheduling and (B) forecast of memory

requirement before writing a program is not easy. It may be excess memory and

get wasted or shortage of memory, for which a new data structure is evolved

called Linked list.

Section 5.2 Representation of linked list in memory:

Let LIST be a linked list maintained in memory. List requires two linear arrays:

1.INFO

2.LINK

Such that INFO[K] contains information/data part and LINK[K] contains next pointer

field of a node of LIST.

LIST requires a variable name such as:

START contains the beginning of the list and

NULL indicates the end of the list. We choose NULL=0.

The linked list indicates that the nodes of a list need not occupy adjacent

elements in the arrays INFO and LINK, and that more than one list may be

maintained in the same linear arrays INFO and LINK. However, each list must have

its own pointer variable giving the location of its first node.

58

Section 5.3 Traversing and Searching a linked list:

Let List be a linked list in memory stored in a linear arrays INFO and LINK with
START pointing to the first element and NULL indicating the end of the list. Suppose
we want to traverse LIST in order to process each node exactly once.

 A pointer variable PTR which points to the node that is currently being processed.
Accordingly, LINK[PTR] points to the next node to be processed. Thus, we have the
assignment

59

 PTR := LINK[PTR]

Algorithm (Traversing a linked list)

Let LIST be a linked list in memory, this algorithm traverse LIST applying &

operation PROCESS to each element of LIST. The variable PTR to point to the

nodes currently being processed.

Step 1 [initialize pointer PTR]

Set PTR :=START

Step 2 [Loop structure]

 Repeat step 3 and 4 while PTR ≠ NULL

Step 3 [Visit the element]

 Apply PROCESS to INFO[PTR]

Step 4 [PTR now points to the next node] SET

PTR=LINK [PTR]

End of step 2 loop

Step 5 Exit

60

Searching a linked list
Let LIST be linked list in memory. Suppose a specific ITEM of information is

given. It is required to find the location LOC of the node where ITEM first appears in
LIST.

Algorithm for searching linked list:-

SEARCH (INFO, LINK, START, ITEM, LOC)

LIST is a linked list in memory, this algorithm finds the location LOC of the node

where ITEM first appears in LIST or sets, LOC=NULL.

Step 1 [initialize pointer PTR]

 Set PTR :=START

Step 2 [Loop]

 Repeat step 3 while PTR ≠ NULL

Step 3 [Compare and move forward till ITEM is found]

If ITEM = INFO[PTR] then Set LOC = PTR &

exit

 Else

 Set PTR = LINK[PTR] [PTR now points to next node]

 [End of if structure & End of step 2 loop]

Step 4 [Search is unsuccessful]

61

Set LOC := NULL Step

5 Exit

Section 5.4 Memory allocation; Garbage Collection:

In computer science, garbage collection is a type of memory management. It

automatically cleans up unused objects and pointers in memory, allowing the

resources to be used again. Garbage collection may also be done at compile-time,

when a program's source code is compiled into an executable program. In this

method, the compiler determines which resources in memory will never be accessed

after a certain time. It can then add instructions to automatically deallocate those

resources from memory. While this is an effective way to eliminate unused

objects,The purpose of garbage collection is to identify and discard those objects

that are no longer needed by the application, in order for the resources to be

reclaimed and reused.

Garbage collection relieves the programmer from performing manual memory

management where the programmer specifies what objects to deallocate and return

to the memory system and when to do so. Other similar techniques include stack

allocation, region inference, memory ownership, and combinations of multiple

techniques. Garbage collection may take a significant proportion of total processing

time in a program and, as a result, can have significant influence on performance.

While doing operations in a linked list we have three important features:

(a) Memory Allocation (b) Garbage collection (c) Overflow and Underflow

(a) Memory Allocation

Whenever a new node is created, memory is allocated by the system. This
memory is taken from list of those memory locations which are free i.e. not
allocated. This list is called AVAIL List, or list of available space, or free storage

list . Similarly, whenever a node is deleted, the deleted space becomes reusable
and is added to the list of unused space i.e. to AVAIL List. This unused space can
be used in future for memory allocation. The list has its own pointer ‘AVAIL’ and the
data structure can be denoted as :

LIST(INFO, LINK,START,AVAIL)

https://techterms.com/definition/sourcecode
https://techterms.com/definition/sourcecode
https://techterms.com/definition/sourcecode
https://techterms.com/definition/sourcecode
https://techterms.com/definition/sourcecode
https://techterms.com/definition/compile
https://techterms.com/definition/compile
https://techterms.com/definition/compile
https://techterms.com/definition/compiler
https://techterms.com/definition/compiler
https://techterms.com/definition/compiler
https://en.wikipedia.org/wiki/Manual_memory_management
https://en.wikipedia.org/wiki/Manual_memory_management
https://en.wikipedia.org/wiki/Manual_memory_management
https://en.wikipedia.org/wiki/Manual_memory_management
https://en.wikipedia.org/wiki/Manual_memory_management
https://en.wikipedia.org/wiki/Manual_memory_management
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Region_inference
https://en.wikipedia.org/wiki/Region_inference
https://en.wikipedia.org/wiki/Region_inference
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Computer_performance

62

Memory allocation is of two types-

1. Static Memory Allocation

2. Dynamic Memory Allocation

1. Static Memory Allocation:

When memory is allocated during compilation time, it is called ‘Static Memory
Allocation’. This memory is fixed and cannot be increased or decreased after
allocation. If more memory is allocated than requirement, then memory is
wasted. If less memory is allocated than requirement, then program will not run
successfully. So exact memory requirements must be known in advance.

2. Dynamic Memory Allocation:

When memory is allocated during run/execution time, it is called ‘Dynamic
Memory Allocation’. This memory is not fixed and is allocated according to our
requirements. Thus in it there is no wastage of memory. So there is no need to
know exact memory requirements in advance.

(b) Garbage Collection-

Whenever a node is deleted, some memory space becomes reusable. This
memory space should be available for future use. One way to do this is to
immediately insert the free space into availability list. But this method may be
time consuming for the operating system. So another method is used which is
called ‘Garbage Collection’. This method is described below: In this method the
OS collects the deleted space time to time onto the availability list. This process
happens in two steps. In first step, the OS goes through all the lists and tags all
those cells which are currently being used. In the second step, the OS goes
through all the lists again and collects untagged space and adds this collected
space to availability list. The garbage collection may occur when small amount
of free space is left in the system or no free space is left in the system or when
CPU is idle and has time to do the garbage collection.

(c) Overflow & Underflow-

Overflow happens at the time of insertion. If we have to insert new space into
the data structure, but there is no free space i.e. availability list is empty, then

63

this situation is called ‘Overflow’. The programmer can handle this situation by
printing the message of OVERFLOW.As we know overflow will occur with our
linked lists when AVAIL=NULL, there is an insertion.

Underflow happens at the time of deletion. If we have to delete data from the
data structure, but there is no data in the data structure i.e. data structure is
empty, then this situation is called ‘Underflow’. The programmer can handle this
situation by printing the message of UNDERFLOW. As we know underflow will
occur with our linked lists when START=NULL, there is a deletion.

Section 5.5 Insertion into a linked list
Let LIST be a linked list with successive nodes having values 20 and 40.We

want to insert Node having value 30 in between them

64

While inserting a node into a linked list, the new node will come from the AVAIL

list. The first node of the AVAIL list will be used for the new node to be inserted.

Insertion operation can be performed at three situations

1.Insertion of a node at the beginning of the List.

2.Insertion of a node after the node with a given location of the List.

3. Insertion of a node into a sorted Linked List.

All the algorithms will use a node in the AVAIL list and include the following steps:

(a) Check to see if space is available in the AVAIL list and if not then OVERFLOW

If AVAIL = NULL

Then Print ‘OVERFLOW’

(b) Remove a node from AVAIL list. Using a variable NEW to keep track of the

location of the new node

NEW := AVAIL and AVAIL := LINK[AVAIL]

(c) Copying new information into the new node

 INFO[NEW] := ITEM

65

(A) Inserting the node at the beginning of a list:-

INSERT (INFO, LINK, START, AVAIL, ITEM)

Step 1 [Check for over flow] If

AVAIL = NULL, then write

over flow & exit

Step 2 [REMOVE first node from AVAIL LIST]

Set NEW := AVAIL &

 AVAIL := LINK [AVAIL]

Step 3 [Copy is new data into new node]

Set INFO [NEW] := ITEM

Step 4 [New node now points to original first node]

Set LINK [NEW] := START

Step 5 [Changes start so its point to new node]

Set START = NEW

Step 6 Exit

66

67

(B)Inserting the node after a given node of a list: -

Suppose we are given the value of LOC where either LOC is the location of a

node A in the linked list or LOC = NULL. The algorithm inserts ITEM into LIST so that

ITEM follows node A or when LOC = NULL, so that ITEM is the first node.

Let N denote the new node whose location is NEW. If LOC = NULL, then N is

inserted as the first node in the list otherwise node N points to node B (which

originally followed node A) by the assignment: LINK[NEW] := LINK[LOC]

And we let node A point to the new node N by the assignment:

LINK[LOC] := NEW

Algorithm INSLOC (INFO, LINK, START, AVAIL, LOC, ITEM)

This algorithm inserts ITEM. so that ITEM follows the node with

location [LOC] or insert ITEM as the first node when LOC = NULL

Step 1 [Check over flow] if AVAIL

= NULL, then write

overflow & exit.

Step 2 [Remove first node from AVAIL list]

Set NEW := AVAIL & AVAIL := LINK [AVAIL]

Step 3 [Copy is new data into new node]

Set INFO [NEW] := ITEM

Step 4 [insert as first node] if LOC = NULL, then Set LINK

[NEW] := START & START := NEW

Else

[INSERT after node with location LOC]

Set LINK [NEW] := LINK [LOC] and LINK [LOC] := NEW

[End of if]

Step 5 Exit

68

(C) Inserting the node into a Sorted linked list:-

The nodes having the INFO part are in ascending order. The node having INFO

part as 50 is inserted in proper location

Section 5.5 Deletion from a linked list:-

Let LIST be a linked list with a node N between nodes A and B. Suppose node N is

to be deleted from the linked list. The linked list is maintained in memory in the

form

LIST(INFO,LINK,START,AVAIL)

69

70

DEL (INFO, LINK, START, AVAIL, LOC, LOCP)

This algorithm deletes the node N with location LOC, LOCP is the location of the

node which precedes N or when N is the first node, LOCP = NULL.

Step 1 [Delete first node]

If LOCP = NULL,

then Set START := LINK [START]

Else

 Set LINK [LOCP] := LINK [LOC]

[Deletes node N] [End of if]

Step 2 [Return deleted node to the AVAIL LIST] Set

LINK [LOC] := AVAIL & AVAIL := LOC

Step 3 Exit

71

Section 5.5 Header linked list:-

A header linked list is a special type of linked list, which always contains a

special node called header node at the beginning of the list so in a header

linked list will not point to first node of the list. But start will contain the

address of the header node.

A header node is a special node that is found at the beginning of the list. A

list that contains this type of node, is called the header-linked list. This

type of list is useful when information other than that found in each node is

needed.

There are two types of header linked list

72

1.Grounded header linked list:-

It is a header linked list where last node contains the NULL pointer.

Observer that the list pointer START always points to the header

node.

Then LINK [START] = NULL indicates that a grounded header linked

list is empty.

2. Circular header linked list:-

It is a header linked list where the last node points back to the header node.

linked list is empty.

Circular header list are frequently used instead of ordinary linked list because

many operation are much easier to implement header list.

This comes from the following two properties, all circular header lists.

➢ The NULL pointer is not used & hence contains valid address.

➢ Every ordinary node has a predecessor. So the first node

may not required a special case.

Header node

STAR T

Header node

In Circular linked list when LINK [START] = START , it indicates that the circular

STAR

73

Advantages of Linked Lists

• They are a dynamic in nature which allocates the memory when required.

• Insertion and deletion operations can be easily implemented.

• Stacks and queues can be easily executed. Linked List reduces the access time.

Disadvantages of Linked Lists

• The memory is wasted as pointers require extra memory for storage.

• No element can be accessed randomly; it has to access each node sequentially.

• Reverse Traversing is difficult in linked list.

Applications of Linked Lists

• Linked lists are used to implement stacks, queues, graphs, etc.

• Linked lists let you insert elements at the beginning and end of the list.

• In Linked Lists we don't need to know the size in advance.

74 75 76

77

76

Chapter 6.0 TREE

Section 6.1 Basic terminology

A tree is a nonlinear data structure, compared to arrays, linked lists,

stacks and queues which are linear data structures. A tree can be empty

with no nodes or a tree is a structure consisting of one node called the

root and zero or one or more subtrees.

The tree data structure has roots, branches and leaves, but it is drawn

upside-down. A tree is a hierarchical data structure which can represent

relationships between different nodes.

An example of a tree is a genealogical diagram that shows the parents

and offspring of many generations, the family tree.

A tree is a nonlinear hierarchical data structure that consists of nodes

connected by edges.

Tree Terminologies

Node

A nod e is a structure which may contain a value or condition, o r

represent a separate data structure (which could be a tree of its own). Each

node in a tree has zero or more child nodes , which are below it in the tree

(by convention, trees are drawn growing downwards). A node that has a

child is called the child's parent node or (superio r) . A node has at most

one parent, but possibly many ancestor nodes , such as the parent's parent.

Child nodes with the same parent are sibling nodes .

https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Superior_(hierarchy)
https://en.wikipedia.org/wiki/Superior_(hierarchy)
https://en.wikipedia.org/wiki/Superior_(hierarchy)
https://en.wikipedia.org/wiki/Superior_(hierarchy)

77

A node is an entity that contains a key or value and pointers to its child
nodes. The last nodes of each path are called leaf nodes or external nodes
that do not contain a link/pointer to child nodes. The node having at least a child node
is called an internal node.

Edge

• A tree can contain no nodes or it can contain one special node called
the root with zero or more subtrees.

• Every edge of the tree is directly or indirectly originated from the root.

• Every child has only one parent, but one parent can have many
children.

Root

 The topmost node in a tree is called the root node. Depending on

definition, a tree may be required to have a root node (in which case all

trees are non-empty), or may be allowed to be empty, in which case it does

not necessarily have a root node. Being the topmost node, the root node

will not have a parent. It is the node at which algorithms on the tree begin,

since as a data structure, one can only pass from parents to children.

Path

A sequence of consecutive edges is called a path.

Height of a Node

It is the link between any two nodes

.

Properties of a Tree

78

The height of a node is the number of edges from the node to the deepest

leaf (ie. the longest path from the node to a leaf node).

Depth of a Node

The depth of a node is the number of edges from the root to the node.

Height of a Tree

The height of a Tree is the height of the root node or the depth of the deepest
node. It is one more than the largest level number of the tree

Degree of a Node

The degree of a node is the total number of branches of that node.

Forest

A collection of disjoint trees is called a forest.

Types of tree

1. General tree

2. Binary tree

3. Binary search tree

79

4. AVL tree

5. B-tree

Section 6.2 Binary tree

A Binary tree T is defined as a finite set of elements called nodes such that

(a) T is empty (called null tree or empty tree)

(b) T contains a distinguished node R called the root of T and the remaining

nodes of T form an ordered pair of disjoint binary trees T1 and T2.

A binary tree is made of nodes, where each node contains a "left"

reference, a "right" reference, and a data element. The topmost node in the

tree is called the root. Every node (excluding a root) in a tree is connected

by a directed edge from exactly one other node. This node is called a

parent. On the other hand, each node can be connected to arbitrary

number of nodes, called children.

80

Concepts of binary tree

• The binary tree T contains a root R. ‘A’ is the root T1 and T2 are called

the left and right sub trees of R.

• If T1 is non empty then its (T1’s) root is called the left successor of R; so
‘B’ is the left successor of root A.

• Similarly If T2 is non empty then its (T2’s) root is called the right
successor of R; so “C” is the right successor of root node A.

• The left sub tree of the root ‘A’ consists of the nodes B,D,E,H,I and the
right sub tree of ‘A’ consists of the nodes C,F,G and J.

• The nodes with no successors are called terminal or leaf nodes.

Nodes H, I, E, J and G are leaf nodes.

• Suppose N is a node in tree T with left successor S1 and right
successor S2, and then N is the parent of S1 and S2. Further S1 is
called the left child of N and S2 is the right child of N.

• S1 and S2 are said to be siblings. (B,C are siblings)

• Every node N in a binary tree T except the ROOT has a unique parent.

• The line drawn from a node N of tree T to a successor is called an

edge.

• A sequence of consecutive edges is called a path.

• Each node in a binary tree T is assigned a level number. The root of

the tree T is assigned the level number ‘0’ (zero). Every other node is
assigned a level number which is ‘1’ more than the level number of its

parent.

81

Her each node of can have at most two children. At level ‘r’ of T can
have at most 2r nodes

• Nodes with the same level number are said to belong to the same

generation.

• The maximum depth or height is the number of nodes along the

longest path from the root node down to the farthest leaf node. It is one

more than the largest level number of tree T. It is the maximum

number of nodes in a branch of tree T.

Types of Binary Tree

1. Full Binary Tree A Binary Tree is a full binary tree if every node has

0 or 2 children. The following is the example of a full binary tree.

 We can also say a full binary tree is a binary tree in which all nodes

except leaf nodes have two children.

In a Full Binary Tree, number of leaf nodes is the number of

internal nodes plus 1

82

 L = I + 1

Where L = Number of leaf nodes, I = Number of internal node.

2. Complete Binary Tree: A Binary Tree is a complete Binary Tree if all

the levels are completely filled except possibly the last, have the

maximum number of possible nodes, and if all the nodes at the last

level has all keys as left as possible.

(complete Binary Tree)

The left and right child of node K are respectively 2*K and

2*K+1and the parent of K is the node [K/2].

3. Perfect Binary Tree

 A Binary tree is a Perfect Binary Tree in which all the internal nodes

have two children and all leaf nodes are at the same level.

A Perfect Binary Tree of height h (where height is the number of

nodes on the path from the root to leaf) has 2h – 1 node.

83

4. Balanced Binary Tree
 A balanced binary tree is a binary tree structure in which

the left and right sub trees of every node differ in height by no more

than 1. One may also consider binary trees where no leaf is much

farther away from the root than any other leaf. ... This means that

the tree will behave like a linked list data structure.

5. A degenerate (or pathological) tree

 A Tree where every internal node has one child. A degenerate

tree is a tree where for each parent node; there is only one

associated child node. It is unbalanced and, in the worst case,

performance degrades to that of a linked list. Such trees are

performance-wise same as linked list.

84

6. Extended Binary Trees:2-Trees

A binary tree ‘T’ is said to be a 2-tre or an extended binary tree if

each node N has either 0 or 2 children. In such a case the nodes with

2 children are called internal nodes, and the nodes with ‘0’ (zero)
are called external nodes. A binary tree may be converted into a

2tree by replacing each empty sub tree by a new node. The new tree

fig(b) is a 2-tree.Furthermore the nodes in the original tree fig(a) are

now the internal nodes in the extended tree and the new nodes are

the external nodes in the extended tree.

 (a) Binary tree (b) Extended 2- tree

SECTION 6.2 REPRESNTING BINARY TREES IN MEMORY

Let ‘T’ be a binary tree. There are two ways of representing tree in memory

• Linked representation of binary tree

• Sequential of Array representation of binary tree

The main requirement of any representation of T is that one should

have direct access to the root R of tree T and given any node N of T.

85

1.Linked representation of binary tree

 Consider a binary tree T will be maintained in memory by means of a linked
representation which uses three parallel arrays (a)INFO, (b) LEFT (c)
RIGHT and a pointer variable ROOT such that

1. INFO[K] contains the data at the node N.

2. LEFT[K] contains the location of the left child of node N.

3. RIGHT[K] contains the location of the right child of node N.

Furthermore ROOT will contain the location of the root R of tree T.If any sub

tree is empty, then the corresponding pointer will contain the null value, if

the tree T itself is empty, and then ROOT will contain the null values.

The linked representation of the tree may appear as shown below. ‘AVAIL’
list is maintained as a one way list using the array LEFT. The ROOT has
initial value ‘5’ and ‘AVAIL’ list starts at 7.

 INFO LEFT RIGHT

 1 F 0 0

2 0

3 C 1 13

4 I 0 0

ROOT 5 A 8 3

 6 D 12 4

AVAIL 7 9

86

 8 B 6 10

9 2

10 E 0 0

12 H 0 0

13 G 0 0

2. Sequential of Array representation of binary tree

Suppose T is a complete binary tree. Then there is an efficient way of

maintaining T in memory called sequential representation of T. This

representation uses only a single linear array TREE as follows:

 45 (a)

 22 77

 11 30 90

 15 25 88 TREE

1 45

2 22

3 77

4 11

5 30

6

7 90

8

9 15

10 25

11

12

13

14 88

15 ….
16 …
17 ….

(a) The root R of T is stored in TREE [1].

(b) If a node N occupies TREE[K], then its left child is stored in TRE[2*K] and

its right child is stored in TRE[2*K+1]

NULL is used to indicate an empty subtree. A tree with depth ‘d’
will require an array with approximately 2d+1.

87

TRAVERSING BINARY TREES

Traversal is a process to visit all the nodes of a tree and may print their
values too. Because, all nodes are connected via edges (links) we always
start from the root node. That is, we cannot randomly access a node in a
tree. There are three standard ways of traversing a binary tree T’ with root
R

• In-order Traversal, L D R

• Pre-order Traversal, D L R

• Post-order Traversal, L R D

Generally, we traverse a tree to search or locate a given item or key in the

tree or to print all the values it contains.

1.In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right sub-
tree. We should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an
ascending order.

We start from A, and following in-order traversal, we move to its left subtree B. B is also
traversed in-order. The process goes on until all the nodes are visited. The output of
inorder traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm Procedure RINORDER(T)

Given a binary tree whose root node address is given by a pointer variable

T and this algorithm traverses the tree in Inorder in a recursive manner

88

Step 1 – [Check for empty tree]

 If T =NULL

 Then write (‘Empty Tree’)
 Return

Step 2 – [Process left subtree]

 If LPTR(T) ≠ NULL

 Then Call RINORDER(LPTR(T))

Step 3 – [Process the root node]

 Write (DATA(T))

Step 4 − [Process Right subtree]
 If RPTR(T) ≠ NULL

 Then Call RINORDER(RPTR(T))

Step 5 – [Finish]

 Return

2.Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree and

finally the right subtree.

We start from A, and following pre-order traversal, we first visit A itself and
then move to its left subtree B. B is also traversed pre-order. The process
goes on until all the nodes are visited. The output of pre-order traversal of
this tree will be −

89

A → B → D → E → C → F → G

Algorithm Procedure RPREORDER(T)

Given a binary tree whose root node address is given by a pointer variable

T and this algorithm traverses the tree in preorder in a recursive manner

Step 1 – [Process the root node]

 If T ≠ NULL
 Then Write (DATA(T))

 Else write (‘Empty Tree’)
 Return

Step 2 – [Process left subtree]

 If LPTR(T) ≠ NULL

 Then Call RPREORDER(LPTR(T))

Step 3 − [Process Right subtree]
 If RPTR(T) ≠ NULL

 Then Call RPREORDER(RPTR(T))

Step 4 – [Finish]

 Return

3.Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First
we traverse the left subtree, then the right subtree and finally the root node.

90

We start from A, and following Post-order traversal, we first visit the left
subtree B. B is also traversed post-order. The process goes on until all the
nodes are visited. The output of post-order traversal of this tree will be −

D → E → B → F → G → C → A

Algorithm Procedure RPOSTORDER(T)

Given a binary tree whose root node address is given by a pointer variable

T and this algorithm traverses the tree in postorder in a recursive manner

Step 1 – [Check for empty tree]

 If T =NULL

 Then write (‘Empty Tree’)
 Return

Step 2 – [Process left subtree]

 If LPTR(T) ≠ NULL

 Then Call RPOSTORDER(LPTR(T))

Step 3 − [Process Right subtree]
 If RPTR(T) ≠ NULL

 Then Call RPOSTORDER(RPTR(T))

Step 4 – [Process the root node]

 Write (DATA(T))

Step 5 – [Finish]

 Return

91

 (Binary Tree)

The tree traversals of the binary tree as follows:

Preorder traversal: Node –> Left -> Right

A B D E F C G H J L K

Inorder traversal: Left -> Node -> Right

D B F E A G C L J H K

Post order traversal: Left -> Right -> Node

D F E B G L J K H C A

BINARY SEARCH TREES

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-

mentioned properties −
• The value of the key of the left sub-tree is less than the value of its

parent (root) node's key.

• The value of the key of the right sub-tree is greater than or equal to the

value of its parent (root) node's key.

Thus, BST divides all its sub-trees into two segments; the left sub-tree and

the right sub-tree and can be defined as −

left_subtree (keys) < node (key) ≤ right_subtree (keys)

Example

A

B C

D E G H

F J

L

K

92

A binary tree is said to be a Binary Search Tree if each node N of T has the

following property:

“The value at N is greater than every value in the left sub tree of N and is less
than every value in the right sub tree of N”.

Basic Operations

Following are the basic operations are performed in a binary search tree −

• Search − Searches an element in a tree.

• Insert − Inserts an element in a tree.
• Delete – Delete an element from a tree

• Pre-order Traversal − Traverses a tree in a pre-order manner.

• In-order Traversal − Traverses a tree in an in-order manner.

• Post-order Traversal − Traverses a tree in a post-order manner.

(a) Searching and Inserting in a Binary Search Tree

In binary search tree searching and inserting will be given by a single

search and insertion algorithm. The elements are 31, 16, 45, 24, 7,

19 and 29.The elements are inserted on after the other and the

Binary search tree is created.

93

Suppose ITM is the data given. It is required to find the location of
ITEM in a binary search tree Tor inserts ITEM as a new node in
appropriate place.

(a) Compare ITEM with the root node N

(i) If ITEM < N, proceed to the left child of N (ii) If
ITEM > N, proceed to the right child of N (b) Repeat
step (a) until one of the following occurs:

(i) We meet nod N such that ITEM = N(successful search)

(j) We meet an empty sub tree, indicate that search is

unsuccessful and insert ‘ITEM’ in place of the empty
sub tree.

(b) Deleting in a Binary Search Tree

Suppose T is a binary search tree and an ITEM of information is given

which is to be deleted. The deletion algorithm find the location of the node

N which contains ITEM and also the location of the parent node P(N). The

way N is deleted from the tree depends primarily on the number of children

of node N. There are there cases:

Case 1: N has no children. Then N is deleted from T by simply replacing the

location of N in the parent node P(N) by the null pointer.

Case 2: N has exactly one child. Then N is deleted from T by simply replacing

the location of N in P(N) by the location of the only child of N.

94

Case 3: N has two children. Let S(N) denote the inorder of N. Then N is

deleted from T by first deleting S(N) from T and then replacing node N in T by

the node S(N).

Example: all the three cases were considered as follows

95

96

97

Advantages of trees

Trees are so useful and frequently used, because they have some very

serious advantages:

• Trees reflect structural relationships in the data

• Trees are used to represent hierarchies

• Trees provide an efficient insertion and searching

• Trees are very flexible data, allowing to move subtrees around with

minimum effort

98

Chapter 7.0 GRAPH

Section 7.1 Graph terminology and its representation

A Graph is a non-linear data structure consisting of nodes and

edges. The nodes are sometimes also referred to as vertices and the

edges are lines or arcs that connect any two nodes in the graph. Graphs

are used to represent networks.

A graph is a pictorial representation of a set of objects where some

pairs of objects are connected by links. The interconnected objects are

represented by points termed as vertices, and the links that connect the

vertices are called edges.

Graphs are a powerful and versatile data structure that easily

allow you to represent real life relationships between different types

of data (nodes). ... The edges (connections) which connect the nodes

i.e. the lines between the numbers in the image.

A graph G consists of two things

1. A set V of elements called nodes (or points, or vertices)

2. A set E of edges such that each edge ‘e’ in E is identified
with a unique unordered pair [u,v]of nodes in V, denoted by

e = [u,v]

Sometimes we indicate the parts of a graph by writing G = (V,E)

In the above Graph, the set of vertices V = {0,1,2,3,4} and the set of

edges E = {01, 12, 23, 34, 04, 14, 13}.

Suppose e = [u,v], then the nodes u and v are called the endpoints of e

and u and v are said to be adjacent nodes or neighbors.

99

Degree of a node u: it is the number of edges containing by u and

denoted by deg(u).

If deg(u)=0 i.e u does not belong to any edge and u is called an isolated

node.

Path: A path P of length n from a node u to a node v is defined as a

sequence of n+1 nodes

P = (v0,v1,v2,…..vn)

Such that u=v0; vi-1 is adjacent to vi for i=1,2,…n; and vn = v.

Closed path: A path is said to be closed if v0 = vn

Simple path: The path P is said to be simple if all the nodes are distinct

except v0 may equal vn. P is simple if the nodes v0,v1,v2,…..vn-1 are

distinct and the nodes v1,v2,…..vn are distinct.

Cycle: A cycle is a closed simple path with length 3 or more. A cycle of

length ‘k’ is called a k-cycle.

Connected graph: A graph G is said to be connected if there is a path

between any two nodes.

Complete graph: A graph is said to be complete if every node ‘u’ in G is
adjacent to every other node ’v’ of G.A complete graph with ‘n’ nodes will
have n(n-1)/2 edges.

Tree graph or free graph: A connected graph T without any cycle is

called a tree graph or free graph i.e there is a unique simple path P

100

between any two nodes u and v in T. If T is a finite tree with m nodes then

T will have m-1 edges.

Weighted graph: A weighted graph is a graph in which each branch is

given a numerical weight. A weighted graph is therefore a special type

of labeled graph in which the labels are numbers (which are usually

taken to be positive). Each edge ‘e’ in G is assigned a non-negative

numerical value w(e) called the weight or length of ‘e’. Here each path P
in G is assigned a weight which is the sum of the weights of the edges

along the path P.

Multigraph: A graph whose edges are unordered pairs of vertices, and

the same pair of vertices can be connected by multiple edges. A

multigraph is a graph that can have more than one edge between a

pair of vertices.

1.Multiple edges: Distinct edges e and e’ are called multiple edges if they
connect the same end points i.e if e=[u,v] and e’= [u,v].

2.loops: An edge e called a loop if it has identical end points i.e if e=[u,u]

https://proofwiki.org/wiki/Definition:Graph_(Graph_Theory)
https://proofwiki.org/wiki/Definition:Graph_(Graph_Theory)
https://proofwiki.org/wiki/Definition:Graph_(Graph_Theory)
https://proofwiki.org/wiki/Definition:Edge_of_Graph
https://proofwiki.org/wiki/Definition:Edge_of_Graph
https://proofwiki.org/wiki/Definition:Edge_of_Graph
https://proofwiki.org/wiki/Definition:Vertex_of_Graph
https://proofwiki.org/wiki/Definition:Vertex_of_Graph
https://proofwiki.org/wiki/Definition:Vertex_of_Graph

101

102

Types of graphs: There are two types of graphs

Undirected Graph:

1.Undirected graphs have edges that do not have a direction. The
edges indicate a two-way relationship, in that each edge can be
traversed in both directions. In an undirected graph, nodes are
connected by edges that are all bidirectional. For example, if an edge
connects node 1 and 2, we can traverse from node 1 to node 2, and
from node 2 to 1.

2.Directed Graph

In a directed graph, nodes are connected by directed edges – they only go in
one direction. For example, if an edge connects node 1 and 2, but the arrow
head points towards 2, we can only traverse from node 1 to node 2 – not in
the opposite direction.

The main difference between directed and undirected graph is that a

directed graph contains an ordered pair of vertices whereas an

undirected graph contains an unordered pair of vertices.

• An edge is (together with vertices) one of the two basic units out of

which graphs are constructed. Each edge has two vertices to which

it is attached, called its endpoints.

• Two vertices are called adjacent if they are endpoints of the same

edge.

• Outgoing edges of a vertex are directed edges that the vertex is

the origin.

103

• Incoming edges of a vertex are directed edges that the vertex is

the destination.

• The degree of a vertex in a graph is the number of edges incident to

it.

• In a directed graph, outdegree of a vertex is the number of outgoing

edges from it and indegree is the number of incoming edges.

• A vertex with indegree zero is called a source vertex, while a vertex

with outdegree zero is called sink vertex.

• An isolated vertex is a vertex with degree zero; that is, a vertex

that is not an endpoint of any edge.

• A node ‘v’ is said to be reachable from a node ‘u’ if there is a path
from ‘u’ to ‘v’.

• Path is a sequence of alternating vetches and edges such that each

successive vertex is connected by the edge.

• Cycle is a path that starts and end at the same vertex.

• Simple path is a path with distinct vertices.

• A graph is Strongly Connected if it contains a directed path from u

to v and a directed path from v to u for every pair of vertices u, v.

• A graph G is said to be unilaterally connected if for every pair u,v

of nodes in G there is a path from u to v or a path from v to u.

• A directed graph is called Weakly Connected if replacing all of its

directed edges with undirected edges produces a connected

(undirected) graph. The vertices in a weakly connected graph have

either outdegree or indegree of at least 1.

• Connected component is the maximal connected sub-graph of an

unconnected graph.

• A bridge is an edge whose removal would disconnect the graph.

• Forest is a graph without cycles.

104

• Tree is a connected graph with no cycles. If we remove all the
cycles from DAG(Directed acyclic graph) it becomes tree and if we
remove any edge in a tree it becomes forest.

• Spanning tree of an undirected graph is a subgraph that is a tree

which includes all of the vertices of the graph.

• A directed graph G is said to be simple if G has no parallel edges. A
simple graph G may have loops, but it cannot have more than one
loop at a given node.

REPRESENTATION OF GRAPHS IN MEMORY

There are two standard ways of maintaining a graph G in memory of

a computer.

1. Sequential Representation

2. Linked Representation

The Sequential Representation of graph G is made by means of its

adjacency matrix ‘A’.

 (Undirected graph G) (Adjacency matrix ‘A’)

Suppose G is a simple directed graph with ‘m’ nodes and the nodes of
G have been ordered and are called v1,v2,…..vm. Then the adjacency

matrix A = (aij) of a graph G is the m x n matrix denoted as follows:

aij = 1 if vi is adjacent to vj, that is if there is an edge (vi , vj) aij

= 0 otherwise

Such a matrix A which contains entries of 0 and 1 is called a bit matrix or

Boolean matrix.

105

If G is an undirected graph then the Adjacency matrix ‘A’ is a symmetric
matrix that is aij = aji for every I and j

Let

Consider the powers A,A2,A3 … of the adjacency matrix A of graph G.

Let us define

106

ak(i,j) = the ij entry in the matrix Ak

a1(i,j) =aij gives the number of paths of length 1 from node vi

to node vj. Similarly a2(i,j) =aij gives the number of paths of

length 2 from node vi to node vj.

Let A be the adjacency matrix of a graph G, then ak(i,j) the ij entry in the

matrix Ak gives the number of paths of length K from vi to vj.

From the above graph, we can find A2,A3,A4 …. By multiplying A with itself
and so on.

 x y z w

 x 0 0 1 0 here path length from X to Z, Y to X etc is

2 A2 = y 1 0 1 2 Two paths from Y to W of path length 2

z 0 0 1 1 w 1 0 0 1

 x y z w

 x 1 0 0 1 here path length from X to X, Y to X etc is 3 A3

= y 1 0 2 2 z 1 0 1 1 w 0 0 1 1 x

y z w x 0 0 1 1 A4 = y 2 0 2 3 z 1 0 1 2

 w 1 0 1 1

Now we can define the matrix Br as follows:

Br = A+ A2+A3+A4 + ……+ Ar

Then the ij entry of the matrix Br gives the number of paths of length ‘r’ or less
from node vi to vj.

Path matrix

Let G be a simple directed graph with m nodes v1,v2,…..vm. the path

matrix or reachability matrix of G is the m-square matrix P = (pij)

defined as follows:

107

pij = 1 if there is a path from vi to vj, pij

= 0 otherwise

Let A be the adjacency matrix and let P= (pij) be the path matrix of a

directed graph, Then pij =1 if and only if there is a non-zero number in

the ij entry of the matrix

Bm = A+ A2+A3+A4 + ……+ Am

Consider the graph with m = 4 nodes. Adding A, A2, A3 and A4 we obtain

the following matrix B4 and by replacing the non-zero entries in B4 by 1 we

obtain the path matrix

 x y z w

x 1 0 2 3

B4 = y 5 0 6 8 and the path matrix P is defined

as z 3 0 3 5

w 2 0 3 3

x y z w x 1

0 1 1 P = y 1

0 1 1 z 1

0 1 1 w 1

0 1 1

Here node Y is not reachable from any node. As we know a graph
is Strongly Connected if it contains a directed path

from u to v and a directed path from v to u for every pair of

vertices u, v. Accordingly G is strongly connected if and only if the

path matrix P of G has no zero entries. The graph in this example

is not strongly connected.

 The Adjacency matrix and the Path matrix P of a graph G

may be viewed as logical matrices where ‘0’ and’1’ represent false
and true respectively. Thus the logical operations AND & OR may

be applied to the entries of A and P.

108

OR 0 1

0

1

0 1

1 1

AND 1 0

0

1

0 0

0 1

109

110

111

112

CHAPTER 8 Sorting and Searching

Searching here refers to finding an item in the array that meets some specified criterion.

Searching Algorithms Techniques:

• Linear Search.

• Binary Search.

Sorting refers to rearranging all the items in the array into increasing or decreasing order. Sorting algorithm

specifies the way to arrange data in a particular order. Most common orders are in numerical or lexicographical
order.

Following are some of the examples of sorting in real-life scenarios −

• Telephone Directory − The telephone directory stores the telephone numbers of people
sorted by their names, so that the names can be searched easily.

• Dictionary − The dictionary stores words in an alphabetical order so that searching of any
word becomes easy.

The different sorting techniques are

• Selection sort

• Insertion sort

• Merge sort

• Quick sort

• Bubble sort Radix sort

Three interesting issues to consider when thinking about different sorting algorithms are:

• Does an algorithm always take its worst-case time?

• What happens on an already-sorted array?

• How much space (other than the space for the array itself) is required?

Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based algorithm in
which each pair of adjacent elements is compared and the elements are swapped if they are not in
order. This algorithm is not suitable for large data sets as its average and worst-case complexity are
of Ο(n2) where n is the number of items.

BUBBLE SORT

Implementing Bubble Sort Algorithm

1. Starting with the first element (index = 0), compare the current element with the next element

of the array.

2. If the current element is greater than the next element of the array, swap them.

113

3. If the current element is less than the next element, move to the next element.

4. Repeat Step 1.

We take an unsorted array for our example. Bubble sort takes Ο(n2) time so we're keeping it short
and precise.

Bubble sort starts with very first two elements, comparing them to check which one is greater.

In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare 33
with 27.

We find that 27 is smaller than 33 and these two values must be swapped.

The new array should look like this −

Next we compare 33 and 35. We find that both are in already sorted positions.

Then we move to the next two values, 35 and 10.

We know then that 10 is smaller 35. Hence they are not sorted.

We swap these values. We find that we have reached the end of the array. After one iteration, the
array should look like this −

114

To be precise, we are now showing how an array should look like after each iteration. After the
second iteration, it should look like this −

Notice that after each iteration, at least one value moves at the end.

And when there's no swap required, bubble sorts learns that an array is completely sorted.

Algorithm:

BUBBLE (DATA,N)

Here DATA is an array with N element. This algorithm sorts the element in DATA.

Step 1: [Loop]

Repeat step 2 and step 3 for K=1 to N-1

 Step 2: [Initialize pass pointer PTR]

Set PTR :=1

Step 3: [Execute pass]

Repeat while PTR <= N-K

a. If DATA [PTR] > DATA [PTR+1]

Then interchange DATA [PTR] & DATA [PTR+1]

[End of if structure]

b. Set PTR =PTR+1

[End of Step 1 Loop]

Step 4: Exit

Complexity of the Bubble Sort Algorithm

The time for a sorting algorithm is measured in terms of the number of

115

comparisons. The number f(n) of comparisons in the bubble sort is easily

computed. There are n-1 comparisons during the first pass, which places the

largest element in the last position; there are n-2 comparisons in the second step,

which places the second largest element in the next to last position and so on.

F(n)=(n-1)+(n-2)+….+2+1=n(n-1)/2=n2/2+O(n) = O(n2)

The time required to execute the bubble sort algorithm is proportional to n2, Where n is the
number of input items.

QUICK_SORT OR PARTITION EXCHANGE SORT

We use two index variables I and j with initial values of 2 and 10 respectively. The two
keys 42 and Ki are compared and if an exchange is required (Ki < 42) then i is incremented by
1 and the process is repeated. When Kj<=42 we proceed to compare Kj and 42. If an
exchange is required then j is decremented by 1 and the process is repeated until Kj<=42. At
this point the keys Ki and Kj (i.e 74 and 36) are interchanged. The entire process is then
repeated with j fixed and I being incremented once again. When i>=j, the desired key is
placed in its final position by interchanging keys 42 and Kj.

 42 23 74 11 65 58 94 36 99 87

 42 23 74 11 65 58 94 36 99 87

 42 23 74 11 65 58 94 36 99 87

 42 23 74 11 65 58 94 36 99 87

 42 23 74 11 65 58 94 36 99 87

 42 23 36 11 65 58 94 74 99 87

 42 23 36 11 65 i=5 58 94 74 99 87

 42 23 36 11 65 58 94 74 99 87

 42 23 36 11 65 58 94 74 99 87

 42 23 36 11 65 58 94 74 99 87

 42 23 36 11 j=4 65 58 94 74 99 87

11 23 36 42 65 58 94 74 99 87

QUICK_SORT(K,LB,UB)

Given a table K of N records. LB and UB denote the lower and upper bounds of

the current sub table being processed. KEY the key value which is being placed in

final position within the sorted sub table. FLAG is a logical variable which indicates

116

the end of the process. I and J are indices used to select certain keys during

processing of sub tables.

Step 1 [Initialize]

 FLAG = true

Step 2 [Perform Sort]

 If LB<UB

 Then I = LB

 J = UB+1

 KEY = K[LB]

 Repeat while FLAG

 I = I + 1

 Repeat while K[I] < KEY (scan the keys from left to right)

I = I+1

J = J-1

 Repeat while K[J] > KEY (scan the keys from right to left)

 J=J-1

 If I <J

 Then K[I] → K[J] (Interchange records)

 Else FLAG = false

 K[LB] → K[J] (Interchange records)

 Call QUICK_SORT(K,LB,J-1) (Sort first subtable)

 Call QUICK_SORT(K,J+1,UB) (Sort second subtable)

Step 3 [Finish]

 Exit

Complexity of the Quick Sort Algorithm

The time for a sorting algorithm is measured in terms of the number of

comparisons. The best case analysis occurs when the table is always partitioned in

half that is J = (LB+UB)/2

Best case complexities O(Nlog2N) where N is the no. of records.

117

The average case analysis of procedure QUICK_SORT is also O(Nlog2N).

MERGING:

The operation of sorting is closely related to the process of merging. The merging

of two order table which can be combined to produce a single sorted table. This
process can be accomplished easily by successively selecting the record with the
smallest key occurring by either of the table and placing this record in a new table.

 Table1 11 23 42 52

 Table 2 9 25

 New table 9

 Table1 11 23 42 52

 Table 2 25

 New table 9 11

 Table 1 23 42 52

 Table 2 25

 New table 9 11 23

 Table1 42 52

 Table 2 25

 New table 9 11 23 25

 Table 1 42 52

 Table 2 nil

 New table 9 11 23 25 42 52

Values can be stored in a vector k

 K 11 23 42 52 9 25

 FIRST SECOND THIRD

SIMPLE MERGE

SIMPLE MERGE [FIRST,SECOND,THIRD,K]

118

Given two orders in table sorted in a vector K with FIRST, SECOND, THIRD

The variable I & J denotes the curser associated with the FIRST & SECOND

table respectively. L is the index variable associated with the vector TEMP.

Algorithm

Step 1: [Initialize]

Set I = FIRST

Set J = SECOND

Set L = 0
 Step 2: [Compare corresponding elements and output the smallest]

 Repeat while I < SECOND & J < =THIRD

 If K[I] <= K[J],
then L = L+1
TEMP [L]=K[I]

 I=I+1

 Else

 L=L+1
 TEMP[L]=K[J]

 J=J+1
 Step 3: [Copy remaining unprocessed element in output area]

 If I>=SECOND

Then repeat while J<=THIRD

 L=L+1

 TEMP[L]=K[J]

 J=J+1

Else

Repeat while I<SECOND

 L=L+1

 TEMP[L]= K[I]

 I=I+1

 Step 4: [Copy elements in temporary vector into original area]

 Repeat for I = 1,2,……..L

K[FIRST-1+I] = TEMP[I]

Step 5: [Finished]

 Return

119

COMPLEXITIES OF MERGE SORT

Complexity of an algorithm is a measure of the amount of time and /or space required by an
algorithm for an input of given size (n).
Time complexity of Merge Sort is O(n*Log n) in all the 3 cases (worst, average and best) as

merge sort always divides the array in two halves and takes linear time to merge two halves. It

requires equal amount of additional space as the unsorted array. It is more efficient as it is in

worst case also the runtime is O(nlogn) The space complexity of Merge sort is O(n).

SEARCHING:

Searching refers to finding the location i.e LOC of ITEM in an array. The search
is said to be successful if ITEM appears the array & unsuccessful otherwise we
have two types of searching techniques.

1. Linear Search

2. Binary Search

LINEAR SEARCH:

Suppose DATA is a linear array with n elements. No other information about

DATA, the most intuitive way to search for a given ITEM in DATA is to compare

ITEM with each element of DATA one by one. First we have to test whether

DATA [1]=ITEM, nad then we test whether DATA[2] =ITEM , and so on. This

method which traverses DATA sequentially to locate ITEM, is called linear search

or sequential search.

120

Algorithm Linear searching

LINEAR (DATA, N, ITEM, LOC)

Step 1: [Insert ITEM at the end of DATA]

Set DATA [N+1] = ITEM

Step 2: [Initialize counter]

Set LOC :=1

Step 3: [Search for ITEM]

Repeat while DATA [LOC]!= ITEM

Set LOC := LOC+1 [end of loop]

 Step 4: [Successful?]

 If LOC=N+1

Then Set LOC = 0

Step 5: Exit

Let us search for 88. Further we
search for 92

We will compare 88 with DATA[1] then DATA[2] and so on till we find a match. If a match is found
then it is Successful search else Unsuccessful search

121

DATA[!] DATA[2] -- DATA[N] DATA[N+1]

45 56 33 29 88 ………. 42 93 92

122

Complexity of the Linear Search Algorithm

The complexity of search algorithm is measured by the number f(n) of comparisons required

to find ITEM in DATA where DATA contains n elements. Two important cases to consider are

the average case and the worst case.

The worst case occurs when one must search through the entire array DATA. In this case, the

algorithm requires

F(n)= n+1
Thus, in the worst case, running time is proportional to n.

The running time of the average case uses the probabilistic notion of expectation. The probability

that ITEM appears in DATA[K], and q is the probability that ITEM

does not appear in DATA . Since the algorithm uses k comparison when ITEM appears in DATA[K],

the average number of comparison is given by

F(n) = 1 . p1 + 2 . p2 +…..+ n . pn + (n+1).q

F(n) = 1.1/n+2.1/n+…….+n.1/n +(n+1).0

 =(1+2+3+4+…..+n).1/n =n(n+1)/2 .1/n = n+1/2

BINARY SEARCH

Binary search works on sorted arrays. Binary search begins by comparing an element in the

middle of the array with the target value. If the target value matches the element, its position in the

array is returned. If the target value is less than the element, the search continues in the lower half

of the array. If the target value is greater than the element, the search continues in the upper half of

the array. By doing this, the algorithm eliminates the half in which the target value cannot lie in each

iteration.

Steps of Binary searching

Binary search is implemented using following steps...

• Step 1 - Read the search element from the user.
• Step 2 - Find the middle element in the sorted list.
• Step 3 - Compare the search element with the middle element in the sorted list.
• Step 4 - If both are matched, then display "Given element is found!!!" and terminate the

function.

123

• Step 5 - If both are not matched, then check whether the search element is smaller or larger
than the middle element.

• Step 6 - If the search element is smaller than middle element, repeat steps 2, 3, 4 and 5 for
the left sublist of the middle element.

• Step 7 - If the search element is larger than middle element, repeat steps 2, 3, 4 and 5 for the
right sublist of the middle element.

• Step 8 - Repeat the same process until we find the search element in the list or until sublist
contains only one element.

• Step 9 - If that element also doesn't match with the search element, then display

"Element is not found in the list!!!" and terminate the function.

Example of Binary searching

124

Suppose DATA is an array which is sorted in increasing numerical order or

equivalently, alphabetically. Then there is an extremely efficient searching

algorithm, called binary search.

Algorithm

(Binary search) BINARY (DATA, LB, UB, ITEM, LOC)

Step 1: [Initialize the segment variables]

 Set BEG := LB, END := UB

125

 and MID := INT ((BEG + END)/2)

Step 2: [Loop]

Repeat Step 3 and Step 4

while BEG <= END and DATA [MID] ≠ ITEM

Step 3: [Compare]

 If ITEM < DATA [MID]
then set END := MID - 1
 Else

 Set BEG = MID + 1

Step 4: [Calculate MID]

Set MID := INT ((BEG + END)/2)

Step 5: [Successful search]

If DATA [MID] = ITEM
then set LOC := MID

Else

Set LOC := NULL

Step 6: Exit

Complexity of the Binary Search Algorithm
The time complexity of the binary search algorithm is O(log n). The best-case time

complexity would be O(1) when the central index would directly match the desired value. binary

search is far more faster-searching algorithm than linear searching if the array is sorted. And its

Big-O run time is O(log n).The complexity is measured by the number f(n) of comparison to locate

ITEM in DATA where DATA contains n elements. Observe that each comparison reduces the

sample size in half. Hence we require at most f(n) comparison to locate ITEM where 2f(n) > n Or

equivalently F(n) = [log2 n] + 1

The running time for the worst case is approximately equal to log2 n and the average case is

approximately equal to the running time for the worst case.

126

Time and Space Complexity Comparison Table :

SORTING ALGORITHM TIME COMPLEXITY SPACE COMPLEXITY

BEST CASE AVERAGE CASE WORST CASE WORST CASE

Bubble Sort Ω(N) Θ(N2) O(N2) O(1)

Selection Sort Ω(N2) Θ(N2) O(N2) O(1)

Quick Sort Ω(N log N) Θ(N log N) O(N2) O(N log N)

Merge Sort Ω(N log N) Θ(N log N) O(N log N) O(N)

Heap Sort Ω(N log N) Θ(N log N) O(N log N) O(1)

Binary Search O(1) O(log2N) O(log2N) O(N)

Linear Search O(1) O(N+1)/2 O(N+1) O(N)

SORTING ALGORITHM

TIME COMPLEXITY

SPACE COMPLEXITY

 BEST CASE AVERAGE CASE WORST CASE WORST CASE

127

129

Chapter 9 File Organisation

File is a collection of records related to each other. The file size is

limited by the size of memory and storage medium.

A record is a unit which data is usually stored in. Each record is a

collection of related data items, where each item is formed of one or

more bytes and corresponds to a particular field of the record. Records

usually describe entities and their attributes. A collection of field (item)

names and their corresponding data types constitutes a record type. In

short, we may say that a record type corresponds to an entity type and a

record of a specific type represents an instance of the corresponding

entity type.

A file basically contains a sequence of records. Usually all

records in a file are of the same record type.

In many cases, all records in a file are of the same record type. If

every record in the file has exactly the same size (in bytes), the file is

said to be made of fixed-length records. If different records in the file

have different sizes, the file is said to be made up of variable-length

records.

 A file may have variable-length records for several reasons :

i) The file records are of the same record type, but one or more

fields are of varying sizes (variable-length fields). ii) The file

records are of the same record type but one or more fields may

have multiple values for individual records. Such a field is called

repeating field and a group of values for the field is often called a

repeating group.

iii) The file records are of the same record type, but one or

more fields are optional.

iv) The file has records of different record types and hence of

varying size (mixed file). This would occur if related records

of different types were clustered (placed together) on disk

blocks.

130

File organization refers to the way data is stored in a file. File

organization refers to physical layout or a structure of record

occurrences in a file. File organization determines the way records are

stored and accessed. File organization is very important because it

determines the

1. Methods of access,

2. Efficiency,

3. Flexibility and

4. Storage devices to use

Types of File Organization

There are three types of organizing the file:

1. Sequential access file organization

2. Direct access file organization

3. Indexed sequential access file organization

1. Sequential access file organization

• Storing and sorting in contiguous block within files on tape or disk is

called as sequential access file organization.

• In sequential access file organization, all records are stored in a
sequential order. The records are arranged in the ascending or
descending order of a key field.

• Sequential file search starts from the beginning of the file and the

records can be added at the end of the file.

• In sequential file, it is not possible to add a record in the middle of the

file without rewriting the file.

Advantages of sequential file

• It is simple to program and easy to design.

• Sequential file is best use if storage space.

Disadvantages of sequential file

• Sequential file is time consuming process.

• It has high data redundancy.

• Random searching is not possible.

131

2. Direct access file organization

• Direct access file is also known as random access or relative file

organization.

• In direct access file, all records are stored in direct access storage

device (DASD), such as hard disk. The records are randomly placed

throughout the file.

• The records does not need to be in sequence because they are updated

directly and rewritten back in the same location.

• This file organization is useful for immediate access to large amount of

information. It is used in accessing large databases.

• It is also called as hashing.

Advantages of direct access file organization

• Direct access file helps in online transaction processing system (OLTP)

like online railway reservation system.

• In direct access file, sorting of the records are not required.

• It accesses the desired records immediately.

• It updates several files quickly.

• It has better control over record allocation.

Disadvantages of direct access file organization

• Direct access file does not provide back up facility.

• It is expensive.

• It has less storage space as compared to sequential file.

3. Indexed sequential access file organization

• Indexed sequential access file combines both sequential file and direct

access file organization.

• In indexed sequential access file, records are stored randomly on a

direct access device such as magnetic disk by a primary key.

• This file have multiple keys. These keys can be alphanumeric in which

the records are ordered is called primary key.

• The data can be access either sequentially or randomly using the index.
The index is stored in a file and read into memory when the file is
opened.

Advantages of Indexed sequential access file organization

132

• In indexed sequential access file, sequential file and random file access

is possible.

• It accesses the records very fast if the index table is properly organized.

• The records can be inserted in the middle of the file.

• It provides quick access for sequential and direct processing.

• It reduces the degree of the sequential search.

Disadvantages of Indexed sequential access file organization

• Indexed sequential access file requires unique keys and periodic

reorganization.

• Indexed sequential access file takes longer time to search the index for

the data access or retrieval.

• It requires more storage space.

• It is expensive because it requires special software.

• It is less efficient in the use of storage space as compared to other file

organisation

 ACCESS METHODS

A file organization refers to the organization of the data of a file into

records, blocks and access structures; this includes the way the records

and blocks are placed on the storage medium and interlinked. An access

method on the other hand, provides a group of operations – such as (i)

find, (ii) read, (iii) modify, (iv) delete etc., — that can be applied to a

file. In general, it is possible to apply several access methods to a file

organization. Some access methods, though, can be applied only to files

organised in certain ways.

1. Sequential Access Method (SAM)

 In sequential files, the records are stored in a predefined order.

Records which occur in a sequential file are usually sorted on the

primary key and physically arranged on the storage medium in order by

primary key. If only sequential access is required (which is rarely the

case), sequential media (magnetic tapes) are suitable and probably the

most cost-effective way of processing such files.

Sequential access is fast and efficient while dealing with large

volumes of data that need to be processed periodically. However, it is

require that all new transactions be sorted into a proper sequence for

sequential access processing. Also, most of the database or file may

133

have to be searched to locate, store, or modify even a small number of

data records. Thus, this method is too slow to handle applications

requiring immediate updating or responses. Sequential files are

generally used for backup or transporting data to a different system. A

sequential ASCII file is a popular export/import format that most

database systems support.

2. Indexed Sequential Access Method (ISAM)

 In indexed sequential files, record occurrences are sorted and

stored in order by primary key on a direct access storage device. In

addition, a separate table (or file) called an index is maintained on

primary key values to give the physical address of each record

occurrence. This approach gives (almost) direct access to record

occurrences via the index table and sequential access via the way in

which the records are laid out on the storage medium. The physical

address of a record given by the index file is also called a pointer. The

pointer or address can take many forms depending on the operating

system and the database one is using. Today systems use virtual

addresses instead of physical addresses. A virtual address could be

based on imaginary disk drive layout. The database refers to a base set

of tracks and cylinders. The computer then maps these values into

actual storage locations. This arrangement is the basis for an approach

known as the virtual sequential access method (VSAM). Another

common approach is to define a location in terms of its distance from the

start of a file (relative address). Virtual or relative addresses are always

better than the physical address because of their portability. In case a

few records need to be processed quickly, the index is used to directly

access the records needed. However, when large numbers of records

must be processed periodically, the sequential organization provided by

this method is used

3. Direct Access Method (DAM)

When using the direct access method, the record occurrences in a

file do not have to be arranged in any particular sequence on storage

media. However, the computer must keep track of the storage location of

each record using a variety of direct organization methods so that data is

retrieved when needed. New transactions data do not have to be sorted,

and processing that requires immediate responses or updating is easily

134

handled. In the direct access method, an algorithm is used to compute

the address of a record. The primary key value is the input to the

algorithm and the block address of the record is the output. Address

Data/Record Key Value Address/Pointer Index file Data file and

Database Design To implement the approach, a portion of the storage

space is reserved for the file. This space should be large enough to hold

the file plus some allowance for growth. Then the algorithm that

generates the appropriate address for a given primary key is devised.

The algorithm is commonly called hashing algorithm. The process of

converting primary key values into addresses is called key-to-address

transformation. More than one logical record usually fits into a block, so

we may think of the reserved storage area as being broken into record

slots sequentially numbered from 1 to n. These sequential numbers are

called relative pointers or relative addresses, because they indicate the

position of the record relative to the beginning of the file. The objective

of the hashing algorithm is to generate relative addresses that

disperse the records throughout the reserved storage space in a

random but uniform manner. The records can be retrieved very rapidly

because the address is computed rather than found through table lookup

via indexes stored on a disk file. A collision is said to occur if more

than one record maps to the same block. Since one block usually

holds several records, collisions are only a problem when the number of

records mapping to a block exceeds the block’s capacity. To account for
this event, most direct access methods support an overflow area for

collisions which is searched sequentially. The hashed key approach is

extremely fast since the key’s value is immediately converted into a
storage location, and data can be retrieved in one pass to the disk

What is Hashing?

• Hashing is the process of mapping large amount of data item to smaller

table with the help of hashing function.

• Hashing is also known as Hashing Algorithm or Message Digest

Function.

• It is a technique to convert a range of key values into a range of indexes

of an array.

• It is used to facilitate the next level searching method when compared

with the linear or binary search.

135

• Hashing allows to update and retrieve any data entry in a constant time

O(1).

• Constant time O(1) means the operation does not depend on the size of

the data.

• Hashing is used with a database to enable items to be retrieved more

quickly.

• It is used in the encryption and decryption of digital signatures.

• Hashing is extremely efficient.

• The time taken by it to perform the search does not depend upon the
total number of elements.

What is Hash Function?

• A fixed process converts a key to a hash key is known as a Hash Function.

• This function takes a key and maps it to a value of a certain length which is

called a Hash value or Hash.

• Hash value represents the original string of characters, but it is normally

smaller than the original.

• It transfers the digital signature and then both hash value and signature are

sent to the receiver. Receiver uses the same hash function to generate the

hash value and then compares it to that received with the message.

• If the hash values are same, the message is transmitted without errors.

Hash Key Value

• Hash key value is a special value that serves as an index for a data item.

• It indicates where the data item should be stored in the hash table.

• Hash key value is generated using a hash function.

136

What is Hash Table?

Hash Table is a data structure which stores data in an associative

manner. In a hash table, data is stored in an array format, where each

data value has its own unique index value. Access of data becomes very

fast if we know the index of the desired data.

• Hash table or hash map is a data structure used to store key-value

pairs.

• It is a collection of items stored to make it easy to find them later.

• It uses a hash function to compute an index into an array of buckets or

slots from which the desired value can be found.

• It is an array of list where each list is known as bucket.

• It contains value based on the key.

• Hash table is used to implement the map interface and extends

Dictionary class.

• Hash table is synchronized and contains only unique elements.

• The above figure shows the hash table with the size of n = 10. Each

position of the hash table is called as Slot. In the above hash table,

there are n slots in the table, names = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Slot 0,

slot 1, slot 2 and so on. Hash table contains no items, so every slot is

empty.

137

• As we know the mapping between an item and the slot where item

belongs in the hash table is called the hash function. The hash function

takes any item in the collection and returns an integer in the range of

slot names between 0 to n-1.

Types of Hash Functions-

There are various types of hash functions available such as-

1. Mid Square Hash Function

2. Division Hash Function

3. Folding Hash Function

4. Digit Analysis

1. Mid Square method

Here the key K is squared and then the hash function H is defined by

H(K) = l where l is obtained by deleting from both ends of K2

Example: K = 3205 2345 7148

 K2 = 10272025 5499025
 51093904

 H(K) = 72 99 93

The fourth and fifth digits, counting from right are chosen for the hash

address.

 2.Division Hash Function

Here choose a number m larger than the number n of the keys in K. The
hash function H is defined by

 H(K) = K(mod m) (Here range is from 0 to m-1) or H(K) =

K(mod m) +1 (Here range is from 1 to m) Here K(mod m)

denotes the remainder when K is divided by m.

Example: let m=97,then

H(3205) = 3205(mod 97) = 4 (remainder)

H(2345) = 2345(mod 97) = 17 (remainder)

H(7148) = 7148(mod 97) = 67 (remainder)

3.Folding Hash Function

Here the key K is partitioned into a number of parts k1,k2,k3….kr where
each part except possibly the last has the same number of digits as
required address. Then the parts are added together ignoring the last
carry. That is,

 H(K) = k1+k2+k3+….+ kr

138

H(3205) = 32+05 = 37

H(2345) = 23+45 = 68

H(7148) = 71+48 = 19 (ignore carry)

4.Digit Analysis

It forms the address by selecting and shifting digits or bits of the original
key. this hashing function is in a sense distributed dependent.

Example: let key K 7546123 is transformed to the address 2164 by
selecting digits in positions 3 to 6 and reverse their order.

Characteristics of good hashing function

1. The hash function should generate different hash values for the similar
string.

2. The hash function is easy to understand and simple to compute.

3. The hash function should produce the keys which will get distributed,
uniformly over an array.

4. A number of collisions should be less while placing the data in the hash
table.

5. The hash function is a perfect hash function when it uses all the input
data.

Collision: It is a situation in which the hash function returns the same hash

key for more than one record, it is called as collision. Sometimes when we are

going to resolve the collision it may lead to a overflow condition and this

overflow and collision condition makes the poor hash function. Collision

resolution technique

If there is a problem of collision occurs then it can be handled by apply some
technique. These techniques are called as collision resolution techniques.
There are generally four techniques which are described below

1) Chaining

It is a method in which additional field with data i.e. chain is introduced. A
chain is maintained at the home bucket. In this when a collision occurs then a
linked list is maintained for colliding data.

139

Example: Let us consider a hash table of size 10 and we apply a hash function

of H(key)=key % size of table. Let us take the keys to be inserted are

31,33,77,61. In the above diagram we can see at same bucket 1 there are two

records which are maintained by linked list or we can say by chaining method.

2) Linear probing

It is very easy and simple method to resolve or to handle the collision. In this

collision can be solved by placing the second record linearly down, whenever

the empty place is found. In this method there is a problem of clustering which

means at some place block of a data is formed in a hash table.

Example: Let us consider a hash table of size 10 and hash function is defined

as H(key)=key % table size. Consider that following keys are to be inserted

that are 56,64,36,71.

140

In this diagram we can see that 56 and 36 need to be placed at same bucket

but by linear probing technique the records linearly placed downward if place

is empty i.e. it can be seen 36 is placed at index 7.

3) Quadratic probing

This is a method in which solving of clustering problem is done. In this method

the hash function is defined by the H(key)=(H(key)+x*x)%table size. Let us

consider we have to insert following elements that are:-67, 90,55,17,49.

In this we can see if we insert 67, 90, and 55 it can be inserted easily but at

case of 17 hash function is used in such a manner that :-(17+0*0)%10=17

(when x=0 it provide the index value 7 only) by making the increment in value

of x. let x =1 so (17+1*1)%10=8.in this case bucket 8 is empty hence we will

place 17 at index 8.

4) Double hashing

It is a technique in which two hash function are used when there is an

occurrence of collision. In this method 1 hash function is simple as same as

division method. But for the second hash function there are two important

rules which are

1. It must never evaluate to zero.

2. Must sure about the buckets, that they are probed.

141

The hash functions for this technique are:

 H1(key)=key % table size

 H2(key)=P-(key mod P)

Where, p is a prime number which should be taken smaller than the size of a

hash table.

Example: Let us consider we have to insert 67, 90,55,17,49.

In this we can see 67, 90 and 55 can be inserted in a hash table by using first

hash function but in case of 17 again the bucket is full and in this case we have

to use the second hash function which is H2(key)=P-(key mode P) here p is a

prime number which should be taken smaller than the hash table so value of p

will be the 7.

i.e. H2(17)=7-(17%7)=7-3=4 that means we have to take 4 jumps for placing

the 17. Therefore 17 will be placed at index 1.

	Subject Name : Data structure 3rd semester IT
	1.0 INTRODUCTION
	Section 1.2 Data structure

	Section 1.3 Abstract data type
	Section 1.4 Algorithms and its complexities
	(B)Space Complexity
	Section 1.5Time Space Tradeoff
	Section 2.1 Basic terminology
	STORING STRING
	Section 2.2 CHARACTER DATA TYPE:-
	1.Sub string:-
	SUBSTRING (String, initial, length)

	SUBSTRING (S, K, L)
	2. INDEXING:-

	‘HIS FATHER IS THE PROFESSOR‘ Then INDEX (T,‗THE‘) = 7
	3.Concatenation:-
	4.Length operation:-

	CHAPTER 3.0 ARRAYS
	Therefore length = UB when LB = 1
	Section 3.2 Representation Linear Array in Memory
	LOC(LA[K]) = Base (LA) + (K – lower bound)
	LOC (LA[K]) = Base (LA) + w (K - lower bound)
	LOC(LA[K]) = Base (LA) + (K – 1) and LOC (LA[K]) = Base (LA) + w (K - 1) DATA

	Section 3.4 Two dimensional and Multidimensional Array
	Multidimensional Array
	3. Consider the Two-dimensional array –

	LOC(LA[K]) = Base (LA) + w (K – 1)
	1.Row – major order LOC(LA[J,K]) = Base(LA)+w[N(J - 1)+(K – 1)]
	2. Column – major order LOC(LA[J,K]) = Base(LA)+w[M(K - 1)+(J – 1)]

	Section 3.3 OPERATIONS ON ARRAYS
	ARRAY TRAVERSAL ALGORITHM

	Algorithm for Inserting an element into a linear array:-
	Section 3.5 Sparse Matrix
	Sparse Matrix Representations
	Triplet Representation (Array Representation)
	Linked Representation
	CHAPTER 4 STACKS AND QUEUES
	Section 4.2 Array representation of stack
	Algorithm 2: POP (STACK, TOP, ITEM)

	Section 4.3 Arithmetic Expressions;Polish Notation
	• Infix Notation  Prefix (Polish) Notation  Postfix (Reverse-Polish) Notation
	Infix Notation
	Prefix Notation
	Postfix Notation

	Conversion of Infix Expressions to Prefix and Postfix
	Infix expression: A+B*C Postfix expression: ABC*+
	Infix expression: A+B*C Prefix expression: +A*BC
	Evaluation of a Postfix Expression
	‘P’ written in postfix notation. P: 5, 6, 2, + , *, 12, 4, / ,- ,)

	Section 4.4 Application of Stack
	RECURSION

	Section 4.5 QUEUES

	Representation of queue
	FRONT: = FRONT + 1
	REAR: = REAR +1
	Algorithm: QINSERT(QUEUE,N,FRONT,REAR,ITEM)
	Algorithm: QDELETE(QUEUE,N,FRONT,REAR,ITEM)

	Section 4.5 Priority Queue
	(B)Array Representation of Priority Queue

	CHAPTER 5.0 LINKED LIST
	PTR := LINK[PTR]
	Algorithm (Traversing a linked list)

	Searching a linked list
	Algorithm for searching linked list:-
	SEARCH (INFO, LINK, START, ITEM, LOC)
	(a) Memory Allocation
	LIST(INFO, LINK,START,AVAIL)
	(b) Garbage Collection-
	(c) Overflow & Underflow-

	Section 5.5 Insertion into a linked list

	(A) Inserting the node at the beginning of a list:-
	(B)Inserting the node after a given node of a list: -
	Algorithm INSLOC (INFO, LINK, START, AVAIL, LOC, ITEM)

	(C) Inserting the node into a Sorted linked list:-
	Section 5.5 Deletion from a linked list:-
	DEL (INFO, LINK, START, AVAIL, LOC, LOCP)

	Section 5.5 Header linked list:-
	1.Grounded header linked list:-
	2. Circular header linked list:-

	Advantages of Linked Lists
	Disadvantages of Linked Lists
	Applications of Linked Lists
	Section 6.1 Basic terminology
	Types of tree

	Section 6.2 Binary tree
	Types of Binary Tree
	3. Perfect Binary Tree
	4. Balanced Binary Tree
	5. A degenerate (or pathological) tree
	6. Extended Binary Trees:2-Trees
	SECTION 6.2 REPRESNTING BINARY TREES IN MEMORY
	1.Linked representation of binary tree
	2. Sequential of Array representation of binary tree

	TRAVERSING BINARY TREES

	1.In-order Traversal
	Algorithm Procedure RINORDER(T)

	2.Pre-order Traversal
	Algorithm Procedure RPREORDER(T)

	3.Post-order Traversal
	Algorithm Procedure RPOSTORDER(T)
	A B D E F C G H J L K
	Inorder traversal: Left -> Node -> Right
	Post order traversal: Left -> Right -> Node

	BINARY SEARCH TREES
	left_subtree (keys) < node (key) ≤ right_subtree (keys)

	Basic Operations
	(a) Searching and Inserting in a Binary Search Tree
	(b) Deleting in a Binary Search Tree

	Advantages of trees

	Chapter 7.0 GRAPH
	Section 7.1 Graph terminology and its representation
	1. A set V of elements called nodes (or points, or vertices)
	2.Directed Graph
	REPRESENTATION OF GRAPHS IN MEMORY
	BUBBLE SORT
	BINARY SEARCH
	Advantages of sequential file
	Disadvantages of sequential file
	2. Direct access file organization

	Advantages of direct access file organization
	Disadvantages of direct access file organization
	3. Indexed sequential access file organization

	Advantages of Indexed sequential access file organization
	Disadvantages of Indexed sequential access file organization

	ACCESS METHODS
	1. Sequential Access Method (SAM)
	2. Indexed Sequential Access Method (ISAM)
	3. Direct Access Method (DAM)

	Hash Key Value
	2.Division Hash Function
	3.Folding Hash Function
	4.Digit Analysis
	1) Chaining
	2) Linear probing
	3) Quadratic probing
	4) Double hashing

