
LEARNING MATERIAL

ON

SOFTWARE ENGINEEARING

 (5TH SEMESTER)

DEPARTMENT OF INFORMATION TECHNOLOGY

Prepared by
Smt. Madhusmita Dalai
Lect. IT
Govt.Polytechnic,Bhubaneswar

Introduction to Software Engineering

Software is a program or set of programs containing instructions that provide

desired functionality. And Engineering is the process of designing and building

something that serves a particular purpose and finds a cost-effective solution to

problems.

Software Engineering is a systematic, disciplined, quantifiable study and approach
to the design, development, operation, and maintenance of a software system.

Objectives of Software Engineering:

1. Maintainability –

It should be feasible for the software to evolve to meet changing requirements.

2. Efficiency –

The software should not make wasteful use of computing devices such as

memory, processor cycles, etc.

3. Correctness –

A software product is correct if the different requirements as specified in the

SRS document have been correctly implemented.

4. Reusability –

A software product has good reusability if the different modules of the

product can easily be reused to develop new products.

5. Testability –

Here software facilitates both the establishment of test criteria and the

evaluation of the software with respect to those criteria.

6. Reliability –

It is an attribute of software quality. The extent to which a program can be

expected to perform its desired function, over an arbitrary time period.

7. Portability –

In this case, the software can be transferred from one computer system or

environment to another.

8. Adaptability –

In this case, the software allows differing system constraints and the user needs

to be satisfied by making changes to the software.

9. Interoperability – Capability of 2 or more functional units to process data cooperatively.

Program vs Software Product:

1. A program is a set of instructions that are given to a computer in order to

achieve a specific task whereas software is when a program is made available

for commercial business and is properly documented along with its licensing.

Software=Program+documentation+licensing.

2. A program is one of the stages involved in the development of the software,

whereas a software development usually follows a life cycle, which involves the

feasibility study of the project, requirement gathering, development of a

prototype, system design, coding, and testing.

Emergence of Software Engineering

Software engineering discipline is the result of advancement in the field of technology. In
this section, we will discuss various innovations and technologies that led to the
emergence of software engineering discipline.

• Early Computer Programming

• High Level Language Programming

• Control Flow Based Design

• Data-Flow Oriented Design Object Oriented Design

Early Computer Programming

As we know that in the early 1950s, computers were slow and expensive. Though the programs at

that time were very small in size, these computers took considerable time to process them. They

relied on assembly language which was specific to computer architecture. Thus, developing a

program required lot of effort. Every programmer used his own style to develop the programs.

High Level Language Programming

With the introduction of semiconductor technology, the computers became smaller, faster,

cheaper, and reliable than their predecessors. One of the major developments includes the

progress from assembly language to high-level languages. Early high level programming

languages such as COBOL and FORTRAN came into existence. As a result, the

programming became easier and thus, increased the productivity of the programmers.

However, still the programs were limited in size and the programmers developed programs

using their own style and experience.

Control Flow Based Design

With the advent of powerful machines and high level languages, the usage of computers

grew rapidly: In addition, the nature of programs also changed from simple to complex. The

increased size and the complexity could not be managed by individual style. It was analyzed

that clarity of control flow (the sequence in which the program’s instructions are executed)
is of great importance. To help the programmer to design programs having good control

flow structure, flowcharting technique was developed. In flowcharting technique, the

algorithm is represented using flowcharts. A flowchart is a graphical representation that

depicts the sequence of operations to be carried out to solve a given problem.

Data-Flow Oriented Design

https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#Early_Computer_Programming
https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#Early_Computer_Programming
https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#High_Level_Language_Programming
https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#High_Level_Language_Programming
https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#Control_Flow_Based_Design
https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#Control_Flow_Based_Design
https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#Data-Flow_Oriented_Design
https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#Data-Flow_Oriented_Design
https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#Data-Flow_Oriented_Design
https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#Data-Flow_Oriented_Design
https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#Object_Oriented_Design
https://ecomputernotes.com/software-engineering/emergence-of-software-engineering#Object_Oriented_Design
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
https://ecomputernotes.com/fundamental/input-output-and-memory/what-is-semiconductor-memory
https://ecomputernotes.com/fundamental/input-output-and-memory/what-is-semiconductor-memory
https://ecomputernotes.com/fundamental/input-output-and-memory/what-is-semiconductor-memory

With the introduction of very Large Scale Integrated circuits (VLSI), the computers became

more powerful and faster. As a result, various significant developments like networking and

GUIs came into being. Clearly, the complexity of software could not be dealt using control

flow based design. Thus, a new technique, namely, data-floworiented technique came into

existence. In this technique, the flow of data through business functions or processes is

represented using Data-flow Diagram (DFD). IEEE defines a data-flow diagram (also

known as bubble chart and work-flow diagram) as ‘a diagram that depicts data sources,
data sinks, data storage, and processes performed on data as nodes, and logical flow of

data as links between the nodes.’

Object Oriented Design

Object-oriented design technique has revolutionized the process of software development.

It not only includes the best features of structured programming but also some new and

powerful features such as encapsulation, abstraction, inheritance, and polymorphism.

These new features have tremendously helped in the development of well-designed and

high-quality software. Object-oriented techniques are widely used these days as they allow

reusability of the code. They lead to faster software development and high-quality

programs. Moreover, they are easier to adapt and scale, that is, large systems can be

created by assembling reusable subsystems.

Computer system engineering

Computer systems engineering is a discipline that embodies the science and technology
of design, construction, implementation, and maintenance of software and hardware
components of modern computing systems, computer-controlled equipment, and networks

of intelligent devices

Software Development Life Cycle (SDLC)
A software life cycle model (also termed process model) is a pictorial and diagrammatic

representation of the software life cycle. A life cycle model represents all the methods

required to make a software product transit through its life cycle stages. It also captures the

structure in which these methods are to be undertaken.

 In life cycle model maps the various activities performed on a software product from its

inception to retirement. Different life cycle models may plan the necessary development

activities to phases in different ways. Thus, no element which life cycle model is followed,

the essential activities are contained in all life cycle models though the action may be carried

out in distinct orders in different life cycle models. During any life cycle stage, more than

one activity may also be carried out

SDLC Cycle
SDLC Cycle represents the process of developing software. SDLC framework includes the

following steps:

The stages of SDLC are as follows:

Stage1: Planning and requirement analysis

Requirement Analysis is the most important and necessary stage in SDLC.

The senior members of the team perform it with inputs from all the stakeholders and

domain experts or SMEs in the industry.

Stage2: Defining Requirements

Once the requirement analysis is done, the next stage is to certainly represent and

document the software requirements and get them accepted from the project stakeholders.

This is accomplished through "SRS"- Software Requirement Specification document which

contains all the product requirements to be constructed and developed during the project

life cycle.

Stage3: Designing the Software The next phase is about to bring down all the knowledge

of requirements, analysis, and design of the software project. This phase is the product of

the last two, like inputs from the customer and requirement gathering.

Stage4: Developing the project

In this phase of SDLC, the actual development begins, and the programming is built. The

implementation of design begins concerning writing code. Developers have to follow the

coding guidelines described by their management and programming tools like compilers,

interpreters, debuggers, etc. are used to develop and implement the code.

Stage5: Testing

After the code is generated, it is tested against the requirements to make sure that the

products are solving the needs addressed and gathered during the requirements stage.

During this stage, unit testing, integration testing, system testing, acceptance testing are

done.

Stage6: Deployment

Once the software is certified, and no bugs or errors are stated, then it is deployed.

Then based on the assessment, the software may be released as it is or with suggested

enhancement in the object segment.

After the software is deployed, then its maintenance begins.

Stage7: Maintenance

Once when the client starts using the developed systems, then the real issues come up and

requirements to be solved from time to time.

This procedure where the care is taken for the developed product is known as maintenance.

Classical Waterfall
The classical waterfall model is the basic software development life cycle model.

It is very simple but idealistic. Earlier this model was very popular but nowadays itx
is not used. But it is very important because all the other software development life
cycle models are based on the classical waterfall model.

The classical waterfall model divides the life cycle into a set of phases. This model
considers that one phase can be started after the completion of the previous phase.
That is the output of one phase will be the input to the next phase. Thus the

development process can be considered as a sequential flow in the waterfall. Here
the phases do not overlap with each other. The different sequential phases of the
classical waterfall model are shown in the below figure:

1. Feasibility Study: The main goal of this phase is to determine whether it would

be financially and technically feasible to develop the software.

The feasibility study involves understanding the problem and then determining

the various possible strategies to solve the problem. These different identified

solutions are analyzed based on their benefits and drawbacks, The best

solution is chosen and all the other phases are carried out as per this solution

strategy.

2. Requirements analysis and specification: The aim of the requirement

analysis and specification phase is to understand the exact requirements of the

customer and document them properly. This phase consists of two different

activities.

• Requirement gathering and analysis: Firstly all the requirements

regarding the software are gathered from the customer and then the

gathered requirements are analyzed. The goal of the analysis part is to

remove incompleteness (an incomplete requirement is one in which some

parts of the actual requirements have been omitted) and inconsistencies (an

inconsistent requirement is one in which some part of the requirement

contradicts some other part).

• Requirement specification: These analyzed requirements are documented

in a software requirement specification (SRS) document. SRS document

serves as a contract between the development team and customers. Any

future dispute between the customers and the developers can be settled by

examining the SRS document.

3. Design: The goal of this phase is to convert the requirements acquired in the

SRS into a format that can be coded in a programming language. It includes

high-level and detailed design as well as the overall software architecture. A

Software Design Document is used to document all of this effort (SDD)

4. Coding and Unit testing: In the coding phase software design is translated into

source code using any suitable programming language. Thus each designed

module is coded. The aim of the unit testing phase is to check whether each

module is working properly or not.

5. Integration and System testing: Integration of different modules are

undertaken soon after they have been coded and unit tested. Integration of

various modules is carried out incrementally over a number of steps. During

each integration step, previously planned modules are added to the partially

integrated system and the resultant system is tested. Finally, after all the

modules have been successfully integrated and tested, the full working system

is obtained and system testing is carried out on this.

System testing consists of three different kinds of testing activities as described

below :

1.

• Alpha testing: Alpha testing is the system testing performed by the

development team.

• Beta testing: Beta testing is the system testing performed by a friendly set

of customers.

• Acceptance testing: After the software has been delivered, the customer

performed acceptance testing to determine whether to accept the delivered

software or reject it.

2. Maintenance: Maintenance is the most important phase of a software life cycle.

The effort spent on maintenance is 60% of the total effort spent to develop a full

software. There are basically three types of maintenance :

• Corrective Maintenance: This type of maintenance is carried out to correct

errors that were not discovered during the product development phase.

• Perfective Maintenance: This type of maintenance is carried out to enhance

the functionalities of the system based on the customer’s request.

• Adaptive Maintenance: Adaptive maintenance is usually required for porting

the software to work in a new environment such as working on a new computer

platform or with a new operating system.

Advantages of Classical Waterfall Model

The classical waterfall model is an idealistic model for software development. It is

very simple, so it can be considered the basis for other software development life

cycle models. Below are some of the major advantages of this SDLC model:

• This model is very simple and is easy to understand.

• Phases in this model are processed one at a time.

• Each stage in the model is clearly defined.

• This model has very clear and well-understood milestones.

• Process, actions and results are very well documented.

• Reinforces good habits: define-before- design, design-before-code.

• This model works well for smaller projects and projects where requirements are

well understood.

Drawbacks of Classical Waterfall Model

The classical waterfall model suffers from various shortcomings, basically, we can’t
use it in real projects, but we use other software development lifecycle models

which are based on the classical waterfall model.

Project Scheduling

Project-task scheduling is a significant project planning activity. It comprises deciding which

functions would be taken up when. To schedule the project plan, a software project manager

wants to do the following:

1. Identify all the functions required to complete the project.

2. Break down large functions into small activities.

3. Determine the dependency among various activities.

4. Establish the most likely size for the time duration required to complete the activities.

5. Allocate resources to activities.

6. Plan the beginning and ending dates for different activities.

7. Determine the critical path. A critical way is the group of activities that decide the duration of

the project.

Organization and Team structure

There are many ways to organize the project team. Some important ways are as

follows :

1. Hierarchical team organization

2. Chief-programmer team organization

3. Matrix team, organization

4. Egoless team organization

5. Democratic team organization 6. Hierarchical team organization :

In this, the people of organization at different levels following a tree

structure. People at bottom level generally possess most detailed knowledge

about the system. People at higher levels have broader appreciation of the

whole project.

Benefits of hierarchical team organization :

• It limits the number of communication paths and stills allows for the needed

communication.

• It can be expanded over multiple levels.

• It is well suited for the development of the hierarchical software products.

• Large software projects may have several levels.

Limitations of hierarchical team organization :

• As information has to be travel up the levels, it may get distorted.

• Levels in the hierarchy often judges people socially and financially. Most

technical competent programmers tend to be promoted to the management

positions which may result in loss of good programmer and also bad manager.

Chief-programmer team organization :

This team organization is composed of a small team consisting the following team

members :

• The Chief programmer : It is the person who is actively involved in the

planning, specification and design process and ideally in the implementation

process as well.

• The project assistant : It is the closest technical co-worker of the chief

programmer.

• The project secretary : It relieves the chief programmer and all other

programmers of administration tools.

• Specialists : These people select the implementation language, implement

individual system components and employ software tools and carry out tasks.

Advantages of Chief-programmer team organization :

• Centralized decision-making

• Reduced communication paths

• Small teams are more productive than large teams

• The chief programmer is directly involved in system development and can

exercise the better control function.

Disadvantages of Chief-programmer team organization :

• Project survival depends on one person only.

• Can cause the psychological problems as the “chief programmer” is like the
“king” who takes all the credit and other members are resentful.

• Team organization is limited to only small team and small team cannot handle

every project.

• Effectiveness of team is very sensitive to Chief programmer’s technical and
managerial activities.

Matrix Team Organization :

In matrix team organization, people are divided into specialist groups. Each group

has a manager. Example of Metric team organization is as follows :

Egoless Team Organization :

Egoless programming is a state of mind in which programmer are supposed to

separate themselves from their product. In this team organization goals are set and

decisions are made by group consensus. Here group, ‘leadership’ rotates based
on tasks to be performed and differing abilities of members.

In this organization work products are discussed openly and all freely examined all

team members. There is a major risk which such organization, if teams are

composed of inexperienced or incompetent members.

Democratic Team Organization :

It is quite similar to the egoless team organization, but one member is the team

leader with some responsibilities :

• Coordination

• Final decisions, when consensus cannot be reached.

Advantages of Democratic Team Organization :

• Each member can contribute to decisions.

• Members can learn from each other.

• Improved job satisfaction.

Disadvantages of Democratic Team Organization :

• Communication overhead increased.

• Need for compatibility of members.

• Less individual responsibility and authority.

Staffing:

Staffing is that part of management which is concerned with obtaining, utilizing,

and maintaining capable people to fill all positions in the organization from toplevel

to bottom level. It involves the scientific and systematic procurement, allocation,

utilization, conservation, and development of human resources. It is the art of

acquiring, developing, and maintaining a satisfactory and satisfied workforce.

Staffing is that function by which a manager builds an organization through the

recruitment, selection, and development of the individual, which also includes a

series of activities. It ensures that the organization has the right number of people

at the right places, at the right time, and performing the right thing.

Components of Staffing-

There are three aspects or components of staffing, namely, recruitment, selection,

and training. They are defined below:

Recruitment: It is the process of finding potential candidates for a particular job in

an organization. The process of recruitment involves persuading people to apply

for the available positions in the organization.

Selection: It is the process of recognizing potential and hiring the best people out

of several possible candidates. This is done by shortlisting and choosing the

deserving and eliminating those who are not suitable for the job.

Training: It is the process that involves providing the employees with an idea of

the type of work they are supposed to do and how it is to be done. It is a way of

keeping the employees updated on the way of work in an organization and the new

and advanced technologies.

Risk Management:

A computer code project may be laid low with an outsized sort of risk. so as to be

ready to consistently establish the necessary risks which could have an effect on a

computer code project, it’s necessary to reason risks into completely different
categories. The project manager will then examine the risks from every category

square measure relevant to the project.

There square measure 3 main classes of risks that may have an effect on a

computer code project:

1Project Risks:

Project risks concern various sorts of monetary funds, schedules, personnel,

resource, and customer-related issues. a vital project risk is schedule slippage.

Since computer code is intangible, it’s terribly tough to observe and manage a

computer code project. it’s terribly tough to manage one thing that can not be seen.
For any producing project, like producing cars, the project manager will see the

merchandise taking form.

1. Technical Risks:

Technical risks concern potential style, implementation, interfacing, testing, and

maintenance issues. Technical risks conjointly embody ambiguous

specifications, incomplete specification, dynamic specification, technical

uncertainty, and technical degeneration. Most technical risks occur thanks to

the event team’s lean information concerning the project.

2. Business Risks:

This type of risk embodies the risks of building a superb product that nobody

needs, losing monetary funds or personal commitments, etc.
Configuration Management

A configuration of the product refers not only to the product's constituent but also to a

particular version of the component.

Therefore, SCM is the discipline which

o Identify change o Monitor and control change o Ensure the proper

implementation of change made to the item. o Auditing and

reporting on the change made.

Configuration Management (CM) is a technic of identifying, organizing, and controlling

modification to software being built by a programming team.

Importance of SCM

It is practical in controlling and managing the access to various SCIs e.g., by preventing the

two members of a team for checking out the same component for modification at the same

time.

It provides the tool to ensure that changes are being properly implemented.

It has the capability of describing and storing the various constituent of software.

SCM is used in keeping a system in a consistent state by automatically producing derived

version upon modification of the same component.

Software project management

Software Project Management

The job pattern of an IT company engaged in software development can be seen split in

two parts:

• Software Creation

• Software Project Management

A project is well-defined task, which is a collection of several operations done in order to

achieve a goal (for example, software development and delivery). A Project can be

characterized as:

• Every project may has a unique and distinct goal.

• Project is not routine activity or day-to-day operations.

• Project comes with a start time and end time.

• Project ends when its goal is achieved hence it is a temporary phase in the lifetime of an

organization.

• Project needs adequate resources in terms of time, manpower, finance, material and

knowledge-bank.

Software Project
A Software Project is the complete procedure of software development from requirement

gathering to testing and maintenance, carried out according to the execution

methodologies, in a specified period of time to achieve intended software product.

AD

Need of software project management
Software is said to be an intangible product. Software development is a kind of all new

stream in world business and there’s very little experience in building software products.
Most software products are tailor made to fit client’s requirements. The most important is
that the underlying technology changes and advances so frequently and rapidly that

experience of one product may not be applied to the other one. All such business and

environmental constraints bring risk in software development hence it is essential to

manage software projects efficiently.

The image above shows triple constraints for software projects. It is an essential part of

software organization to deliver quality product, keeping the cost within client’s budget
constrain and deliver the project as per scheduled. There are several factors, both internal

and external, which may impact this triple constrain triangle. Any of three factor can severely

impact the other two.

Therefore, software project management is essential to incorporate user requirements

along with budget and time constraints.

Software Project Manager
A software project manager is a person who undertakes the responsibility of executing the

software project. Software project manager is thoroughly aware of all the phases of SDLC

that the software would go through. Project manager may never directly involve in producing

the end product but he controls and manages the activities involved in production.

A project manager closely monitors the development process, prepares and executes

various plans, arranges necessary and adequate resources, maintains communication

among all team members in order to address issues of cost, budget, resources, time, quality

and customer satisfaction.

Let us see few responsibilities that a project manager shoulders -

Managing People
• Act as project leader

• Liaison with stakeholders

• Managing human resources Setting up reporting hierarchy etc.

Managing Project
• Defining and setting up project scope

• Managing project management activities

• Monitoring progress and performance

• Risk analysis at every phase

• Take necessary step to avoid or come out of problems

• Act as project spokesperson
AD

Software Management Activities
Software project management comprises of a number of activities, which contains planning

of project, deciding scope of software product, estimation of cost in various terms,

scheduling of tasks and events, and resource management. Project management activities

may include:

• Project Planning

• Scope Management

• Project Estimation

Project Planning
Software project planning is task, which is performed before the production of software

actually starts. It is there for the software production but involves no concrete activity that

has any direction connection with software production; rather it is a set of multiple

processes, which facilitates software production. Project planning may include the

following:

Scope Management
It defines the scope of project; this includes all the activities, process need to be done in

order to make a deliverable software product. Scope management is essential because it

creates boundaries of the project by clearly defining what would be done in the project and

what would not be done. This makes project to contain limited and quantifiable tasks, which

can easily be documented and in turn avoids cost and time overrun.

During Project Scope management, it is necessary to -

• Define the scope

• Decide its verification and control

• Divide the project into various smaller parts for ease of management.

• Verify the scope

• Control the scope by incorporating changes to the scope

Project Estimation
For an effective management accurate estimation of various measures is a must. With

correct estimation managers can manage and control the project more efficiently and

effectively.

Project estimation may involve the following:

• Software size estimation

Software size may be estimated either in terms of KLOC (Kilo Line of Code) or by

calculating number of function points in the software. Lines of code depend upon

coding practices and Function points vary according to the user or software

requirement.

• Effort estimation

The managers estimate efforts in terms of personnel requirement and man-hour

required to produce the software. For effort estimation software size should be

known. This can either be derived by managers’ experience, organization’s historical
data or software size can be converted into efforts by using some standard formulae.

• Time estimation

Once size and efforts are estimated, the time required to produce the software can
be estimated. Efforts required is segregated into sub categories as per the
requirement specifications and interdependency of various components of software.
Software tasks are divided into smaller tasks, activities or events by Work
Breakthrough Structure (WBS). The tasks are scheduled on day-to-day basis or in
calendar months.
The sum of time required to complete all tasks in hours or days is the total time

invested to complete the project.

• Cost estimation

This might be considered as the most difficult of all because it depends on more

elements than any of the previous ones. For estimating project cost, it is required to

consider - o Size of software o Software quality o Hardware o Additional software or tools,

licenses etc. o Skilled personnel with task-specific skills o Travel involved o Communication

o Training and support

Project Estimation Techniques
We discussed various parameters involving project estimation such as size, effort, time and

cost.

Project manager can estimate the listed factors using two broadly recognized techniques –

Decomposition Technique
This technique assumes the software as a product of various compositions.

There are two main models -

• Line of Code Estimation is done on behalf of number of line of codes in the software

product.

• Function Points Estimation is done on behalf of number of function points in the software

product.

Empirical Estimation Technique
This technique uses empirically derived formulae to make estimation.These formulae are

based on LOC or FPs.

• Putnam Model

This model is made by Lawrence H. Putnam, which is based on Norden’s frequency
distribution (Rayleigh curve). Putnam model maps time and efforts required with

software size.

• COCOMO

COCOMO stands for COnstructive COst MOdel, developed by Barry W. Boehm. It

divides the software product into three categories of software: organic, semidetached

and embedded.

Project Scheduling
Project Scheduling in a project refers to roadmap of all activities to be done with specified

order and within time slot allotted to each activity. Project managers tend to define various

tasks, and project milestones and arrange them keeping various factors in mind. They look

for tasks lie in critical path in the schedule, which are necessary to complete in specific

manner (because of task interdependency) and strictly within the time allocated.

Arrangement of tasks which lies out of critical path are less likely to impact over all schedule

of the project.

For scheduling a project, it is necessary to -

• Break down the project tasks into smaller, manageable form

• Find out various tasks and correlate them

• Estimate time frame required for each task

• Divide time into work-units

• Assign adequate number of work-units for each task

• Calculate total time required for the project from start to finish

Resource management
All elements used to develop a software product may be assumed as resource for that

project. This may include human resource, productive tools and software libraries.

The resources are available in limited quantity and stay in the organization as a pool of

assets. The shortage of resources hampers the development of project and it can lag

behind the schedule. Allocating extra resources increases development cost in the end. It

is therefore necessary to estimate and allocate adequate resources for the project.

Resource management includes -

• Defining proper organization project by creating a project team and allocating

responsibilities to each team member

• Determining resources required at a particular stage and their availability

• Manage Resources by generating resource request when they are required and

deallocating them when they are no more needed.

Project Risk Management
Risk management involves all activities pertaining to identification, analyzing and making

provision for predictable and non-predictable risks in the project. Risk may include the

following:

• Experienced staff leaving the project and new staff coming in.

• Change in organizational management.

• Requirement change or misinterpreting requirement.

• Under-estimation of required time and resources. Technological changes,

environmental changes, business competition.

Risk Management Process
There are following activities involved in risk management process:

• Identification - Make note of all possible risks, which may occur in the project.

• Categorize - Categorize known risks into high, medium and low risk intensity as per their

possible impact on the project.

• Manage - Analyze the probability of occurrence of risks at various phases. Make plan to

avoid or face risks. Attempt to minimize their side-effects.

• Monitor - Closely monitor the potential risks and their early symptoms. Also monitor the

effects of steps taken to mitigate or avoid them.

Project Execution & Monitoring
In this phase, the tasks described in project plans are executed according to their

schedules.

Execution needs monitoring in order to check whether everything is going according to the

plan. Monitoring is observing to check the probability of risk and taking measures to address

the risk or report the status of various tasks.

These measures include -

• Activity Monitoring - All activities scheduled within some task can be monitored on dayto-

day basis. When all activities in a task are completed, it is considered as complete.

• Status Reports - The reports contain status of activities and tasks completed within a given

time frame, generally a week. Status can be marked as finished, pending or work-

inprogress etc.

• Milestones Checklist - Every project is divided into multiple phases where major tasks are

performed (milestones) based on the phases of SDLC. This milestone checklist is prepared

once every few weeks and reports the status of milestones.

Project Communication Management
Effective communication plays vital role in the success of a project. It bridges gaps between

client and the organization, among the team members as well as other stake holders in the

project such as hardware suppliers.

Communication can be oral or written. Communication management process may have the

following steps:

• Planning - This step includes the identifications of all the stakeholders in the project and the

mode of communication among them. It also considers if any additional communication

facilities are required.

• Sharing - After determining various aspects of planning, manager focuses on sharing

correct information with the correct person on correct time. This keeps every one involved

the project up to date with project progress and its status.

• Feedback - Project managers use various measures and feedback mechanism and create

status and performance reports. This mechanism ensures that input from various

stakeholders is coming to the project manager as their feedback.

• Closure - At the end of each major event, end of a phase of SDLC or end of the project

itself, administrative closure is formally announced to update every stakeholder by sending

email, by distributing a hardcopy of document or by other mean of effective communication.

After closure, the team moves to next phase or project.

Configuration Management
Configuration management is a process of tracking and controlling the changes in software

in terms of the requirements, design, functions and development of the product.

IEEE defines it as “the process of identifying and defining the items in the system, controlling

the change of these items throughout their life cycle, recording and reporting the status of

items and change requests, and verifying the completeness and correctness of items”.

Generally, once the SRS is finalized there is less chance of requirement of changes from

user. If they occur, the changes are addressed only with prior approval of higher

management, as there is a possibility of cost and time overrun. Baseline

A phase of SDLC is assumed over if it baselined, i.e. baseline is a measurement that defines

completeness of a phase. A phase is baselined when all activities pertaining to it are

finished and well documented. If it was not the final phase, its output would be used in next

immediate phase.

Configuration management is a discipline of organization administration, which takes care

of occurrence of any change (process, requirement, technological, strategical etc.) after a

phase is baselined. CM keeps check on any changes done in software. Change Control

Change control is function of configuration management, which ensures that all changes

made to software system are consistent and made as per organizational rules and

regulations.

A change in the configuration of product goes through following steps -

• Identification - A change request arrives from either internal or external source.

When change request is identified formally, it is properly documented.

• Validation - Validity of the change request is checked and its handling procedure is

confirmed.

• Analysis - The impact of change request is analyzed in terms of schedule, cost and

required efforts. Overall impact of the prospective change on system is analyzed.

• Control - If the prospective change either impacts too many entities in the system or

it is unavoidable, it is mandatory to take approval of high authorities before change

is incorporated into the system. It is decided if the change is worth incorporation or

not. If it is not, change request is refused formally.

• Execution - If the previous phase determines to execute the change request, this
phase take appropriate actions to execute the change, does a thorough revision if
necessary.

• Close request - The change is verified for correct implementation and merging with

the rest of the system. This newly incorporated change in the software is documented

properly and the request is formally is closed.

Project Management Tools
The risk and uncertainty rises multifold with respect to the size of the project, even when

the project is developed according to set methodologies.

There are tools available, which aid for effective project management. A few are described

- Gantt Chart

Gantt charts was devised by Henry Gantt (1917). It represents project schedule with respect

to time periods. It is a horizontal bar chart with bars representing activities and time

scheduled for the project activities.

PERT Chart
PERT (Program Evaluation & Review Technique) chart is a tool that depicts project as

network diagram. It is capable of graphically representing main events of project in both

parallel and consecutive way. Events, which occur one after another, show dependency of

the later event over the previous one.

Events are shown as numbered nodes. They are connected by labeled arrows depicting

sequence of tasks in the project.

Resource Histogram
This is a graphical tool that contains bar or chart representing number of resources (usually

skilled staff) required over time for a project event (or phase). Resource Histogram is an

effective tool for staff planning and coordination.

Critical Path Analysis
This tools is useful in recognizing interdependent tasks in the project. It also helps to find

out the shortest path or critical path to complete the project successfully. Like PERT

diagram, each event is allotted a specific time frame. This tool shows dependency of event

assuming an event can proceed to next only if the previous one is completed.

The events are arranged according to their earliest possible start time. Path between start

and end node is critical path which cannot be further reduced and all events require to be

executed in same order.

Requirements Analysis and specification

Requirement analysis is significant and essential activity after

elicitation. We analyze, refine, and scrutinize the gathered

requirements to make consistent and unambiguous requirements.

This activity reviews all requirements and may provide a graphical

view of the entire system. After the completion of the analysis, it is

expected that the understandability of the project may improve

significantly. Here, we may also use the interaction with the customer

to clarify points of confusion and to understand which requirements

are more important than others.

The various steps of requirement analysis are shown in fig:

(i) Draw the context diagram: The context diagram is a simple

model that defines the boundaries and interfaces of the proposed

systems with the external world. It identifies the entities outside the

proposed system that interact with the system. The context diagram

of student result management system is given below:

(ii) Development of a Prototype (optional): One effective way

to find out what the customer wants is to construct a prototype,

something that looks and preferably acts as part of the system they

say they want.

We can use their feedback to modify the prototype until the

customer is satisfied continuously. Hence, the prototype helps the

client to visualize the proposed system and increase the

understanding of the requirements. When developers and users are

not sure about some of the elements, a prototype may help both the

parties to take a final decision.

Some projects are developed for the general market. In such cases,

the prototype should be shown to some representative sample of

the population of potential purchasers. Even though a person who

tries out a prototype may not buy the final system, but their feedback

may allow us to make the product more attractive to others.

The prototype should be built quickly and at a relatively low cost.

Hence it will always have limitations and would not be acceptable in

the final system. This is an optional activity.

(iii) Model the requirements: This process usually consists of

various graphical representations of the functions, data entities,

external entities, and the relationships between them. The graphical

view may help to find incorrect, inconsistent, missing, and

superfluous requirements. Such models include the Data Flow

diagram, Entity-Relationship diagram, Data Dictionaries,

Statetransition diagrams, etc.

(iv) Finalise the requirements: After modeling the

requirements, we will have a better understanding of the system

behavior. The inconsistencies and ambiguities have been identified

and corrected. The flow of data amongst various modules has been

analyzed. Elicitation and analyze activities have provided better

insight into the system. Now we finalize the analyzed requirements,

and the next step is to document these requirements in a prescribed

format.

Software Requirement Specification (SRS)
In order to form a good SRS, here you will see some points

which can be used and should be considered to form a

structure of good SRS. These are as follows :

1. Introduction

• (i) Purpose of this document

• (ii) Scope of this document

• (iii) Overview

2. General description

3. Functional Requirements

4. Interface Requirements

5. Performance Requirements

6. Design Constraints

7. Non-Functional Attributes

8. Preliminary Schedule and Budget

9. Appendices

https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs/
https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs/
https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs/
https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs/
https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs/

Software Requirement Specification (SRS) Format as name

suggests, is complete specification and description of

requirements of software that needs to be fulfilled for

successful development of software system. These

requirements can be functional as well as non-functional

depending upon type of requirement. The interaction between

different customers and contractor is done because its

necessary to fully understand needs of customers.

Depending upon information gathered after interaction, SRS is

developed which describes requirements of software that may

include changes and modifications that is needed to be done to

increase quality of product and to satisfy customer’s demand.

1. Introduction :

• (i) Purpose of this Document –

At first, main aim of why this document is necessary and

what’s purpose of document is explained and described.

• (ii) Scope of this document –

In this, overall working and main objective of document

and what value it will provide to customer is described

and explained. It also includes a description of

development cost and time required.

• (iii) Overview –

In this, description of product is explained. It’s simply
summary or overall review of product.

2. General description :

In this, general functions of product which includes objective

of user, a user characteristic, features, benefits, about why

its importance is mentioned. It also describes features of

user community.

3. Functional Requirements :

In this, possible outcome of software system which includes

effects due to operation of program is fully explained. All

functional requirements which may include calculations,

data processing, etc. are placed in a ranked order.

4. Interface Requirements :

In this, software interfaces which mean how software

program communicates with each other or users either in

form of any language, code, or message are fully described

and explained. Examples can be shared memory, data

streams, etc.

5. Performance Requirements :

In this, how a software system performs desired functions

under specific condition is explained. It also explains

required time, required memory, maximum error rate, etc.

6. Design Constraints :

In this, constraints which simply means limitation or

restriction are specified and explained for design team.

Examples may include use of a particular algorithm,

hardware and software limitations, etc.

7. Non-Functional Attributes :

In this, non-functional attributes are explained that are

required by software system for better performance. An

example may include Security, Portability, Reliability,

Reusability, Application compatibility, Data integrity,

Scalability capacity, etc.

8. Preliminary Schedule and Budget :

In this, initial version and budget of project plan are

explained which include overall time duration required and

overall cost required for development of project.

9. Appendices :

In this, additional information like references from where
information is gathered, definitions of some specific terms,
acronyms, abbreviations, etc. are given and explained.

Software Design
Software design is a process to transform user requirements into

some suitable form, which helps the programmer in software coding

and implementation.

For assessing user requirements, an SRS (Software Requirement

Specification) document is created whereas for coding and

implementation, there is a need of more specific and detailed

requirements in software terms. The output of this process can

directly be used into implementation in programming languages.

Software design is the first step in SDLC (Software Design Life

Cycle), which moves the concentration from problem domain to

solution domain. It tries to specify how to fulfill the requirements

mentioned in SRS.

Software Design Levels
Software design yields three levels of results:

• Architectural Design - The architectural design is the highest

abstract version of the system. It identifies the software as a

system with many components interacting with each other. At

this level, the designers get the idea of proposed solution

domain.

• High-level Design- The high-level design breaks the ‘single
entity-multiple component’ concept of architectural design into
less-abstracted view of sub-systems and modules and depicts

their interaction with each other. High-level design focuses on

how the system along with all of its components can be

implemented in forms of modules. It recognizes modular

structure of each sub-system and their relation and interaction

among each other.

• Detailed Design- Detailed design deals with the

implementation part of what is seen as a system and its

subsystems in the previous two designs. It is more detailed

towards modules and their implementations. It defines logical

structure of each module and their interfaces to communicate

with other modules.

AD

Modularization
Modularization is a technique to divide a software system into

multiple discrete and independent modules, which are expected to

be capable of carrying out task(s) independently. These modules

may work as basic constructs for the entire software. Designers tend

to design modules such that they can be executed and/or compiled

separately and independently.

Modular design unintentionally follows the rules of ‘divide and
conquer’ problem-solving strategy this is because there are many

other benefits attached with the modular design of a software.

Advantage of modularization:

• Smaller components are easier to maintain

• Program can be divided based on functional aspects

• Desired level of abstraction can be brought in the program

• Components with high cohesion can be re-used again

• Concurrent execution can be made possible

• Desired from security aspect

Concurrency
Back in time, all software are meant to be executed sequentially. By

sequential execution we mean that the coded instruction will be

executed one after another implying only one portion of program

being activated at any given time. Say, a software has multiple

modules, then only one of all the modules can be found active at any

time of execution.

In software design, concurrency is implemented by splitting the

software into multiple independent units of execution, like modules

and executing them in parallel. In other words, concurrency provides

capability to the software to execute more than one part of code in

parallel to each other.

It is necessary for the programmers and designers to recognize

those modules, which can be made parallel execution.

Example

The spell check feature in word processor is a module of software,

which runs along side the word processor itself.

AD

Coupling and Cohesion
When a software program is modularized, its tasks are divided into

several modules based on some characteristics. As we know,

modules are set of instructions put together in order to achieve some

tasks. They are though, considered as single entity but may refer to

each other to work together. There are measures by which the

quality of a design of modules and their interaction among them can

be measured. These measures are called coupling and cohesion.

Cohesion
Cohesion is a measure that defines the degree of intradependability

within elements of a module. The greater the cohesion, the better is

the program design.

There are seven types of cohesion, namely –

• Co-incidental cohesion - It is unplanned and random

cohesion, which might be the result of breaking the program

into smaller modules for the sake of modularization. Because

it is unplanned, it may serve confusion to the programmers

and is generally not-accepted.

• Logical cohesion - When logically categorized elements are

put together into a module, it is called logical cohesion.

• Temporal Cohesion - When elements of module are

organized such that they are processed at a similar point in

time, it is called temporal cohesion.

• Procedural cohesion - When elements of module are

grouped together, which are executed sequentially in order to

perform a task, it is called procedural cohesion.

• Communicational cohesion - When elements of module are

grouped together, which are executed sequentially and work

on same data (information), it is called communicational

cohesion.

• Sequential cohesion - When elements of module are

grouped because the output of one element serves as input to

another and so on, it is called sequential cohesion.

• Functional cohesion - It is considered to be the highest

degree of cohesion, and it is highly expected. Elements of

module in functional cohesion are grouped because they all

contribute to a single well-defined function. It can also be

reused.

Coupling
Coupling is a measure that defines the level of inter-dependability

among modules of a program. It tells at what level the modules

interfere and interact with each other. The lower the coupling, the

better the program.

There are five levels of coupling, namely -

• Content coupling - When a module can directly access or

modify or refer to the content of another module, it is called

content level coupling.

• Common coupling- When multiple modules have read and

write access to some global data, it is called common or global

coupling.

• Control coupling- Two modules are called control-coupled if

one of them decides the function of the other module or

changes its flow of execution.

• Stamp coupling- When multiple modules share common data

structure and work on different part of it, it is called stamp

coupling.

• Data coupling- Data coupling is when two modules interact

with each other by means of passing data (as parameter). If a

module passes data structure as parameter, then the

receiving module should use all its components.

Ideally, no coupling is considered to be the best.

Design Verification
The output of software design process is design documentation,

pseudo codes, detailed logic diagrams, process diagrams, and

detailed description of all functional or non-functional requirements.

The next phase, which is the implementation of software, depends

on all outputs mentioned above.

It is then becomes necessary to verify the output before proceeding

to the next phase. The early any mistake is detected, the better it is

or it might not be detected until testing of the product. If the outputs

of design phase are in formal notation form, then their associated

tools for verification should be used otherwise a thorough design

review can be used for verification and validation.

By structured verification approach, reviewers can detect defects

that might be caused by overlooking some conditions. A good design

review is important for good software design, accuracy and quality.

Software Design
Software design is a mechanism to transform user requirements into

some suitable form, which helps the programmer in software coding

and implementation. It deals with representing the client's

requirement, as described in SRS (Software Requirement

Specification) document, into a form, i.e., easily implementable using

programming language.

The software design phase is the first step in SDLC (Software Design

Life Cycle), which moves the concentration from the problem

domain to the solution domain. In software design, we consider the

system to be a set of components or modules with clearly defined

behaviors & boundaries.

Objectives of Software Design

Following are the purposes of Software design:

1. Correctness:Software design should be correct as per

requirement.

2. Completeness:The design should have all components like

data structures, modules, and external interfaces, etc.

3. Efficiency:Resources should be used efficiently by the program.

4. Flexibility:Able to modify on changing needs.

5. Consistency:There should not be any inconsistency in the

design.

6. Maintainability: The design should be so simple so that it can

be easily maintainable by other designers.

Cohesion & coupling
These two topics - coupling and cohesion, have to do with the

quality of an OO design.

In general, good OO design calls for loose coupling and shuns

tight coupling.

Good OO design calls for high cohesion, and shuns low cohesion.

What is coupling?

Coupling is the degree to which one class knows about another

class.

What is loose coupling?

If the only knowledge that class A has about class B, is what

class B has exposed through its interface, then class A and class

B are said to be loosely coupled that is a a good thing.

What is tight coupling?

If class A relies on parts of class B that are not part of class B's

interface, then the coupling between the classes is tighten that is

not a good thing.

In other words, if A knows more than it should about the way in

which B was implemented, then A and B are tightly coupled.

Coupling example

Imagine what happens when class B is enhanced.

It's quite possible that the developer enhancing class B has no

knowledge of class A, why would she?

Class B's developer ought to feel that any enhancements that

don't break the class's interface should be safe, so she might

change some noninterface part of the class, which then causes

class A to break.

At the far end of the coupling spectrum is the horrible situation

in which class A knows non-API stuff about class B, and class

B knows non-API stuff about class A - this is REALLY BAD. If

either class is ever changed, there's a chance that the other

class will break.

Let's look at an obvious example of tight coupling, which has

been enabled by poor encapsulation:

// Tightly coupled class design - Bad thing

class DoTaxes {

float rate;

float doColorado() {

SalesTaxRates str = new SalesTaxRates();

rate = str.salesRate; // ouch //

this should be a method call:

// rate = str.getSalesRate("CO");

// do stuff with rate

}

}

class SalesTaxRates {

public float salesRate; // should be private public

float adjustedSalesRate; // should be private

public float getSalesRate(String region) {

salesRate = new DoTaxes().doColorado(); // ouch again!

// do region-based calculations return

adjustedSalesRate;

}

}

Ideally, all interactions between objects in an OO system should

use the APIs.

In other words, the contracts, of the object's respective classes.

Theoretically, if all of the classes in an application have

welldesigned APIs, then it should be possible for all interclass

interactions to use those APIs exclusively.

What is cohesion?

Cohesion is all about how a single class is designed.

The term cohesion is used to indicate the degree to which a class

has a single, well-focused purpose.

Keep in mind that cohesion is a subjective concept.

The more focused a class is, the higher its cohesiveness - a good

thing.

Benefit or Advantages of Cohesion

The key benefit of high cohesion is that such classes are typically

much easier to maintain (and less frequently changed) than

classes with low cohesion.

Another benefit of high cohesion is that classes with a

wellfocused purpose tend to be more reusable than other classes.

Cohesion example

Less cohesive class design

// Less cohesive class design

class BudgetReport {

void connectToRDBMS() {

}

void generateBudgetReport() {

}

void saveToFile() {

}

void print() {

}

}

More cohesive class design

// More cohesive class design class

BudgetReport {

Options getReportingOptions() {

}

void generateBudgetReport(Options o) {

}

}

class ConnectToRDBMS {

DBconnection getRDBMS() {

}

}

class PrintStuff {

PrintOptions getPrintOptions() {

}

}

class FileSaver {

SaveOptions getFileSaveOptions() {

}

}

This design is much more cohesive because Instead of one class

that does everything, we have broken the system into four main

classes.

Each with a very specific, or cohesive, role.

Because we have built these specialized, reusable classes.

Design approaches in Operating System
The operating system may be implemented with the assistance of

several structures. The structure of the operating system is mostly

determined by how the many common components of the OS are

integrated and merged into the kernel. In this article, you will learn

the following structure of the OS. Various structures are used in the

design of the operating system. These structures are as follows:

1. Simple Structure

2. Micro-Kernel Structure

3. Layered Structure

Simple Structure

Such OS's are small, simple, and limited, with no well-defined

structure. There is a lack of separation between the interfaces and

levels of functionality. The MS-DOS is the best example of such an

operating system. Application programs in MS-DOS can access basic

I/O functions. If one of the user programs fails on these OSs, the

complete system crashes. Below is the diagram of the MS-DOS

structure that may help you understand the simple structure.

Advantages and Disadvantages of Simple

Structure

There are various advantages and disadvantages of the Simple

Structure. Some advantages and disadvantages of the Simple

Structure are as follows:

Advantages

1. It provides superior application performance due to the limited

interfaces between the application program and the hardware.

2. It is simple for kernel developers to create such an operating

system.

Disadvantages

1. The structure is quite complex because there are no apparent

boundaries between modules.

2. It does not impose data concealment in the operating system.

Micro-Kernel Structure

This micro-kernel structure creates the OS by eliminating all

nonessential kernel components and implementing them as user

programs and systems. Therefore, a smaller kernel is known as a

micro-kernel.

The benefits of this micro-kernel structure are that all new services

must be added to userspace rather than the kernel, and the kernel

does not require to be updated. Therefore, it is more secure and

trustworthy. If a service fails, the remainder of the OS is unaffected.

Mac OS is the best instance of this type of operating system.

Advantages and Disadvantages of Micro-Kernel Structure

There are various advantages and disadvantages of the MicroKernel

Structure. Some advantages and disadvantages of the Micro-Kernel

Structure are as follows:

Advantages

1. It allows the OS to be portable across platforms.

2. They can be effectively tested because the microkernels are

small.

Disadvantages

1. The performance of the system suffers as the level of

intermodule communication rises.

Layered Structure

An operating system can be divided into sections while retaining far

more control over the system. The OS is divided into layers in this

arrangement (levels). The hardware is on the bottom layer (layer 0),

and the user interface is on the top layer (layer N). These layers are

designed in such a way that each layer only requires the functions of

the lower-level layers. Debugging is simplified because if lower-level

layers are debugged, and an error occurs during debugging, the

error must occur only on that layer. The lower-level layers have been

thoroughly tested.

UNIX is the best example of the Layered Structure. The main

disadvantage of this structure is that data must be updated and sent

on to each layer, which adds overhead to the system. Furthermore,

careful planning of the layers is required because a layer may use

only lower-level layers.

Advantages and Disadvantages of Layered

Structure

There are various advantages and disadvantages of the Layered

Structure. Some advantages and disadvantages of the Layered

Structure are as follows:

Advantages

1. Layering makes it easier to improve the OS as the

implementation of a layer may be changed easily without

affecting the other layers.

2. Debugging and system verification are simple to carry out.

Disadvantages

1. When compared to a simple structure, this structure degrades

application performance.

2. It needs better planning to construct the layers because higher

layers only utilize the functionalities of lower layers.

Modular structure or approach

It is regarded as the best approach for an operating system. It

involves designing a modular kernel. It is comparable to a layered

structure in that each kernel has specified and protected interfaces,

but it is more flexible because a module may call any other module.

The kernel contains only a limited number of basic components, and

extra services are added to the kernel as dynamically loadable

modules either during runtime or at boot time.

Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of

the information flows within a system. A neat and clear DFD can

depict the right amount of the system requirement graphically. It can

be manual, automated, or a combination of both.

It shows how data enters and leaves the system, what changes the

information, and where data is stored.

The objective of a DFD is to show the scope and boundaries of a

system as a whole. It may be used as a communication tool between

a system analyst and any person who plays a part in the order that

acts as a starting point for redesigning a system. The DFD is also

called as a data flow graph or bubble chart.

The following observations about DFDs are essential:

1. All names should be unique. This makes it easier to refer to

elements in the DFD.

2. Remember that DFD is not a flow chart. Arrows is a flow chart

that represents the order of events; arrows in DFD represents

flowing data. A DFD does not involve any order of events.

3. Suppress logical decisions. If we ever have the urge to draw a

diamond-shaped box in a DFD, suppress that urge! A diamond-

shaped box is used in flow charts to represents decision points

with multiple exists paths of which the only one is taken. This

implies an ordering of events, which makes no sense in a DFD.

4. Do not become bogged down with details. Defer error

conditions and error handling until the end of the analysis.

Standard symbols for DFDs are derived from the electric circuit

diagram analysis and are shown in fig:

Circle: A circle (bubble) shows a process that transforms data inputs

into data outputs.

Data Flow: A curved line shows the flow of data into or out of a

process or data store.

Data Store: A set of parallel lines shows a place for the collection of

data items. A data store indicates that the data is stored which can

be used at a later stage or by the other processes in a different order.

The data store can have an element or group of elements.

Source or Sink: Source or Sink is an external entity and acts as a

source of system inputs or sink of system outputs.

Levels in Data Flow Diagrams (DFD)

The DFD may be used to perform a system or software at any level

of abstraction. Infact, DFDs may be partitioned into levels that

represent increasing information flow and functional detail. Levels in

DFD are numbered 0, 1, 2 or beyond. Here, we will see primarily three

levels in the data flow diagram, which are: 0-level DFD, 1-level DFD,

and 2-level DFD.

0-level DFDM

It is also known as fundamental system model, or context diagram

represents the entire software requirement as a single bubble with

input and output data denoted by incoming and outgoing arrows.

Then the system is decomposed and described as a DFD with

multiple bubbles. Parts of the system represented by each of these

bubbles are then decomposed and documented as more and more

detailed DFDs. This process may be repeated at as many levels as

necessary until the program at hand is well understood. It is essential

to preserve the number of inputs and outputs between levels, this

concept is called leveling by DeMacro. Thus, if bubble "A" has two

inputs x1 and x2 and one output y, then the expanded DFD, that

represents "A" should have exactly two external inputs and one

external output as shown in fig:

The Level-0 DFD, also called context diagram of the result

management system is shown in fig. As the bubbles are decomposed

into less and less abstract bubbles, the corresponding data flow may

also be needed to be decomposed.

1-level DFD

In 1-level DFD, a context diagram is decomposed into multiple

bubbles/processes. In this level, we highlight the main objectives of

the system and breakdown the high-level process of 0-level DFD into

subprocesses.

2-Level DFD

2-level DFD goes one process deeper into parts of 1-level DFD. It can

be used to project or record the specific/necessary detail about the

system's functioning.

Transaction Control Transformation
A Transaction Control transformation is an active and connected

transformation. It allows us to commit and rollback transactions

based on a set of rows that pass through a Transaction Control

transformation.

Commit and rollback operations are of significant importance as it

guarantees the availability of data.

A transaction is the set of rows bound by commit or rollback rows.

We can define a transaction based on the varying number of input

rows. We can also identify transactions based on a group of rows

ordered on a common key, such as employee ID or order entry date.

When processing a high volume of data, there can be a situation to

commit the data to the target. If a commit is performed too quickly,

then it will be an overhead to the system.

If a commit is performed too late, then in the case of failure, there

are chances of losing the data. So the Transaction control

transformation provides flexibility.

In PowerCenter, the transaction control transformation is defined in

the following levels, such as:

o Within a mapping: Within a mapping, we use the Transaction

Control transformation to determine a transaction. We define

transactions using an expression in a Transaction Control

transformation. We can choose to commit, rollback, or continue

on the basis of the return value of the expression without any

transaction change.

o Within a session: We configure a session for the user-defined

commit. If the Integration Service fails to transform or write any

row to the target, then We can choose to commit or

rollback a transaction.

When we run the session, then the Integration Service evaluates the

expression for each row that enters the transformation. When it

evaluates a committed row, then it commits all rows in the

transaction to the target or targets. When the Integration Service

evaluates a rollback row, then it rolls back all rows in the transaction

from the target or targets.

If the mapping has a flat-file as the target, then the integration

service can generate an output file for a new transaction each time.

We can dynamically name the target flat files. Here is the example of

creating flat files dynamically - Dynamic flat-file creation.

TCL COMMIT & ROLLBACK Commands

There are five in-built variables available in the transaction control

transformation to handle the operation.

1. TC_CONTINUE_TRANSACTION

The Integration Service does not perform any transaction

change for the row. This is the default value of the expression.

2. TC_COMMIT_BEFORE

The Integration Service commits the transaction, begins a new

transaction, and writes the current row to the target. The

current row is in the new transaction.

In tc_commit_before, when this flag is found set, then a commit

is performed before the processing of the current row.

3. TC_COMMIT_AFTER

The Integration Service writes the current row to the target, commits the

transaction, and begins a new transaction. The current row is in the

committed transaction.

In tc_commit_after, the current row is processed then a commit

is performed.

4. TC_ROLLBACK_BEFORE

The Integration Service rolls back the current transaction, begins

a new transaction, and writes the current row to the target. The

current row is in the new transaction.

In tc_rollback_before, rollback is performed first, and then data

is processed to write.

5. TC_ROLLBACK_AFTER

The Integration Service writes the current row to the target,

rollback the transaction, and begins a new transaction. The

current row is in the rolled-back transaction.

In tc_rollback_after data is processed, then the rollback is

performed.

How to Create Transaction Control

Transformation

Follows the following steps to create transaction control

transformation, such as:

Step 1: Go to the mapping designer.

Step 2: Click on transformation in the toolbar, and click on the

Create button.

Step 3: Select the transaction control transformation.

Step 4: Then, enter the name and click on the Create button.

Step 5: Now click on the Done button.

Step 6: We can drag the ports into the transaction control

transformation, or we can create the ports manually in the ports tab.

 Step 7: Go to the properties tab.

Step 8: And enter the transaction control expression in the

Transaction Control Condition.

Configuring Transaction Control

Transformation

Here are the following components which can be configuring in the

transaction control transformation, such as:

1. Transformation Tab: It can rename the transformation and add

a description.

2. Ports Tab: It can create input or output ports.

3. Properties Tab: It can define the transaction control expression

and tracing level.

4. Metadata Extensions Tab: It can add metadata information.

Transaction Control Expression

We can enter the transaction control expression in the Transaction

Control Condition option in the properties tab.

The transaction control expression uses the IIF function to check each

row against the condition.

Syntax

Here is the following syntax for the Transaction Control

transformation expression, such as:

1. IIF (condition, value1, value2) For

example:

1. IIF (dept_id=11, TC_COMMIT_BEFORE,TC_ROLLBACK_BEFORE)

Example

In the following example, we will commit data to the target when

dept no =10, and this condition is found true.

Step 1: Create a mapping with EMP as a source and EMP_TARGET as

the target.

Step 2: Create a new transformation using the transformation menu,

then

1. Select a transaction control as the new transformation.

2. Enter transformation name tc_commit_dept10.

3. And click on the create button.

Step 3: The transaction control transformation will be created, then

click on the done button.

Step 4: Drag and drop all the columns from source qualifier to the

transaction control transformation then link all the columns from

transaction control transformation to the target table.

Step 5: Double click on the transaction control transformation and

then in the edit property window:

1. Select the property tab.

2. Click on the transaction control editor icon.

Step 6: In the expression editor enter the following expression:

1. "iif(deptno=10,tc_commit_before,tc_continue_transaction)".

2. And click on the OK button.

3. It means if deptno 10 is found, then commit transaction in

target, else continue the current processing.

Step 7: Click on the OK button in the previous window.

Now save the mapping and execute it after creating sessions and

workflows. When the department number 10 is found in the data,

then this mapping will commit the data to the target.

User Interface Design

Characteristics of Good Interface
The ability of any website or a web application to attract and engage users ultimately depends on

how well the user interface is designed. Even the best developed service or product will be a failure

if the user finds it to be too complicated to navigate or too confusing and feels it is monotonous or

unattractive. A good user interface allows the user to carry out the intended actions efficiently and

effectively, without causing too much of a distraction. User interface is the only way you can

communicate with your client accessing your site remotely.

A good UI should be able to achieve business goals while keeping in mind the requirements of the

user providing excellent UX to the user. Providing good User Experience is invariably an important

component of a good UI.

The points to be kept in mind while designing good user interface are:

1. Clear and Simple : A good user interface provides a clear understanding of what is

happening behind the scenes or provides visibility to the functioning of the system. The whole

purpose of user interface design is to enable the user to interact with your system by

communicating meaning and function. Obviously, if the interface too complex to navigate, it

might annoy the user and make him or her leave the page quickly and move on to some thing

else. Make sure the interface is understandable and simple to navigate through.

2. Creative but familiar : When the users are familiar with something and know how it

behaves, navigation becomes easier. In effect, the user expects to see what is familiar to him

or her. It is good to identify things that your users are accustomed to and integrate them into

your user interface. At the same time, users appreciate some thing creative, not so runoff-the-

mill experience. But while being creative it should be kept in mind not to lose the familiarity

component.

3. Intuitive and consistent : The controls and information must be laid out in an intuitive and

consistent way for an interface to be easy to use and navigate. It’s not good to drastically
change the lay out to achieve the changing functionality the business may require from time

to time. The design process should be based on the logic of usability -features that are the

most frequently used should be the most prominent in the UI and controls should be made

consistent so that users know how to repeat their action.

4. Responsive : If the interface fails to keep up with the demands of the user, this will

significantly diminish their experience and can result in frustration, particularly when trying

to perform basic tasks. Wherever possible, the interface should move swiftly in pace with the

user. Being responsive means being fast. The interface, if not the program behind it, should

work fast. Waiting for things to load might make the user frustrated.

5. Maintainable : A UI should have the capacity for and changes to be integrated without

causing a conflict of interest. For instance, you may need to add an additional feature to the

software, if your interface is so convoluted that there is no space to draw attention to this

feature without compromising something else or appearing unaesthetic, then this signifies a

flaw in design.

The better the user interface the easier it is to guide people to use it and it also reduces the training

costs. The better your user interface the less help people will require exploiting it and keep them

coming back.

Basic Components of UID

User Interface Design
User interface design is also known as user interface engineering. User interface design

means the process of designing user interfaces for software and machines like a mobile

device, home appliances, computer, and another electronic device with the aim of

increasing usability and improving the user experience.

The aim of user interface design is to make user experiences as easy as possible while still

being successful in achieving user goals (user-centered design).

A well-designed user interface design makes it easier to complete the task in hand without

drawing needless attention to itself. Graphic design and typography are used to influence

its utility by influencing how the consumer interacts with it and improving the design's

aesthetic appeal. Design aesthetics can increase or decrease the user's ability to use

interface's functions. The design process should balance technical functionality as well as

visual elements (for example, mental model) in order to build a system that is not only

operational but as well usable and adaptable to evolving user requirements.

Interface design is used in various projects, including computer systems, commercial planes,

automobiles; many of these projects include many of the same basic human interactions,

but they often include certain special skills and experience. Consequently, whether it is

software design, industrial design, user research or web design, designers prefer to

specialize in those types of projects and have skills- based around their experience.

Choosing Interface Components

Users have become aware of interface components acting in a certain manner, so try to be

predictable and consistent in our selections and their layout. As a result, task completion,

satisfaction, and performance, will increase.

Interface components may involve:

1. Input controls

2. Navigational Components

3. Informational Components

4. Containers

Input Controls: Input Controls involve buttons, toggles, dropdown lists, checkboxes, date

fields, radio buttons, and text fields.

Navigational Components: Navigational components contain slider, tags, pagination,

search field, breadcrumb, icons.

Informational Components: Informational Components contain tooltips,

 modal windows, progress bar, icons, notification message boxes.

Containers: Containers include accordion.

Many components may be suitable to display content at times. When this happens, it is

crucial to think about this trade-off. For example, sometimes, components that may help

you space, place more focus on the user, forcing them to guess what the dropdown is or

what the element might be.

Best Practices for Designing an Interface

It All starts with getting to know your users, which contains understanding about their

interests, abilities, tendencies, and habits. If you have figured out who your customer is,

keep the following in mind when designing your interface: o Create consistently and use

common UI components

o Use typography to make hierarchy and clarity.

o Make sure that the system communicates what's happening

o Use color and texture strategically o Keep the interface

simple o Be purposeful in page layout

Create Consistently and Use Common UI Components

Users would feel more at ease and be able to complete tasks more easily if we use common

components in our UI. It's also important to generate pattern in language, design, and

layout across the website in order to help with productivity. If a user has mastered one

ability, they should be able to apply it to others areas of the website.

Use Typography in Order to Make Hierarchy and Clarity

Think about how we are going to use the typeface. Text in various sizes, fonts, and

arrangements in order to help increase readability, legibility, and scanability.

Make Sure that the System Communicates What's Happening

Always keep your user up to date on their change in state, location, errors, actions, etc.

Using various UI components to communicate status and, if needed, the next steps will help

your user feel less frustrated.

Use color and Texture Strategically

Using contrast, light, color, and texture to our benefit, we can draw attention to or draw

attention away from objects.

Keep the Interface Simple

Mostly the great interfaces are not visible to the user. They avoid needless components and

use simple terminology on labels and in messaging.

Be Purposeful in Page Layout

Take into account the spatial associations between the objects on the page and organize

the page on the basis of importance. Carefully positioning objects can aid scanning and

readability by drawing attention to the most appropriate pieces of information.

Designing User Interfaces for Users

User interfaces are the points of interaction between the user and developer. They come in

three different types of formats:

1. Graphical User Interfaces (GUIs)

2. Gesture-based Interfaces

3. Voice-controlled Interfaces (VUIs)

1. Graphical User Interface (GUIs)

In the Graphical user interface, the users can interact with visual representations on the

digital control panels. Example of GUI, a computer's desktop.

2. Gesture-Based Interfaces

In gesture-based interfaces, users can interact with 3D design spaces by moving their

bodies. Example of Gesture-Based Interfaces, Virtual Reality (VR) games.

3. Voice-Controlled Interfaces (VUIs)

In, Voice-controlled interfaces (VUIs), users can interact with the help of the voice. Example

of Voice-Controlled Interfaces (VUIs), Alexa on Amazon devices, and Siri on iPhone.

User Interface Design Processes

The user-interface design necessitates an in-depth understanding of user requirements. It

primarily focuses on the platform's requirements and user preferences. There are several

stages and procedures of user interface design, some of which are more demanding than

others depending on the project.

Functionality Requirements Gathering

Creates a list of device functionalities that are needed to fulfil the user's project goal and

specification.

User and Task Analysis

It is the kind of field research. It is the research of how the system's potential users perform

the tasks that the design would serve, and perform interviews to learn more about their

goals.

Typical questions involve:

o What do you think the user would like the system to do?

o What role does the system fit in the user's everyday activities or workflow?

o How technically savvy is the user, and what other systems does the user already use?

o What styles of user interface look and feel do you think the user prefers?

Information Architecture

Process development or the system's information flow (means for phone tree systems, this

will be a choice tree flowchart for phone tree systems, and for the website, this will be site

flow that displays the page's hierarchy).

Prototyping

The wire-frame's the development either in the form of simple interactive screens or paper

prototypes. To focus on the interface, these prototypes are stripped of all look and feel

components as well as the majority of the content.

Usability Inspection

Allowing an evaluator to examine a user interface. It is typically less expensive to implement

as compared to usability testing, and in the development process, it can be used early. It

may be used early in the development process to determine requirements for the system,

which are usually unable to be tested on the users. There are various usability inspection

procedures such as a cognitive walkthrough, which focuses on how easy it is for new users

to complete tasks with the system for new users, pluralistic walkthrough, which involves a

group of people step through a task scenario and discussing usability issues, heuristic

evaluation, that uses a series of heuristic to find usability issues in the UI design.

Usability Testing

Prototypes are tested on a real user, often using a method known as think-aloud protocol,

in which we can ask the user to speak about their views during the experience. The testing

of user interface design permits the designer to understand the reception from the viewer's

perspective, making it easier to create effective applications.

Graphical User Interface Design

It is the actual look and feel of the design of the final graphical user interface (GUI). These

are the control panels and faces of design; voice-controlled interfaces contain oralauditory

interaction, while gesture-based interfaces users involve with 3D design spaces through

physical motions. This can be based on findings developed during user research and refined

to correct and usability problems found via the testing's results. This process typically

includes some computer programming in order to validate forms, establish links, or perform

a desired action, depending on the type of interface being developed.

Software Maintenance

After a new interface is deployed, it may be necessary to perform routine maintenance in

order to fix software bugs, add new functionality or fully update the system. When the

decision is taken to update the interface, the legacy system will go through a new iteration

of the design process. The stages of the interface life cycle will continue to repeat.

User Interface Design Requirements

The dynamic characteristics of a system are defined in terms of the dialogue requirements

contained in 7 principles of part 10 of the ergonomics standard, the ISO 9241. This standard

provides a system of ergonomic "principles" for the dialogue techniques along with the

high-level concepts, examples, and implementations. The principles of the dialogue reflect

the interface's dynamic aspects and mostly thought of as the interface's "feel." The following

are the seven dialogue principles:

1. Suitability of the Task

The dialogue is appropriate for the task when it helps the user in completing the task

efficiently and effectively.

2. Self-Descriptiveness

When each dialogue phase is instantly understandable due to system feedback or clarified

to the user upon request, the dialogue is self-descriptive.

3. Controllability

When the user is capable to initiate and monitor the course and speed of the interaction

until the aim is achieved, then dialogue is controllable.

4. Conformity with User Expectations

If the dialogue is reliable and corresponds to the characteristics of the user, like experience,

education, task awareness, and generally accepted conventions, it conforms to user

experience.

5. Error Tolerance

If, despite obvious errors in input, the desired outcome can be accomplished with no or

limited action from the user, then the dialogue is error-tolerant.

6. Suitability for Individualization

If the interface software can be changed to meet the job needs, individual interests, and

abilities of the user, the dialogue is able of individualization.

7. Suitability for Leaning

The dialogue support for learning as it assists and guides the user in learning how to use

the system.

The ISO 9241 standard defines usability as the effective performance and the satisfaction of

the consumer. The following is an explanation of usability found in Part 11.

o The degree to which the overall system's expected objectives of use are met is how usable it

is (effectiveness).

o The resources must be spent in order to achieve the desired outcomes (efficiency). o The

degree to which the user finds the entire system acceptable (satisfaction).

Usability factors include effectiveness, efficiency, and satisfaction. In order to assess these

factors, they must first be split into sub-factors and then into usability measures.

Part 12 of the ISO 9241 standard specifies the organization of information such as

alignment, arrangement, location, grouping, arrangement, display of the graphical objects,

and the information's coding (colour, shape, visual cues, size, abbreviation) by seven

attributes. The attributes of the presented information reflect the interface's static aspects

and can be referred to as the interface's "look." The attributes are defined in detail in the

standard's recommendations. Each of the seven qualities is supported by one or more of

the recommendations. The seven-presentation characteristic are as follows: o Clarity: - The

information content is conveyed easily and correctly.

o Discriminability: - The displayed data can be separated with precision. o

 Conciseness: - The users are not overburdened with irrelevant data.

o Consistency: - Consistency means a unique design with conformity with the expectation of

users. o Detectability: - The attention of the user is directed towards the essential

information essential.

o Legibility: - Legibility means information is easy to read.

o Comprehensibility: - The meaning is straightforward, recognizable, unambiguous, and easy

to comprehend.

The user guidance in part 13 of the ISO 9241 standard states that it should be easily

distinguishable from other shown information and must be precise for the use of present

context. The following five methods can be used to provide user guidance:

o Prompts indicating that the system is available for input explicitly (specific prompts) or

implicitly (generic prompts).

o Feedback informing related to the input of the user timely, non-intrusive, and perceptible.

o Details about the application's current state, the system's hardware and software, and the

user's activities.

o Error management contains error detection, error correction, error message, and user

support for error management.

o Online assistance for both system-initiated and user-initiated requests with detailed

information for the current context of usage.

How to Make Great UIs

Remember that the users are people with needs like comfort and a mental capacity limit

when creating a stunning GUI. The following guidelines should be followed:

1. Create buttons, and other popular components that behave predictably (with responses like

pinch-to-zoom) so that users can use them without thinking. Form must follow function.

2. Keep your discoverability high. Mark icons clearly and well-defined affordances, such as

shadows for buttons.

3. The interface should be simple (including elements that help users achieve their goals) and

create an "invisible" feel.

4. In terms of layout, respect the user's eyes and attention. Place emphasis on hierarchy and

readability:

o User proper alignment: Usually select edge (over center) alignment.

o Draw attention to Key features using:

o Colour, brightness, and contrast are all important factors to consider Excessive use of

colors or buttons should be avoided.

o Font sizes, italics, capitals, bold type/weighting, and letter spacing are all used to

create text. User should be able to Deduce meaning simply by scanning.

o Regardless of the context, always have the next steps that the user can naturally

deduce.

o Use proper UI design patterns to assist users in navigating and reducing burdens

such as pre-fill forms. Dark patterns like hard-to-see prefilled opt-in/opt-out

checkboxes and sneaking objects into the user's carts should be avoided.

o Keep user informed about system responses/actions with feedback.

Principles of User Interface Design

The following are the principles of user interface design:

1. Clarity is Job

The interface's first and most essential task is to provide clarity. To be effective in using the

interface you designed, people need to identify what it is, regardless of why they will use it,

understand what the interface is doing in interaction with them. It assists them in

anticipating what will occur as they use it. And then effectively interact with it in order to be

effective. In interface, there is a space for mystery ad delayed gratification, but not for

uncertainty. Clarity instils trust and encourages continued use. One hundred uncluttered

screens are superior to one cluttered screen.

2. Keep Users in Control

Humans are most at ease when they have control of themselves and their surroundings.

Unthoughtful software robs people of their comfort by dragging them into unexpected

encounters, unexpected outcomes, and confusing pathways. Maintain user control by

surfacing system status regularly, explaining causation (what will happen if you do this), and

providing insight into what to expect at each turn. Don't be concerned with stating the

obvious... the obvious rarely is.

3. Conserve Attention at All Cost

We live in a world that is constantly interrupted. It is difficult to read in peace these days

without anything attempting to divert our focus. Attention is a valuable commodity.

Distracting content should not be strewn around the side of your applications… keep in

mind why the screen exists in the first place. Allow someone to finish reading before

displaying an advertisement if they are currently reading. If you pay attention, then your

readers will be happier, and your performance will be higher. When the primary aim is to

make something useful, paying attention is a must. Preserve it at all costs.

4. Interfaces Exist to Enable Interaction

Interaction between humans and our world is allowed by interfaces. They can support,

explain, allow, display associations, illuminate, bring us together, separate us, handle

expectations, and provide access to service. Designing a user interface is not an artistic

endeavour. Interfaces are not stand-alone landmarks. Interfaces perform a function, and

their efficiency can be calculated. However, they are not just utilitarian. The best user

interfaces can encourage, mystify, evoke and deepen our connection with the world.

5. Keep Secondary Actions Secondary

Multiple secondary actions may be added to screens with a single primary action, but they

must be held secondary. Your article presents not so that individuals can post it on Twitter

but so that people can read and comprehend it. Secondary action should be secondary by

giving them a lighter visual weight or displaying them after the primary action is completed.

6. Provide a Natural Next Step

Few interactions are intended to be the last, so consider designing the last move for every

interaction used with your interface. Predict what the next interaction will be and design to

accommodate it. Just as we are interested in human conversation, offer an opportunity for

more discussion. Don't leave anyone hanging because they did what you wish them to do….
Provide them with a natural next move that will assist them in achieving their objectives.

7. Direct Manipulation is Best

There is no need for an interface if we can directly access the physical objects in our universe.

We build interfaces to help us interact with objects because this is not always easy, and

objects are becoming increasingly informational. It is simple to add extra layers than

required to an interface, creating overly-wrought buttons, attachments, options, graphics,

windows, preferences, chrome, and other cruft, causing us to manipulate the interface.

Instead of focusing on what matters, UI components ae includes, rather go back to your

target of direct manipulation…design an interface with the smallest possible footprint while
recognizing as many natural human movements as possible. In an ideal world, the interface

is so light that the user feels as though they are directly manipulating the object of their

focus.

8. Highlight, Don't Determine, with Colour

When the light changes, the colour of the physical object changes. In the full light of day,

we see very different tree outlines against a sunset. As in the real world, where colour is a

multi-shaded object, colour does not decide anything in an interface. It can be useful for

highlighting and directing focus, but it should not be the only way to distinguish objects.

Using light or muted background colours for prolonged screen time, saving brighter hues

for accents. Of course, there is a time and place for bright or vibrant background colours;

just make sure they are suitable for the target audience.

9. Progressive Disclosure

On each screen, just show what is needed. If people must make a decision, give them

sufficient information in order to make that decision, then go into more details on a

subsequent screen. Avoid the popular trap of over-explaining or showing all at once. Defer

decisions to subsequent screens wherever possible by gradually revealing information as

needed. Your experiences would be clearer as a result of this.

10. Strong Visual Hierarchies Work Best

When the visual elements on a computer are arranged in a simple viewing order, it creates

a powerful visual hierarchy. This means when users consistently see the same objects in the

same order. The weak visual hierarchies offer some guidance related to where one should

gaze and relax and feel disorganized and confused. It is difficult to maintain a clear visual

hierarchy in fast-changing environments because visual weight is relative; if nothing is bold

or everything is bold. If a single visually heavy element is included in a screen, then the

designer has to reset the visual weight of all other elements in order to achieve a strong

hierarchy once more.

11. Help People Inline

Help is not needed in ideal interaction because the interface is usable and learner. The step

below that, fact, is one in which assistance is inline and contextual, accessible only when and

where it is required and concealed at all other times. When you ask people to go help and

find an answer to their question, you are putting the responsibility on them to understand

what they want, rather than incorporate assistance where it is needed. Only make sure it is

not in the way of people who are already familiar with your interface.

12. Build on Other Design Principle

Visual and graphic design, visualization, typography, information architecture, and

copywriting all of these disciplines are the part of the interface design. They may be briefly

discussed or trained in. Don't get caught up in turf battles or dismiss other disciplines;

instead, take what you need from them and keep moving forward. Incorporate ideas from

apparently unrelated fields as well… what can we learn from bookbinding, publishing code,
skateboarding, karate, firefighting?

13. Great Design is Invisible

The interesting thing about good design is that it usually goes unobserved by the people

who use it. One reason for this is that if the design is effective, then the user will be able to

concentrate on their own objectives rather than the interface…They are happy when they
achieve their goal and do not essentially reflect on the condition. As a designer, this can be

difficult since we receive less praise when our work is successful. Great designers, on the

other hand, are comfortable with a well-used design and understand that satisfied users are

always silent.

14. Interfaces Exist to be Used

Interface design, like most design disciplines, is effective when people use what you have

created. Design fails if people choose not to utilize it, just like a beautiful chair which is

painful to sit in. As a result, interface design can be more related to building a userfriendly

experience as it is about designing a useful artifact. It is not sufficient for an interface to

fulfil the designer's ego: it has to be used!

15. A Crucial Moment: The Zero State

The first time a user interacts with an interface is critical, but designers often ignore it. It's

better to plan for the zero state, or the state where nothing has happened yet, to great

support our users get up to speed with our designs. This is not supposed to be a blank

canvas…it should give you direction and point you in the right direction for getting up to
speed. The initial context is where much of the friction of contact occurs…people have a
much better chance of succeeding once they grasp the rules.

Mistakes to Avoid in UI Design

The following are the mistakes that we have to avoid in UI design:

o Do not implement a user-centred design. This is an easy part to overlook, but it is one of

the most critical aspects of the UI design. User's desires, expectations, and the problems

should all be considered when designing. Avoid doing, so it may have a negative effect on

your company and lead to its demise.

o Excessive use of dynamic effects: Using a lot of animation effects is not always a sign of a

good design. As a result, limiting the use of decorative animations will help to improve the

user experience.

o Preparing so much in advance: Particularly in the early stages of design, we just need to

have the appropriate image of the design in our heads and get to work. However, this

strategy is not always successful. At times, exploring other sources can show some

unexpected results.

o Not Leaning more about the target audience: - This point once again, demonstrates what

we have just discussed. Rather than designing with your own desires and taste in mind,

imagine yourself as the consumer. Simply consider what the consumer will enjoy, and if

possible, conduct an interview or survey some potential customers to get a better

understanding of their requirements.

Essential Tools for User Interface Design

There are various essential tools for user interface design:

1. Sketch

2. Adobe XD

3. Invision Studios

4. UXPin

5. Framer X

1. Sketch

It is a user design tool mainly used by numerous UI and UX designers to design and

prototyping mobile and web applications. The Sketch is a vector graphics editor that permits

designers to create user interfaces efficiently and quickly.

There are various features of Sketch:

o Slicing and Exporting

Sketch gives users a lot of slicing control, allowing them to choose slice, and export any layer

or object they want.

o Symbols

Using this feature, user can build pre-designed elements which can be easily re-used as well

as replicated in any artboard or project. This feature will help designers save time and build

a design library for potential projects.

o Plugins

Maybe a feature you are looking for is not available in the default sketch app. In that

situation, you don't have to worry; there are number of created plugins that can be

downloaded externally and added to our sketch app. The options are limitless!

2. Adobe XD

It is a vector-based tool. We use this tool for designing interfaces and prototyping for

mobile applications as well as the web. Adobe XD is just like Photoshop and illustrator, but

it focuses on user interface design. Adobe XD has the advantage of including UI kits for

Windows, Apple, and Google Material Design, which helps designers create user interfaces

for each device.

Features of Adobe XD

There are various features of Adobe XD:

o Voice Trigger

Voice Trigger is an innovative feature introduced by Adobe XD which permits prototypes to

be manipulated via voice commands.

o Responsive Resize

Using this feature, we can automatically adjust and resize objects/elements which are present

on the artboards based on the size of the screen or platform required.

o Collaboration

We can connect Adobe XD to other tools like Slack, allowing the team to collaborate across

platforms like Windows and macOS.

3. Invision Studios

It is a simple vector-based drawing tool with design, animation, and prototyping capabilities.

Invision studios is a relatively new tool, but it has ready demonstrated a high level of

ambition through its numerous available functionalities and remarkable prototyping

capabilities. The ability to move and open files from sketch to Invision is an added benefit,

allowing you to create more immersive user interfaces than you could with sketch alone.

Features of the Invision Studios

There are various features of Invision studios:

o Advanced Animations

With the various animations provided by studios, animating your prototype has become

even more exciting. We can expect higher fidelity prototypes with this feature, including

auto-layer linking, timeline editions, and smart-swipe gestures.

o Responsive Design

The responsive design feature saves a lot of time because it eliminates the need of multiple

artboards when designing for numerous devices. Invision studios permit users to create a

single artboard that can be adjusted based on the intended device.

o Synced Workflow

Studios enable a synchronised workflow across all projects, from start to finish, in order to

support team collaboration. This involves real-time changes and live concept collaboration,

as well as the ability to provide instant feedback.

4. UXPin

Another amazing tool for the design user interface is UXPin that comes with the abilities of

designing and prototyping. In contrast to other user interface tools, this tool is

recommended to be a better fit for large design teams and projects. UXPin also comes with

UI element libraries which give you access to Material Design, iOS libraries, Bootstrap, and

variety of icons.

Features of UXPin

There are various features of UXPin:

o Mobile support o

Collaboration o

Presentation tools o Drag

and Drop o Mockup

Creation o Protype

Creation o Interactive

Elements o Feedback

Collection o Feedback

Management

5. Framer X

Framer X was released in 2018. It is one of the newest design tools which is used to design

digital products from mobile applications to websites. The interesting feature of this tool is

the capability to prototype along with the advanced interactions and animations while also

integrating the code's components. The React.js users feel that they are able to design and

code on the same platform. Furthermore, Framer X allows users to build highly realistic

prototypes that can be used to show clients or stakeholders the final product.

Features of the Framer X

The following are the features of the Framer X:

o From mockup to prototype, all in one

canvas o Framer X better support all types

of web fonts o Pixel-perfect designs with

rulers and guides o Get creative with precise

color management

Types of User Interface

The various types of user interfaces include:

• graphical user interface (GUI)

• command line interface (CLI)

• menu-driven user interface

• touch user interface

• voice user interface (VUI)

• form-based user interface

• natural language user interface

https://www.techtarget.com/whatis/definition/GUI
https://www.techtarget.com/whatis/definition/GUI
https://www.techtarget.com/searchwindowsserver/definition/command-line-interface-CLI
https://www.techtarget.com/searchwindowsserver/definition/command-line-interface-CLI
https://www.techtarget.com/searcherp/definition/voice-user-interface-VUI
https://www.techtarget.com/searcherp/definition/voice-user-interface-VUI
https://www.techtarget.com/whatis/definition/natural-language
https://www.techtarget.com/whatis/definition/natural-language

Components based GUI development

Component-based development (CBD) is a procedure that

accentuates the design and development of computerbased

systems with the help of reusable software components.

With CBD, the focus shifts from software programming to

software system composing.

Component-based development techniques involve

procedures for developing software systems by choosing

ideal off-the-shelf components and then assembling them

using a well-defined software architecture. With the

systematic reuse of coarse-grained components, CBD

intends to deliver better quality and output.

Component-based development is also known as

component-based software engineering (CBSE).

Software Coding & Testing

Coding

The coding is the process of transforming the design of a system into a computer language

format. This coding phase of software development is concerned with software translating

design specification into the source code. It is necessary to write source code & internal

documentation so that conformance of the code to its specification can be easily verified.

Coding is done by the coder or programmers who are independent people than the designer.

The goal is not to reduce the effort and cost of the coding phase, but to cut to the cost of a later

stage. The cost of testing and maintenance can be significantly reduced with efficient coding.

Goals of Coding
1. To translate the design of system into a computer language format: The coding is the

process of transforming the design of a system into a computer language format, which can be

executed by a computer and that perform tasks as specified by the design of operation during

the design phase.

2. To reduce the cost of later phases: The cost of testing and maintenance can be significantly

reduced with efficient coding.

3. Making the program more readable: Program should be easy to read and understand. It

increases code understanding having readability and understandability as a clear objective of

the coding activity can itself help in producing more maintainable software.

Code Review
Code Review is a systematic examination, which can find and remove the vulnerabilities in the code

such as memory leaks and buffer overflows.

• Technical reviews are well documented and use a well-defined defect detection

process that includes peers and technical experts.

• It is ideally led by a trained moderator, who is NOT the author.

• This kind of review is usually performed as a peer review without management

participation.

• Reviewers prepare for the review meeting and prepare a review report with a list of

findings.

• Technical reviews may be quite informal or very formal and can have a number of

purposes but not limited to discussion, decision making, evaluation of alternatives,

finding defects and solving technical problems.

Code walks through
Code Walkthrough is a form of peer review in which a programmer leads the review process and the

other team members ask questions and spot possible errors against development standards and other

issues.

• The meeting is usually led by the author of the document under review and attended

by other members of the team.

• Review sessions may be formal or informal.

• Before the walkthrough meeting, the preparation by reviewers and then a review report

with a list of findings.

• The scribe, who is not the author, marks the minutes of meeting and note down all the

defects/issues so that it can be tracked to closure.

• The main purpose of walkthrough is to enable learning about the content of the

document under review to help team members gain an understanding of the content of

the document and also to find defects.

Where Code Walkthrough fits in ?

Code inspections and software Documentation

Code inspection in software engineering is the process of reviewing the

code in an application to check for defects. Its purpose is to correct the

issues in the programming language so the software performs at its

highest potential. After the engineers build the product and write the

code, they practice code inspection to find ways to minimize the time for

the code to exercise commands. Resolving the issues that the inspection

finds allows engineers to refine the internal structure of the software, as

well as its security features.

 In the software development process, software documentation is the information

that describes the product to the people who develop, deploy and use it.

It includes the technical manuals and online material, such as online versions of

manuals and help capabilities. The term is sometimes used to refer to source

information about the product discussed in design documentation, code comments,

white papers and session notes.

Software documentation is a way for engineers and programmers to describe their

product and the process they used in creating it in formal writing. Early computer

users were sometimes simply given the engineers' or programmers' notes. As software

https://www.techtarget.com/whatis/definition/comment
https://www.techtarget.com/whatis/definition/comment
https://www.techtarget.com/whatis/definition/comment

development became more complicated and formalized, technical writers and editors

took over the documentation process.

Software documentation shows what the software developers did when creating the

software and what IT staff and users must do when deploying and using it.

Documentation is often incorporated into the software's user interface and also

included as part of help documentation. The information is often divided into task

categories, including the following:

• evaluating

• planning

• setting up or installing

• customizing

• administering

• using

• maintaining

Why is software documentation important?

Software documentation provides information about a software program for everyone

involved in its creation, deployment and use. Documentation guides and records the

development process. It also assists with basic tasks such as installation and

troubleshooting.

Effective documentation gets users familiar with the software and makes them aware

of its features. It can have a significant role in driving user acceptance. Documentation

can also reduce the burden on support teams, because it gives users the power to

troubleshoot issues.

Software documentation can be a living document that is updated over the software

development lifecycle. Its use and the communication it encourages with users

provides developers with information on problems users have with the software and

what additional features they need. Developers can respond with software updates,

improving customer satisfaction and user experience.

https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.techtarget.com/whatis/post/CompTIA-troubleshooting-steps-and-solving-common-computer-problems
https://www.techtarget.com/whatis/post/CompTIA-troubleshooting-steps-and-solving-common-computer-problems
https://www.techtarget.com/whatis/post/CompTIA-troubleshooting-steps-and-solving-common-computer-problems
https://www.techtarget.com/whatis/post/CompTIA-troubleshooting-steps-and-solving-common-computer-problems
https://www.techtarget.com/whatis/post/CompTIA-troubleshooting-steps-and-solving-common-computer-problems
https://www.techtarget.com/whatis/post/CompTIA-troubleshooting-steps-and-solving-common-computer-problems
https://www.techtarget.com/searchsoftwarequality/definition/software-development-life-cycle-SDLC
https://www.techtarget.com/searchsoftwarequality/definition/software-development-life-cycle-SDLC
https://www.techtarget.com/searchsoftwarequality/definition/software-development-life-cycle-SDLC
https://www.techtarget.com/searchsoftwarequality/definition/software-development-life-cycle-SDLC
https://www.techtarget.com/searchsoftwarequality/definition/software-development-life-cycle-SDLC
https://www.techtarget.com/searchsoftwarequality/definition/software-development-life-cycle-SDLC
https://www.techtarget.com/searchdatacenter/tip/Five-steps-to-include-on-your-software-update-checklist
https://www.techtarget.com/searchdatacenter/tip/Five-steps-to-include-on-your-software-update-checklist
https://www.techtarget.com/searchdatacenter/tip/Five-steps-to-include-on-your-software-update-checklist

Types of software documentation

The two main types of software documentation are internal and external.

Internal software documentation

Developers and software engineers create internal documentation that is used inside a

company. Internal documentation may include the following:

• Administrative documentation. This is the high-level administrative

guidelines, roadmaps and product requirements for the software

development team and project managers working on the software. It also

may include status reports and meeting notes.

• Developer documentation. This provides instructions to developers for

building the software and guides them through the development process. It

includes requirements documentation, which describes how the software

should perform when tested. It also includes architectural documentation

that focuses on how all the components and features work together, and

details data flows throughout the product.

Software

requirements are detailed in internal software documentation.

External software documentation

Software developers create this documentation to provide IT managers and end users

with information on how to deploy and use the software. External documentation

includes the following:

https://www.techtarget.com/searchsoftwarequality/tip/7-techniques-for-better-Agile-requirements-gathering
https://www.techtarget.com/searchsoftwarequality/tip/7-techniques-for-better-Agile-requirements-gathering
https://www.techtarget.com/searchsoftwarequality/tip/7-techniques-for-better-Agile-requirements-gathering

• End-user documentation. This type gives end users basic instructions on how

to use, install and troubleshoot the software. It might provide resources,

such as user guides, knowledge bases, tutorials and release notes.

• Enterprise user documentation. Enterprise software often has

documentation for IT staff who deploy the software across the enterprise. It

may also provide documentation for the end users of the software.

• Just-in-time documentation. This provides end users with support

documentation at the exact time they will need it. This allows developers to

create a minimal amount of documentation at the release of a software

product and add documentation as new features are added. It is based on

the Agile software development These can be knowledge bases, FAQ pages

and how-to documents.

Best practices for creating software documentation

There are six common best practices for creating software documentation. They are

the following:

1. Understand user needs. Developers must understand user needs and pain

points from the start of the development process. The documentation

should address those needs and provide help around pain points.

2. Write easily understood documentation. Documentation should be concise,

simple and avoid complex jargon. It should use terms and phrases that the

intended audience would use.

3. Include internal subject matter experts. It can help to have experienced

team members and subject matter experts in the software documentation

process to ensure that it is accurate.

4. Use analytics feedback. Analytics applications provide important feedback

that can be incorporated into documentation.

5. Ask for user feedback. After a release, ask users what they liked and disliked

about a software product and use the input to improve both the product and

its documentation.

https://www.techtarget.com/searchcontentmanagement/tip/Top-5-knowledge-base-products
https://www.techtarget.com/searchcontentmanagement/tip/Top-5-knowledge-base-products
https://www.techtarget.com/searchcontentmanagement/tip/Top-5-knowledge-base-products
https://www.techtarget.com/searchsoftwarequality/definition/agile-software-development
https://www.techtarget.com/searchsoftwarequality/definition/agile-software-development
https://www.techtarget.com/searchsoftwarequality/definition/agile-software-development
https://www.techtarget.com/whatis/feature/Confusing-jargon-Throw-it-over-the-wall
https://www.techtarget.com/whatis/feature/Confusing-jargon-Throw-it-over-the-wall
https://www.techtarget.com/whatis/feature/Confusing-jargon-Throw-it-over-the-wall
https://www.techtarget.com/searchbusinessanalytics/feature/Uplevel-analytics-tools-lift-software-engineering-efficiency
https://www.techtarget.com/searchbusinessanalytics/feature/Uplevel-analytics-tools-lift-software-engineering-efficiency
https://www.techtarget.com/searchbusinessanalytics/feature/Uplevel-analytics-tools-lift-software-engineering-efficiency
https://www.techtarget.com/searchbusinessanalytics/feature/Uplevel-analytics-tools-lift-software-engineering-efficiency
https://www.techtarget.com/searchbusinessanalytics/feature/Uplevel-analytics-tools-lift-software-engineering-efficiency
https://www.techtarget.com/searchbusinessanalytics/feature/Uplevel-analytics-tools-lift-software-engineering-efficiency

6. Provide continuous maintenance. As software is updated and maintained,

the accompanying documentation should also be updated. Teams must

constantly improve documentation as IT and user questions reveal additional

needs.

Software

development methodologies such as Agile follow a continuous cycle of development and improvement.

Software documentation should follow a similar continuous improvement cycle as new features are rolled

out.

Examples of software documentation

Some examples of software documentation include the following:

• System documentation. This includes architectural diagrams that detail the

structure of the software and its technical design.

• Application programming interface (API) documentation. This is the

reference documentation for calling APIs. It establishes standards for API

communication and ensures that different APIs work smoothly together.

• README files. A README file is a high-level representation of software that

usually comes with the source code.

• Release notes. Release notes review the new features and bug fixes included

in each release of a software program.

• How-to guides. These take IT staff or end users through the steps needed to

deploy or use the software.

• Tutorials. Tutorials take users through a series of steps to learn how to use

the software or about a specific feature.

• Reference documents. These provide IT and end users with technical

documentation of the software.

https://www.techtarget.com/searchitoperations/tip/How-to-approach-and-instate-automated-IT-documentation
https://www.techtarget.com/searchitoperations/tip/How-to-approach-and-instate-automated-IT-documentation
https://www.techtarget.com/searchitoperations/tip/How-to-approach-and-instate-automated-IT-documentation
https://www.techtarget.com/searchitoperations/tip/How-to-approach-and-instate-automated-IT-documentation
https://www.techtarget.com/searchapparchitecture/feature/Explore-API-documentation-basics-and-best-practices
https://www.techtarget.com/searchapparchitecture/feature/Explore-API-documentation-basics-and-best-practices
https://www.techtarget.com/searchapparchitecture/feature/Explore-API-documentation-basics-and-best-practices
https://www.techtarget.com/searchapparchitecture/feature/Explore-API-documentation-basics-and-best-practices
https://www.techtarget.com/searchapparchitecture/feature/Explore-API-documentation-basics-and-best-practices
https://www.techtarget.com/searchapparchitecture/feature/Explore-API-documentation-basics-and-best-practices
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://www.techtarget.com/searchapparchitecture/definition/source-code
https://www.techtarget.com/searchapparchitecture/definition/source-code
https://www.techtarget.com/searchapparchitecture/definition/source-code
https://www.techtarget.com/searchsoftwarequality/definition/bug
https://www.techtarget.com/searchsoftwarequality/definition/bug
https://www.techtarget.com/searchsoftwarequality/definition/bug

• Explanations. These clarify a particular element of the software for the user.

Software documentation tools

Various tools help vendors and developers automate the documentation process.

Some important features of leading software documentation tools include the

following:

• Markdown and HTML support. Markdown and HTML are two programming

languages that software documentation is commonly written in. Markdown

is an abbreviated form of HTML.

• Feedback. A good documentation tool will have the option to collect and

review user feedback. In some cases, users contribute entire code examples.

This feature may connect users and developers via email or a comments

option. Some tools allow users to look at and make changes to certain code.

• Access control. This feature enables multiple documentation writers to

contribute to one piece of documentation. It controls access with roles and

permissions.

• Click-button APIs. With this capability, users are able to run APIs from the

documentation.

• Table of contents. Documentation tools should enable writers to create a

table of contents to simplify navigation.

• Publishing control. Writers can publish and unpublish pages as needed.

Some examples of documentation tools include the following:

• Apiary

• API Matic

• GitHub Pages

• ReadMe

• Stoplight

• Swagger

https://www.techtarget.com/searchsoftwarequality/tip/Top-software-documentation-tools-and-how-to-use-them
https://www.techtarget.com/searchsoftwarequality/tip/Top-software-documentation-tools-and-how-to-use-them
https://www.techtarget.com/searchsoftwarequality/tip/Top-software-documentation-tools-and-how-to-use-them
https://www.theserverside.com/definition/HTML-Hypertext-Markup-Language
https://www.theserverside.com/definition/HTML-Hypertext-Markup-Language
https://www.theserverside.com/definition/HTML-Hypertext-Markup-Language
https://www.techtarget.com/searchitoperations/definition/GitHub
https://www.techtarget.com/searchitoperations/definition/GitHub

Software documentation must keep up with software updates in a given workflow

structure. Learn best practices for creating a software update workflow for IoT devices.

Testing
Software Testing is a method to check whether the actual software product matches

expected requirements and to ensure that software product is Defect free. It

involves execution of software/system components using manual or automated

tools to evaluate one or more properties of interest. The purpose of software testing

is to identify errors, gaps or missing requirements in contrast to actual

requirements. Unit Testing

Unit testing involves the testing of each unit or an individual component of the software

application. It is the first level of functional testing. The aim behind unit testing is to validate

unit components with its performance.

A unit is a single testable part of a software system and tested during the development phase of

the application software.

The purpose of unit testing is to test the correctness of isolated code. A unit component is an

individual function or code of the application. White box testing approach used for unit testing

and usually done by the developers.

Whenever the application is ready and given to the Test engineer, he/she will start checking

every component of the module or module of the application independently or one by one, and

this process is known as Unit testing or components testing.

Black Box Testing

Black-box testing is a method of software testing that examines the functionality of an application

without peering into its internal structures or workings. This method of test can be applied virtually

to every level of software testing: unit, integration, system and acceptance.

Equivalence class partitioning and boundary value analysis
Boundary value analysis is testing at the boundaries between partitions. Equivalent Class

Partitioning allows you to divide set of test condition into a partition which should be considered the

same.

White Box Testing

White-box testing is a method of software testing that tests internal structures or workings of an

application, as opposed to its functionality. In white-box testing, an internal perspective of the

system is used to design test cases.

https://internetofthingsagenda.techtarget.com/feature/How-to-create-a-workflow-for-IoT-software-updates
https://internetofthingsagenda.techtarget.com/feature/How-to-create-a-workflow-for-IoT-software-updates
https://internetofthingsagenda.techtarget.com/feature/How-to-create-a-workflow-for-IoT-software-updates
https://www.guru99.com/defect-management-process.html
https://www.guru99.com/defect-management-process.html
https://www.guru99.com/defect-management-process.html
https://www.guru99.com/defect-management-process.html

Different White Box methodologies

 Different types of white-boxes testing Unit Testing are Static

Analysis.

Dynamic Analysis.

Statement

Coverage. Branch

testing Coverage.

Security Testing.

Mutation Testing.

Mutation testing

Mutation Testing is a type of Software Testing that is performed to design

new software tests and also evaluate the quality of already existing

software tests. Mutation testing is related to modification a program in small

ways. It focuses to help the tester develop effective tests or locate

weaknesses in the test data used for the program.

Debugging approaches

Debugging, in computer programming and engineering, is a multistep

process that involves identifying a problem, isolating the source of the

problem and then either correcting the problem or determining a way to

work around it. The final step of debugging is to test the correction or

workaround and make sure it works.

Debugging guidelines

In the development process of any software, the software program is religiously tested, troubleshot,
and maintained for the sake of delivering bug-free products. There is nothing that is error-free in the

first go.

So, it's an obvious thing to which everyone will relate that as when the software is created, it

contains a lot of errors; the reason being nobody is perfect and getting error in the code is not

an issue, but avoiding it or not preventing it, is an issue!

All those errors and bugs are discarded regularly, so we can conclude that debugging is nothing but a

process of eradicating or fixing the errors contained in a software program.

Debugging works stepwise, starting from identifying the errors, analyzing followed by

removing the errors. Whenever a software fails to deliver the result, we need the software

tester to test the application and solve it.

Since the errors are resolved at each step of debugging in the software testing, so we can conclude that

it is a tiresome and complex task regardless of how efficient the result was.

Why do we need Debugging?

Debugging gets started when we start writing the code for the software program. It

progressively starts continuing in the consecutive stages to deliver a software product because

the code gets merged with several other programming units to form a software product.

Following are the benefits of Debugging:

o Debugging can immediately report an error condition whenever it occurs. It prevents

hampering the result by detecting the bugs in the earlier stage, making software development

stress-free and smooth.

o It offers relevant information related to the data structures that further helps in easier

interpretation.

o Debugging assist the developer in reducing impractical and disrupting information.

o With debugging, the developer can easily avoid complex one-use testing code to save time and

energy in software development.

Steps involved in Debugging

Following are the different steps that are involved in debugging:

1. Identify the Error: Identifying an error in a wrong may result in the wastage of time. It is very

obvious that the production errors reported by users are hard to interpret, and sometimes the

information we receive is misleading. Thus, it is mandatory to identify the actual error.

2. Find the Error Location: Once the error is correctly discovered, you will be required to

thoroughly review the code repeatedly to locate the position of the error. In general, this step

focuses on finding the error rather than perceiving it.

3. Analyze the Error: The third step comprises error analysis, a bottom-up approach that starts

from the location of the error followed by analyzing the code. This step makes it easier to

comprehend the errors. Mainly error analysis has two significant goals, i.e., evaluation of errors

all over again to find existing bugs and postulating the uncertainty of incoming collateral

damage in a fix.

4. Prove the Analysis: After analyzing the primary bugs, it is necessary to look for some extra

errors that may show up on the application. By incorporating the test framework, the fourth

step is used to write automated tests for such areas.

5. Cover Lateral Damage: The fifth phase is about accumulating all of the unit tests for the code

that requires modification. As when you run these unit tests, they must pass.

6. Fix & Validate: The last stage is the fix and validation that emphasizes fixing the bugs followed

by running all the test scripts to check whether they pass.

Debugging Strategies
o For a better understanding of a system, it is necessary to study the system in depth. It makes it

easier for the debugger to fabricate distinct illustrations of such systems that are needed to be

debugged. o The backward analysis analyzes the program from the backward location where

the failure message has occurred to determine the defect region. It is necessary to learn the area

of defects to understand the reason for defects.

o In the forward analysis, the program tracks the problem in the forward direction by utilizing

the breakpoints or print statements incurred at different points in the program. It emphasizes

those regions where the wrong outputs are obtained.

o To check and fix similar kinds of problems, it is recommended to utilize past experiences. The

success rate of this approach is directly proportional to the proficiency of the debugger.

Software Reliability

Software Reliability

Software Reliability means Operational reliability. It is described as the ability of a system

or component to perform its required functions under static conditions for a specific period.

Software reliability is also defined as the probability that a software system fulfills its

assigned task in a given environment for a predefined number of input cases, assuming that

the hardware and the input are free of error.

Software Reliability is an essential connect of software quality, composed with functionality,

usability, performance, serviceability, capability,installability, maintainability, and

documentation. Software Reliability is hard to achieve because the complexity of software

turn to be high. While any system with a high degree of complexity, containing software, will

be hard to reach a certain level of reliability, system developers tend to push complexity into

the software layer, with the speedy growth of system size and ease of doing so by upgrading

the software.

For example, large next-generation aircraft will have over 1 million source lines of software

on-board; next-generation air traffic control systems will contain between one and two

million lines; the upcoming International Space Station will have over two million lines on-

board and over 10 million lines of ground support software; several significant life-critical

defense systems will have over 5 million source lines of software. While the complexity of

software is inversely associated with software reliability, it is directly related to other vital

factors in software quality, especially functionality, capability, etc.

Different reliability metrics

Reliability metrics are used to quantitatively expressed the reliability of the software

product. The option of which metric is to be used depends upon the type of system to which

it applies & the requirements of the application domain.

Some reliability metrics which can be used to quantify the reliability of the software product

are as follows:

1. Mean Time to Failure (MTTF)

MTTF is described as the time interval between the two successive failures. An MTTF of 200

mean that one failure can be expected each 200-time units. The time units are entirely

dependent on the system & it can even be stated in the number of transactions. MTTF is

consistent for systems with large transactions.

For example, It is suitable for computer-aided design systems where a designer will work on

a design for several hours as well as for Word-processor systems.

To measure MTTF, we can evidence the failure data for n failures. Let the failures appear at

the time instants t1,t2.....tn.

MTTF can be calculated as

2. Mean Time to Repair (MTTR)

Once failure occurs, some-time is required to fix the error. MTTR measures the average time

it takes to track the errors causing the failure and to fix them.

3. Mean Time Between Failure (MTBR)

We can merge MTTF & MTTR metrics to get the MTBF metric.

 MTBF = MTTF + MTTR

Thus, an MTBF of 300 denoted that once the failure appears, the next failure is expected to

appear only after 300 hours. In this method, the time measurements are real-time & not the

execution time as in MTTF.

4. Rate of occurrence of failure (ROCOF)

It is the number of failures appearing in a unit time interval. The number of unexpected

events over a specific time of operation. ROCOF is the frequency of occurrence with which

unexpected role is likely to appear. A ROCOF of 0.02 mean that two failures are likely to occur

in each 100 operational time unit steps. It is also called the failure intensity metric.

5. Probability of Failure on Demand (POFOD)

POFOD is described as the probability that the system will fail when a service is requested.

It is the number of system deficiency given several systems inputs.

POFOD is the possibility that the system will fail when a service request is made.

A POFOD of 0.1 means that one out of ten service requests may fail.POFOD is an essential

measure for safety-critical systems. POFOD is relevant for protection systems where services

are demanded occasionally.

6. Availability (AVAIL)

Availability is the probability that the system is applicable for use at a given time. It takes

into account the repair time & the restart time for the system. An availability of 0.995 means

that in every 1000 time units, the system is feasible to be available for 995 of these. The

percentage of time that a system is applicable for use, taking into account planned and

unplanned downtime. If a system is down an average of four hours out of 100 hours of

operation, its AVAIL is 96%.

Software Metrics for Reliability

The Metrics are used to improve the reliability of the system by identifying the areas of

requirements.

Different Types of Software Metrics are:-

Requirements Reliability Metrics

Requirements denote what features the software must include. It specifies the functionality

that must be contained in the software. The requirements must be written such that is no

misconception between the developer & the client. The requirements must include valid

structure to avoid the loss of valuable data.

The requirements should be thorough and in a detailed manner so that it is simple for the

design stage. The requirements should not include inadequate data. Requirement Reliability

metrics calculates the above-said quality factors of the required document.

Design and Code Reliability Metrics

The quality methods that exists in design and coding plan are complexity, size, and

modularity. Complex modules are tough to understand & there is a high probability of

occurring bugs. The reliability will reduce if modules have a combination of high complexity

and large size or high complexity and small size. These metrics are also available to object-

oriented code, but in this, additional metrics are required to evaluate the quality.

Testing Reliability Metrics

These metrics use two methods to calculate reliability.

First, it provides that the system is equipped with the tasks that are specified in the

requirements. Because of this, the bugs due to the lack of functionality reduces.

The second method is calculating the code, finding the bugs & fixing them. To ensure that

the system includes the functionality specified, test plans are written that include multiple

test cases. Each test method is based on one system state and tests some tasks that are based

on an associated set of requirements. The goals of an effective verification program is to

ensure that each elements is tested, the implication being that if the system passes the test, the requirement’s functionality is contained in the delivered system.

Reliability growth modeling

A reliability growth model is a numerical model of software reliability, which predicts how

software reliability should improve over time as errors are discovered and repaired. These

models help the manager in deciding how much efforts should be devoted to testing. The

objective of the project manager is to test and debug the system until the required level of

reliability is reached.

Following are the Software Reliability Models are:

Software quality

Software quality product is defined in term of its fitness of purpose. That is, a quality product

does precisely what the users want it to do. For software products, the fitness of use is

generally explained in terms of satisfaction of the requirements laid down in the SRS

document. Although "fitness of purpose" is a satisfactory interpretation of quality for many

devices such as a car, a table fan, a grinding machine, etc.for software products, "fitness of

purpose" is not a wholly satisfactory definition of quality.

Example: Consider a functionally correct software product. That is, it performs all tasks as

specified in the SRS document. But, has an almost unusable user interface. Even though it

may be functionally right, we cannot consider it to be a quality product.

The modern view of a quality associated with a software product several quality methods such

as the following:

Portability: A software device is said to be portable, if it can be freely made to work in

various operating system environments, in multiple machines, with other software products,

etc.

Usability: A software product has better usability if various categories of users can easily

invoke the functions of the product.

Reusability: A software product has excellent reusability if different modules of the product

can quickly be reused to develop new products.

Correctness: A software product is correct if various requirements as specified in the SRS

document have been correctly implemented.

Maintainability: A software product is maintainable if bugs can be easily corrected as and

when they show up, new tasks can be easily added to the product, and the functionalities of

the product can be easily modified, etc.

Software Quality Management System

A quality management system is the principal methods used by organizations to provide that

the products they develop have the desired quality.

A quality system subsists of the following:

Managerial Structure and Individual Responsibilities: A quality system is the

responsibility of the organization as a whole. However, every organization has a sever

quality department to perform various quality system activities. The quality system of an

arrangement should have the support of the top management. Without help for the quality

system at a high level in a company, some members of staff will take the quality system

seriously.

Quality System Activities: The quality system activities encompass the following:

Auditing of projects

Review of the quality system

Development of standards, methods, and guidelines, etc.

Production of documents for the top management summarizing the effectiveness of the

quality system in the organization.

Evolution of Quality Management System

Quality systems have increasingly evolved over the last five decades. Before World War II,

the usual function to produce quality products was to inspect the finished products to

remove defective devices. Since that time, quality systems of organizations have undergone

through four steps of evolution, as shown in the fig. The first product inspection task gave

method to quality control (QC).

Quality control target not only on detecting the defective devices and removes them but also

on determining the causes behind the defects. Thus, quality control aims at correcting the

reasons for bugs and not just rejecting the products. The next breakthrough in quality

methods was the development of quality assurance methods.

The primary premise of modern quality assurance is that if an organization's processes are

proper and are followed rigorously, then the products are obligated to be of good quality.

The new quality functions include guidance for recognizing, defining, analyzing, and

improving the production process.

Total quality management (TQM) advocates that the procedure followed by an organization

must be continuously improved through process measurements. TQM goes stages further

than quality assurance and aims at frequently process improvement. TQM goes beyond

documenting steps to optimizing them through a redesign. A term linked to TQM is Business

Process Reengineering (BPR).

BPR aims at reengineering the method business is carried out in an organization. From the

above conversation, it can be stated that over the years, the quality paradigm has changed

from product assurance to process assurance, as shown in fig.

Software Quality Management System

Software Quality Management ensures that the required level of quality is achieved by submitting

improvements to the product development process. SQA aims to develop a culture within the team

and it is seen as everyone's responsibility.

Software Quality management should be independent of project management to ensure

independence of cost and schedule adherences. It directly affects the process quality and indirectly

affects the product quality.

	Software Development Life Cycle (SDLC)
	SDLC Cycle
	Stage1: Planning and requirement analysis
	Stage2: Defining Requirements
	Stage4: Developing the project
	Stage5: Testing
	Stage6: Deployment
	Stage7: Maintenance

	Classical Waterfall
	Project Scheduling
	Importance of SCM
	Software Project
	Need of software project management
	Software Project Manager
	Managing People
	Managing Project

	Software Management Activities
	Project Planning
	Scope Management
	Project Estimation
	Project Estimation Techniques
	Decomposition Technique
	Empirical Estimation Technique
	Project Scheduling
	Resource management

	Project Risk Management
	Risk Management Process
	Project Execution & Monitoring
	Project Communication Management

	Configuration Management
	Project Management Tools
	PERT Chart
	Resource Histogram
	Critical Path Analysis

	Requirements Analysis and specification
	Software Requirement Specification (SRS)

	Software Design
	Software Design Levels
	Modularization
	Concurrency
	Example

	Coupling and Cohesion
	Cohesion
	Coupling
	Design Verification

	Software Design
	Objectives of Software Design
	Cohesion & coupling

	Design approaches in Operating System
	Simple Structure
	Advantages and Disadvantages of Simple Structure
	Advantages
	Disadvantages

	Micro-Kernel Structure
	Advantages and Disadvantages of Micro-Kernel Structure
	Advantages
	Disadvantages

	Layered Structure
	Advantages and Disadvantages of Layered Structure
	Advantages
	Disadvantages

	Modular structure or approach
	Data Flow Diagrams
	Levels in Data Flow Diagrams (DFD)
	0-level DFDM
	1-level DFD
	2-Level DFD

	Transaction Control Transformation
	TCL COMMIT & ROLLBACK Commands
	How to Create Transaction Control Transformation
	Configuring Transaction Control Transformation
	Transaction Control Expression
	Syntax

	Example
	Characteristics of Good Interface
	User Interface Design
	Choosing Interface Components
	Best Practices for Designing an Interface
	Create Consistently and Use Common UI Components
	Use Typography in Order to Make Hierarchy and Clarity
	Make Sure that the System Communicates What's Happening
	Use color and Texture Strategically
	Keep the Interface Simple
	Be Purposeful in Page Layout

	Designing User Interfaces for Users
	1. Graphical User Interface (GUIs)
	2. Gesture-Based Interfaces
	3. Voice-Controlled Interfaces (VUIs)

	User Interface Design Processes
	Functionality Requirements Gathering
	User and Task Analysis
	Information Architecture
	Prototyping
	Usability Inspection
	Usability Testing
	Graphical User Interface Design
	Software Maintenance

	User Interface Design Requirements
	1. Suitability of the Task
	2. Self-Descriptiveness
	3. Controllability
	4. Conformity with User Expectations
	5. Error Tolerance
	6. Suitability for Individualization
	7. Suitability for Leaning

	How to Make Great UIs
	Principles of User Interface Design
	1. Clarity is Job
	2. Keep Users in Control
	3. Conserve Attention at All Cost
	4. Interfaces Exist to Enable Interaction
	5. Keep Secondary Actions Secondary
	6. Provide a Natural Next Step
	7. Direct Manipulation is Best
	8. Highlight, Don't Determine, with Colour
	9. Progressive Disclosure
	10. Strong Visual Hierarchies Work Best
	11. Help People Inline
	12. Build on Other Design Principle
	13. Great Design is Invisible
	14. Interfaces Exist to be Used
	15. A Crucial Moment: The Zero State

	Mistakes to Avoid in UI Design
	Essential Tools for User Interface Design
	1. Sketch
	2. Adobe XD
	Features of Adobe XD

	3. Invision Studios
	Features of the Invision Studios

	4. UXPin
	Features of UXPin

	5. Framer X
	Features of the Framer X

	Types of User Interface
	Components based GUI development
	Coding
	Goals of Coding

	Code Review
	Code walks through
	Code inspections and software Documentation
	Types of software documentation
	Best practices for creating software documentation
	Examples of software documentation

	Testing
	Black Box Testing
	White Box Testing
	Different White Box methodologies
	Mutation testing
	Debugging approaches
	Debugging guidelines
	Steps involved in Debugging
	Debugging Strategies
	Software Reliability
	1. Mean Time to Failure (MTTF)
	2. Mean Time to Repair (MTTR)
	3. Mean Time Between Failure (MTBR)
	4. Rate of occurrence of failure (ROCOF)
	5. Probability of Failure on Demand (POFOD)
	6. Availability (AVAIL)

	Software Metrics for Reliability
	Different Types of Software Metrics are:-
	Requirements Reliability Metrics
	Design and Code Reliability Metrics
	Testing Reliability Metrics
	Reliability growth modeling

	Software Quality Management System
	Evolution of Quality Management System

