

 INTRODUCTION OF IOT

IoT comprises things that have unique identities and are connected to internet. By

2020 there will be a total of 50 billion devices /things connected to internet. IoT is not

limited to just connecting things to the internet but also allow things to communicate

and exchange data.

Definition:

A dynamic global n/w infrastructure with self configuring capabilities based on

standard and interoperable communication protocols where physical and virtual

―things‖ have identities, physical attributes and virtual personalities and use

intelligent interfaces, and are seamlessly integrated into information n/w, often

communicate data associated with users and their environments.

Characteristics:

• Dynamic & Self Adapting: IoT devices and systems may have the capability

to dynamically adapt with the changing contexts and take actions based on

their operating conditions, user‘s context or sensed environment.

Eg: the surveillance system is adapting itself based on context and changing conditions.

• Self-Configuring: allowing a large number of devices to work together to

provide certain functionality.

• Inter Operable Communication Protocols: support a number of

interoperable communication protocols ans can communicate with other

devices and also with infrastructure.

• Unique Identity: Each IoT device has a unique identity and a unique

identifier(IP address).

• Integrated into Information Network: that allow them to communicate

and exchange data with other devices and systems.

Applications of IoT:

• Home

• Cities

• Environment

• Energy

• Retail

• Logistics

• Agriculture

• Industry

• Health & LifeStyle

Physical Design Of IoT
• Things inIoT:

The things in IoT refers to IoT devices which have unique identities and perform

remote sensing, actuating and monitoring capabilities. IoT devices can exchange dat

with other connected devices applications. It collects data from other devices and

process data either locally or remotely.

An IoT device may consist of several interfaces for communication to other devices

both wired and wireless. These includes (i) I/O interfaces for sensors, (ii) Interfaces

for internet connectivity

• memory and storage interfaces and (iv) audio/videointerfaces.

• IoT Protocols:

• Link Layer : Protocols determine how data is physically sent over the

network‘s physical layer or medium. Local network connect to which host is

attached. Hosts on the same link exchange data packets over the link layer

using link layer protocols. Link layer determines how packets are coded and

signaled by the h/w device over the medium to which the host is attached.

Protocols:

• 802.3-Ethernet: IEEE802.3 is collection of wired Ethernet standards for the

link layer. Eg: 802.3 uses co-axial cable; 802.3i uses copper twisted pair

connection; 802.3j uses fiber optic connection; 802.3ae uses Ethernet over

fiber.

• 802.11-WiFi: IEEE802.11 is a collection of wireless LAN(WLAN)

communication standards including extensive description of link layer. Eg:

802.11a operates in 5GHz band, 802.11b and 802.11g operates in 2.4GHz

band, 802.11n operates in 2.4/5GHz band, 802.11ac operates in 5GHz band,

802.11ad operates in 60Ghzband.

• 802.16 - WiMax: IEEE802.16 is a collection of wireless broadband standards

including exclusive description of link layer. WiMax provide data rates from

1.5 Mb/s to 1Gb/s.

• 802.15.4-LR-WPAN: IEEE802.15.4 is a collection of standards for low rate

wireless personal area network(LR-WPAN). Basis for high level

communication protocols such as ZigBee. Provides data rate from 40kb/s

to250kb/s.

• 2G/3G/4G-Mobile Communication: Data rates from 9.6kb/s(2G) to up to100Mb/s(4G).

• Network/Internet Layer: Responsible for sending IP datagrams from

source n/w to destination n/w. Performs the host addressing and packet

routing. Datagrams contains source and destination address.

Protocols:

• IPv4: Internet Protocol version4 is used to identify the devices on a

n/w using a hierarchical addressing scheme. 32 bit address. Allows

total of 2**32addresses.

• IPv6: Internet Protocol version6 uses 128 bit address scheme and

allows 2**128 addresses.

• 6LOWPAN:(IPv6overLowpowerWirelessPersonalAreaNetwork)operatesin

2.4 GHz frequency range and data transfer 250 kb/s.

• Transport Layer: Provides end-to-end message transfer capability

independent of the underlying n/w. Set up on connection with ACK as in TCP and

without ACK as in UDP. Provides functions such as error control, segmentation,

flow control and congestion control. Protocols:
• TCP: Transmission Control Protocol used by web browsers(along with HTTP

and HTTPS), email(along with SMTP, FTP). Connection oriented and

stateless protocol. IP Protocol deals with sending packets, TCP ensures

reliable transmission of protocols in order. Avoids n/w congestion and

congestion collapse.

• UDP: User Datagram Protocol is connectionless protocol. Useful in time

sensitive applications, very small data units to exchange. Transaction oriented

and stateless protocol. Does not provide guaranteed delivery.

• Application Layer: Defines how the applications interface with lower layer

protocols to send data over the n/w. Enables process-to-process communication

usingports.
Protocols:

• HTTP: Hyper Text Transfer Protocol that forms foundation of WWW. Follow

request- response model Statelessprotocol.

• CoAP: Constrained Application Protocol for machine-to-machine(M2M)

applications with constrained devices, constrained environment and

constrained n/w. Uses client- server architecture.

• WebSocket: allows full duplex communication over a single socketconnection.

• MQTT: Message Queue Telemetry Transport is light weight messaging

protocol based on publish-subscribe model. Uses client server architecture.

Well suited for constrained environment.

http://www/

• XMPP: Extensible Message and Presence Protocol for real time

communication and streaming XML data between network entities. Support

client-server and server-server communication.

• DDS: Data Distribution Service is data centric middleware standards for

device-to-device or machine-to-machine communication. Uses publish-

subscribemodel.

• AMQP: Advanced Message Queuing Protocol is open application layer

protocol for business messaging. Supports both point-to-point and publish-

subscribemodel.

LOGICAL DESIGN of IoT

Refers to an abstract represent of entities and processes without going into

the low level specifies of implementation.

1) IoT Functional Blocks 2) IoT Communication Models 3) IoT Comm. APIs

• IoT Functional Blocks: Provide the system the capabilities for

identification, sensing, actuation, communication andmanagement.

• Device: An IoT system comprises of devices that provide sensing, actuation,

monitoring and controlfunctions.

• Communication: handles the communicationfor IoTsystem.

• Services: for device monitoring, device control services, data publishing

services and services for devicediscovery.

• Management: Provides various functions to govern the IoTsystem.

• Security: Secures IoT system and priority functions such as

authentication,authorization, message and context integrity and datasecurity.

• Application: IoT application provide an interface that the users can use to

control and monitor various aspects of IoTsystem.

• IoT CommunicationModels:

1) Request-Response 2) Publish-Subscibe 3)Push-Pull 4) ExclusivePair

• Request-ResponseModel:

In which the client sends request to the server and the server replies to

requests. Is a stateless communication model and each request-response pair is

independent of others.

• Publish-SubscibeModel:

Involves publishers, brokers and consumers. Publishers are source of data.

Publishers send data to the topics which are managed by the broker. Publishers are not

aware of the consumers. Consumers subscribe to the topics which are managed by the

broker. When the broker receives data for a topic from the publisher, it sends the data

to all the subscribedconsumers.

• Push-Pull Model: in which data producers push data to queues and

consumers pull data from the queues. Producers do not need to aware of the

consumers. Queues help in decoupling the message between the producers

andconsumers.

• Exclusive Pair: is bi-directional, fully duplex communication model that

uses a persistent connection between the client and server. Once connection is

set up it remains open until the client send a request to close the connection. Is

a stateful communication model and server is aware of all the open

connections.

• IoT CommunicationAPIs:

• REST based communication APIs(Request-Response BasedModel)

• WebSocket based Communication APIs(Exclusive PairBasedModel)

• REST based communication APIs: Representational State Transfer(REST) is a

set of architectural principles by which we can design web services and web APIs that

focus on a system‘s resources and have resource states are addressed andtransferred.

The REST architectural constraints: Fig. shows communication between client

server with REST APIs.

Client-Server: The principle behind client-server constraint is the separation of

concerns. Separation allows client and server to be independently developed and

updated.

Stateless: Each request from client to server must contain all the info. Necessary to

understand the request, and cannot take advantage of any stored context on the server.

Cache-able: Cache constraint requires that the data within a response to a request be

implicitly or explicitly labeled as cache-able or non-cacheable. If a response is cache-

able, then a client cache is given the right to reuse that response data for later,

equivalentrequests.

Layered System: constraints the behavior of components such that each component

cannot see beyond the immediate layer with which they are interacting.

User Interface: constraint requires that the method of communication between a

client and a server must be uniform.

Code on Demand: Servers can provide executable code or scripts for clients to

execute in their context. This constraint is the only one that is optional.

Request-Response model used by REST:

RESTful webservice is a collection of resources which are represented by URIs.

RESTful web API has a base URI(e.g: http://example.com/api/tasks/). The clients and

http://example.com/api/tasks/

requests to these URIs using the methods defined by the HTTP protocol(e.g: GET,

PUT, POST or DELETE). A RESTful web service can support various internet media

types.

• WebSocket Based Communication APIs: WebSocket APIs allow bi-

directional, full duplex communication between clients and servers.

WebSocket APIs follow the exclusive pair communicationmodel.

IoT Enabling Technologies

IoT is enabled by several technologies including Wireless Sensor Networks,

Cloud Computing, Big Data Analytics, Embedded Systems, Security Protocols

and architectures, Communication Protocols, Web Services, Mobile internet and

semantic search engines.

• Wireless Sensor Network(WSN): Comprises of distributed devices with

sensors which are used to monitor the environmental and physical conditions.

Zig Bee is one of the most popular wireless technologies used byWSNs.

WSNs used in IoT systems are described as follows:

• Weather Monitoring System: in which nodes collect temp,

humidity and other data, which is aggregated and analyzed.

• Indoor air quality monitoring systems: to collect data on the indoor air

quality and concentration of various gases.

• Soil Moisture Monitoring Systems: to monitor soil moisture at variouslocations.

• Surveillance Systems: use WSNs for collecting surveillance

data(motiondata detection).

• Smart Grids : use WSNs for monitoring grids at variouspoints.

• Structural Health Monitoring Systems: Use WSNs to monitor the

health of structures(building, bridges) by collecting vibrations from

sensor nodes deployed at various points in thestructure.

• Cloud Computing: Services are offered to users in differentforms.

• Infrastructure-as-a-service(IaaS):provides users the ability to provision

computing and storage resources. These resources are provided to the

users as a virtual machine instances and virtualstorage.

• Platform-as-a-Service(PaaS): provides users the ability to develop and

deploy application in cloud using the development tools, APIs, software

libraries and services provided by the cloud serviceprovider.

• Software-as-a-Service(SaaS): provides the user a complete software

application or the user interface to the applicationitself.

• Big Data Analytics: Some examples of big data generated by IoTare

• Sensor data generated by IoTsystems.

• Machine sensor data collected from sensors established in industrial

and energy systems.

• Health and fitness data generated IoTdevices.

• Data generated by IoT systems for location and trackingvehicles.

• Data generated by retail inventory monitoringsystems.

• Communication Protocols: form the back-bone of IoT systems and

enable network connectivity and coupling toapplications.

• Allow devices to exchange data overnetwork.

• Define the exchange formats, data encoding addressing schemes for

device and routing of packets from source todestination.

• It includes sequence control, flow control and retransmission of lostpackets.

• Embedded Systems: is a computer system that has computer hardware and

software embedded to perform specific tasks. Embedded System range from

low cost miniaturized devices such as digital watches to devices such as digital

cameras, POS terminals, vending machines, appliancesetc.,

IoT Levels and Deployment Templates

• IoT Level1: System has a single node that performs sensing and/or actuation,

stores data, performs analysis and host the application as shown in fig.

Suitable for modeling low cost and low complexity solutions where the data

involved is not big and analysis requirement are not computationally intensive.

An e.g., of IoT Level1 is Home automation.

• IoT Level2: has a single node that performs sensing and/or actuating and

local analysis as shown in fig. Data is stored in cloud and application is

usually cloud based. Level2 IoT systems are suitable for solutions where data

are involved is big, however, the primary analysis requirement is not

computationally intensive and can be done locally itself. An e,g., of Level2

IoT system for SmartIrrigation.

• IoT Level3: system has a single node. Data is stored and analyzed in the cloud

application is cloud based as shown in fig. Level3 IoT systems are suitable for

solutions where the data involved is big and analysis requirements are

computationally intensive. An example of IoT level3 system for tracking

packagehandling.

• IoT Level4: System has multiple nodes that perform local analysis. Data is

stored in the cloud and application is cloud based as shown in fig. Level4

contains local and cloud based observer nodes which can subscribe to and

receive information collected in the cloud from IoT devices. An example of a

Level4 IoT system for NoiseMonitoring.

• IoT Level5: System has multiple end nodes and one coordinator node as

shown in fig. The end nodes that perform sensing and/or actuation.

Coordinator node collects data from

theendnodesandsendstothecloud.Dataisstoredandanalyzedinthecloudand

application is cloud based. Level5 IoT systems are suitable for solution based

on wireless sensor network, in which data involved is big and analysis

requirements are computationally intensive. An example of Level5 system for

Forest Fire Detection.

• IoT Level6: System has multiple independent end nodes that perform sensing

and/or actuation and sensed data to the cloud. Data is stored in the cloud and

application is cloud based as shown in fig. The analytics component analyses

the data and stores the result in the cloud data base. The results are visualized

with cloud based application. The centralized controller is aware of the status

of all the end nodes and sends control commands to nodes. An example of a

Level6 IoT system for Weather Monitoring System.

DOMAIN SPECIFIC IoTs

• Home Automation:

• Smart Lighting: helps in saving energy by adapting the lighting to the

ambient conditions and switching on/off or diming the light whenneeded.

• Smart Appliances: make the management easier and also provide status

information to the usersremotely.

• Intrusion Detection: use security cameras and sensors(PIR sensors and

door sensors) to detect intrusion and raise alerts. Alerts can be in the form

of SMS or email sent to theuser.

• Smoke/Gas Detectors: Smoke detectors are installed in homes and

buildings to detect smoke that is typically an early sign of fire. Alerts

raised by smoke detectors can be in the form of signals to a fire alarm

system. Gas detectors can detect the presence of harmful gases such as CO,

LPGetc.,

• Cities:

• Smart Parking: make the search for parking space easier and convenient

for drivers. Smart parking are powered by IoT systems that detect the no.

of empty parking slots and send information over internet to smart

application backends.

• Smart Lighting: for roads, parks and buildings can help in savingenergy.

• Smart Roads: Equipped with sensors can provide information on driving

condition, travel time estimating and alert in case of poor driving

conditions, traffic condition andaccidents.

• Structural Health Monitoring: uses a network of sensors to monitor the

vibration levels in the structures such as bridges and buildings.

• Surveillance: The video feeds from surveillance cameras can be

aggregated in cloud based scalable storagesolution.

• Emergency Response: IoT systems for fire detection, gas and water

leakage detection can help in generating alerts and minimizing their effects

on the critical infrastructures.

• Environment:

• Weather Monitoring: Systems collect data from a no. of sensors attached

and send the data to cloud based applications and storage back ends. The

data collected in cloud can then be analyzed and visualized by cloud

basedapplications.

• Air Pollution Monitoring: System can monitor emission of harmful

gases(CO2, CO, NO, NO2 etc.,) by factories and automobiles using

gaseous and meteorological sensors. The collected data can be analyzed to

make informed decisions on pollutions controlapproaches.

• Noise Pollution Monitoring: Due to growing urban development, noise

levels in cities have increased and even become alarmingly high in some

cities. IoT based noise pollution monitoring systems use a no. of noise

monitoring systems that are deployed at different places in a city. The data

on noise levels from the station is collected on servers or in the cloud. The

collected data is then aggregated to generate noise maps.

• Forest Fire Detection: Forest fire can cause damage to natural resources,

property and human life. Early detection of forest fire can help in

minimizingdamage.

• River Flood Detection: River floods can cause damage to natural and

human resources and human life. Early warnings of floods can be given by

monitoring the water level and flow rate. IoT based river flood

monitoring system uses a no. of sensor nodes that monitor the water level

and flow ratesensors.

• Energy:

• Smart Grids: is a data communication network integrated with the

electrical grids that collects and analyze data captured in near-real-time

about power transmission, distribution and consumption. Smart grid

technology provides predictive information and recommendations to

utilities, their suppliers, and their customers on how best to manage power.

By using IoT based sensing and measurement technologies, the health of

equipment and integrity of the grid can beevaluated.

• Renewable Energy Systems: IoT based systems integrated with the

transformers at the point of interconnection measure the electrical variables

and how much power is fed into the grid. For wind energy systems, closed-

loop controls can be used to regulate the voltage at point of interconnection

which coordinate wind turbine outputs and provides powersupport.

• Prognostics: In systems such as power grids, real-time information is

collected using specialized electrical sensors called Phasor Measurment

Units(PMUs) at the substations. The information received from PMUs must

be monitored in real-time for estimating the state of the system and for

predictingfailures.

• Retail:

• Inventory Management: IoT systems enable remote monitoring of

inventory using data collected by RFIDreaders.

• Smart Payments: Solutions such as contact-less payments powered by

technologies such as Near Field Communication(NFC) and Bluetooth.

• Smart Vending Machines: Sensors in a smart vending machines

monitors its operations and send the data to cloud which can be used for

predictivemaintenance.

• Logistics:

• Route generation & scheduling: IoT based system backed by cloud can

provide first response to the route generation queries and can be scaled

upto serve a large transportationnetwork.

• Fleet Tracking: Use GPS to track locations of vehicles inreal-time.

• Shipment Monitoring: IoT based shipment monitoring systems use

sensors such as temp, humidity, to monitor the conditions and send data to

cloud, where it can be analyzed to detect foodspoilage.

• Remote Vehicle Diagnostics: Systems use on-board IoT devices for

collecting data on Vehicle operaions(speed, RPMetc.,) and status of

various vehicle subsystems.

• Agriculture:

• Smart Irrigation: to detemine moisture amount insoil.

• Green House Control: to improveproductivity.

• Industry:

• Machine diagnosis andprognosis

• Indoor Air QualityMonitoring

• Health and LifeStyle:

• Health & FitnessMonitoring

• WearableElectronics

UNIT-II

IoT and M2M

M2M:
Machine-to-Machine (M2M) refers to networking of machines(or devices) for

the purpose of remote monitoring and control and dataexchange.

• Term which is often synonymous with IoT is Machine-to-Machine (M2M).

• IoT and M2M are often usedinterchangeably.

Fig. Shows the end-to-end architecture of M2M systems comprises of M2M

area networks, communication networks and application fomain.

• An M2M area network comprises of machines(or M2M nodes) whiach have

embedded network modules for sensing, actuation and communicating various

communiction protocols can be used for M2M LAN such as ZigBee,

Bluetooth, M-bus, Wireless M-Bus etc., These protocols provide connectivity

between M2M nodes within an M2M area network.

• The communication network provides connectivity to remote M2M area

networks. The communication network provides connectivity to remote M2M

area network. The communication networkcan use either wired or wireless

network(IP based). While the M2M are networks use either properietorary or

non-IP baed communication protocols, the communication network uses IP-

based network. Since non-IP based protocols are used within M2M area

network, the M2M nodes within one network cannot communicate with nodes

in an externalnetwork.

• To enable the communication between remote M2M are network, M2M

gateways are used.

Fig. Shows a block diagram of an M2M gateway. The communication between M2M

nodes and the M2M gateway is based on the communication protocols which are

naive to the M2M are network. M2M gateway performs protocol translations to

enable Ip-connectivity for M2M are networks. M2M gateway acts as a proxy

performing translations from/to native protocols to/from Internet Protocol(IP). With an

M2M gateway, each mode in an M2M area network appears as a virtualized node for

external M2M area networks.

Differences between IoT and M2M

• Communication Protocols:

• Commonly uses M2M protocols include ZigBee, Bluetooth,

ModBus, M-Bus, WirelessM-Bustec.,

• In IoT uses HTTP, CoAP, WebSocket, MQTT,XMPP,DDS,AMQPetc.,

• Machines in M2M Vs Things inIoT:

• Machines in M2M will be homogenous whereas Things in

IoT will be heterogeneous.

• Hardware Vs SoftwareEmphasis:

• the emphasis of M2M is more on hardware with embedded modules,

the emphasis of IoT is more onsoftware.

• Data Collection &Analysis

• M2M data is collected in point solutions and often in on-

premises storage infrastructure.

• The data in IoT is collected in the cloud (can be public,

private or hybrid cloud).

• Applications

• M2M data is collected in point solutions and can be accessed by on-

premises applications such as diagnosis applications, service

management applications, and on- premisis enterpriseapplications.

• IoT data is collected in the cloud and can be accessed by cloud

applications such as analytics applications, enterprise applications,

remote diagnosis and management applications,etc.

SDN and NVF for IoT

Software Defined Networking(SDN):

• Software-DefinedNetworking (SDN) isanetworking architecture that

separates the control plane from the data plane and centralizes the

networkcontroller.

• Software-based SDN controllers maintain a unified view of thenetwork

• Theunderlying infrastructure in SDN uses simple packet forwarding

hardware as opposed to specialized hardware in conventionalnetworks.

SDN Architecture

Key elements of SDN:

• Centralized NetworkController

With decoupled control and data planes and centralized network

controller, the network administrators can rapidly configure the

network.

• Programmable OpenAPIs

SDN architecture supports programmable open APIs for interface

between the SDN application and control layers (Northbound

interface).

• Standard Communication Interface(OpenFlow)

SDN architecture uses a standard communication interface between the

control and infrastructure layers (Southbound interface). OpenFlow,

which is defined by the Open Networking Foundation (ONF) is the

broadly accepted SDN protocol for the Southboundinterface.

Network Function Virtualization(NFV)

• Network Function Virtualization (NFV) is a technology that leverages

virtualization to consolidate the heterogeneous network devices onto industry

standard high volume servers, switches andstorage.

• NFV is complementary to SDN as NFV can provide the infrastructure on

which SDN canrun.

Key elements of NFV:

NFV Architecture

• Virtualized Network Function(VNF):

VNF is a software implementation of a network function which is

capable of running over the NFV Infrastructure (NFVI).

• NFV Infrastructure(NFVI):

NFVI includes compute, network and storage resources that are virtualized.

• NFV Management andOrchestration:

NFV Management and Orchestration focuses on all virtualization-

specific management tasks and covers the orchestration and life-cycle

management of physical and/or software resources that support the

infrastructure virtualization, and the life-cycle management of VNFs.

Need for IoT Systems Management

Managing multiple devices within a single system requires advanced management capabilities.

• Automating Configuration : IoT system management capabilities

can helpin automating the systemconfiguration.

• Monitoring Operational & Statistical Data : Management systems can help

in monitoring opeartional and statistical data of a system. This data can be

used for fault diagnosis orprognosis.

• Improved Reliability: A management system that allows validating the

system configurations before they are put into effect can help in improving

the systemreliability.

• System Wide Configurations : For IoT systems that consists of multiple

devices or nodes, ensuring system wide configuration can be critical for the

correct functioning of thesystem.

• Multiple System Configurations : For some systems it may be desirable to

have multiple valid configurations which are applied at different times or in

certainconditions.

• Retrieving & Reusing Configurations : Management systems which have

the capability of retrieving configurations from devices can help in reusing the

configurations for other devices of the sametype.

IoT Systems Management with NETCONF-YANG

YANG is a data modeling language used to model configuration and state data

manupulated by the NETCONF protocol.

The generic approach of IoT device management weith NETCONF-YANG. Roles of various componentsare:

• ManagementSystem

• ManagementAPI

• TransactionManager

• RollbackManager

• Data ModelManager

• ConfigurationValidator

• ConfigurationDatabase

• ConfigurationAPI

• Data ProviderAPI

• Management System : The operator uses a management system to send

NETCONF messages to configure the IoT device and receives state

information and notifications from the device as NETCONFmessages.

• Management API : allows management application to start NETCONFsessions.

• Transaction Manager: executes all the NETCONF transactions and ensures

that ACID properties hold true for thetrasactions.

• Rollback Manager : is responsible for generating all the transactions

necessary to rollback a current configuration to its original state.

• Data Model Manager : Keeps track of all the YANG data models and the

corresponding managed objects. Also keeps track of the applications which

provide data for each part of a datam,odel.

• Configuration Validator : checks if the resulting configuration after applying

a transaction would be a validconfiguration.

• Configuration Database : contains both configuration and operastionaldata.

• Configuration API : Using the configuration API the application on the IoT

device can be read configuration data from the configuration datastore and

write opeartional data to the opearationaldatastore.

• Data Provider API: Applications on the IoT device can register for callbacks

for various events using the Data Provider API. Through the Data Provider

API, the applications can report statistics and opeartionaldata.

Steps for IoT device Management with NETCONF-YANG

• Create a YANG model of the system that defines the configuration and state

data of the system.

• Complete the YANG model with the ‗Inctool‘ which comes withLibnetconf.

• Fill in the IoT device mangement code in the TransAPImodule.

• Build the callbacks C file to generate the libraryfile.

• Load the YANG module and the TransAPImodule into the Netopeer server

using Netopeer managertool.

• The operator can now connect from the management system to the Netopeer

server using the NetopeerCLI.

• Operator can issue NETCONF commands from the Netopeer CLI. Command

can be issued to changew the configuration dsta, get operational dat or execute

an RPC on the IoTdevice.

UNIT-III

IOT ARCHITECTURE AND PYTHON

State of the art

IoT architecture varies from solution to solution, based on the type of solution

which we intend to build. IoT as a technology majorly consists of four main

components, over which an architecture is framed.

• Sensors

• Devices

• Gateway

• Cloud

Stages of IoT Architecture

Stage 1:-

Sensors/

actuator

s
Sensors collect data from the environment or object under measurement and turn

it into useful data. Think of the specialized structures in your cell phone that detect the

directional pull of gravity and the phone's relative position to the ―thing‖ we call the

earth and convert it into data that your phone can use to orient the device.

Actuators can also intervene to change the physical conditions that generate the

data. An actuator might, for example, shut off a power supply, adjust an air flow

valve, or move a robotic gripper in an assembly process.

The sensing/actuating stage covers everything from legacy industrial devices to

robotic camera systems, water level detectors, air quality sensors, accelerometers, and

heart rate monitors. And the scope of the IoT is expanding rapidly, thanks in part to

low-power wireless sensor network technologies and Power over Ethernet, which

enable devices on a wired LAN to operate without the need for an A/C power source.

Stage 2:-

The Internet gateway

The data from the sensors starts in analog form. That data needs to be aggregated

and converted into digital streams for further processing downstream. Data acquisition

systems (DAS) perform these data aggregation and conversion functions. The DAS

connects to the sensor network, aggregates outputs, and performs the analog-to-digital

conversion. The Internet gateway receives the aggregated and digitized data and

routes it over Wi-Fi, wired LANs, or the Internet, to Stage 3 systems for further

processing. Stage 2 systems often sit in close proximity to the sensors andactuators.

For example, a pump might contain a half-dozen sensors and actuators that feed data

into a data aggregation device that also digitizes the data. This device might be

physically attached to the pump. An adjacent gateway device or server would then

process the data and forward it to the Stage 3 or Stage 4 systems. Intelligent

gateways can build on additional, basic gateway functionality by adding such

capabilities as analytics, malware protection, and data management services. These

systems enable the analysis of data streams in real time.

S

t

a

g

e

3

:

-

E

d

g

e

I

T
Once IoT data has been digitized and aggregated, it's ready to cross into the realm of

IT. However, the data may require further processing before it enters the data center.

This is where edge IT systems, which perform more analysis, come into play. Edge IT

processing systems may be located in remote offices or other edge locations, but

generally these sit in the facility or location where the sensors reside closer to the

sensors, such as in a wiring closet. Because IoT data can easily eat up network

bandwidth and swamp your data center resources, it's best to have systems at the edge

capable of performing analytics as a way to lessen the burden on core IT

infrastructure. You'd also face security concerns, storage issues, and delays processing

the data. With a staged approach, you can preprocess the data, generate meaningful

results, and pass only those on. For example, rather than passing on raw vibration data

for the pumps, you could

aggregate and convert the data, analyze it, and send only projections as to when each

device will fail or need service.

Stage 4:-

The data center and cloud

Data that needs more in-depth processing, and where feedback doesn't have to be

immediate, gets forwarded to physical data center or cloud-based systems, where

more powerful IT systems can analyze, manage, and securely store the data. It takes

longer to get results when you wait until data reaches Stage 4, but you can execute a

more in-depth analysis, as well as combine your sensor data with data from other

sources for deeper insights. Stage 4 processing may take place on-premises, in the

cloud, or in a hybrid cloud system, but the type of processing executed in this stage

remains the same, regardless of theplatform.

REFERENCE MODEL AND ARCHITECTURE

Reference Architecture that describes essential building blocks as well as

design choices to deal with conflicting requirements regarding functionality,

performance, deployment and security. Interfaces should be standardised, best

practices in terms of functionality and information usage need to be provided.

The central choice of the IoT-A project was to base its work on the current

state of the art, rather than using a clean-slate approach. Due to this choice, common

traits are derived to form the base line of the Architectural Reference Model (ARM).

This has the major advantage of ensuring backward compatibility of the model and

also the adoption of established, working solutions to various aspects of the IoT. With

the help of end users, organised into a stakeholders group, new requirements for IoT

have been collected and introduced in the main model building process. This work

was conducted according to established architecturemethodology.

AReference Architecture (RA) can be visualised asthe ―Matrix‖that

eventuallygives birth ideally to all concrete architectures. For establishing such a

Matrix, based on a strong and exhaustive analysis of the State of the Art, we need to

envisage the superset of all possible functionalities, mechanisms and protocols that

can be used for building such concrete architecture and to show how interconnections

could take place between selected ones (as no concrete system is likely to use all of

the functional possibilities). Giving such a foundation along with a set of design-

choices, based on the characterisation of the targeted system w.r.t. various dimensions

(like distribution, security, real-time, semantics) it becomes possible for a system

architect to select the protocols, functional components, architectural options, needed

to build their IoT systems.

As any metaphoric representation, this tree does not claim to be fully

consistent in its depiction; it should therefore not be interpreted too strictly. On the

one hand, the roots of this tree are spanning across a selected set of communication

protocols (6LoWPAN, Zigbee, IPv6,…) and device technologies (sensors, actuators,

tags,..) while on the other hand the blossoms / leaves of the tree represent the whole

set of IoT applications that can be built from the sap (i.e., data and information)

coming from the roots. The trunk of the tree is of utmost importance here, as it

represent the Architectural Reference Model (ARM). The ARM is the combination of

the Reference Model and the Reference Architecture, the set of models, guidelines,

best practices, views and perspectives that can be usedfor building fully

interoperable concrete IoT architectures and systems. In this tree, we aim at selecting

a minimal set of interoperable technologies (the roots) and proposing the potentially

necessary set of enablers or building blocks (the trunk) that enable the creation of a

maximal set of interoperable IoT systems (the leaves).

The IOT-A Tree

IoT-A architectural reference model building blocks.

Starting with existing architectures and solutions, generic baseline

requirements can be extracted and used as an input to the design. The IoT-A ARM

consists of four parts:

The vision summarises the rationale for providing an architectural

reference model for the IoT. At the same time it discusses underlying assumptions,

such as motivations. Italso

discusses how the architectural reference model can be used, the methodology

applied to the architecture modelling, and the business scenarios and stakeholders

addressed.

Business scenarios defined as requirements by stakeholders are the drivers of

the architecture work. With the knowledge of businesses aspirations, a holistic view

of IoT architectures can be derived.

The IoT Reference Model provides the highest abstraction level for the

definition of the IoT-A Architectural Reference Model. Itpromotes a common

understanding of the IoT domain. The description of the IoT Reference Model

includes a general discourse on the IoT domain, an IoT Domain Model as a top-level

description, an IoT Information Model explaining how IoT information is going to be

modelled, and an IoT Communication Model in order to understand specifics about

communication between many heterogeneous IoT devices and the Internet as a whole.

The IoT Reference Architecture is the reference for building compliant IoT

architectures. As such, it provides views and perspectives on different architectural

aspects that are of concern to stakeholders of the IoT. The terms view and

perspectives are used according to the general literature and standards the creation

of the IoT Reference Architecture focuses on abstract sets of mechanisms rather than

concrete application architectures. To organisations, an important aspect is the

compliance of their technologies with standards and best practices, so that

interoperability across organisations isensured.

In an IoT system, data is generated by multiple kinds of devices, processed in

different ways, transmitted to different locations, and acted upon by applications. The

proposed IoT reference model is comprised of seven levels. Each level is defined with

terminology that can be standardized to create a globally accepted frame of reference.

• Simplifies: It helps break down complex systems so that each part is more

understandable. Clarifies: It provides additional information to precisely

identify levels of the IoT and to establish commonterminology.

• Identifies: It identifies where specific types of processing is optimized across

different parts of thesystem.

• Standardizes: It provides a first step in enabling vendors to create IoT

products that work with eachother.

• Organizes: It makes the IoT real and approachable, instead of simplyconceptual.

Level 1: Physical Devices and Controllers

The IoT Reference Model starts with Level 1: physical devices and controllers

that might control multiple devices.These are the ―things‖in the IoT, and

theyinclude a wide range of endpoint devices that send and receive information.

Today, the list of devices is already extensive. It will become almost unlimited as

more equipment is added to the IoT over time. Devices are diverse, and there are no

rules about size, location, form factor, or origin. Some devices will be the size of a

silicon chip. Some will be as large as vehicles. The IoT must support the entire range.

Dozens or hundreds of equipment manufacturers will produce IoT devices. To

simplify compatibility and support manufacturability, the IoT Reference Model

generally describes the level of processing needed from Level 1devices.

Level 2: Connectivity

Communications and connectivity are concentrated in one level—Level 2. The

most important function of Level 2 is reliable, timely information transmission. This

includes transmissions:

• Between devices (Level 1) and thenetwork

• Across networks(east-west)

• Between the network (Level 2) and low-level information processing

occurring at Level 3

Traditionaldatacommunicationnetworkshavemultiplefunctions,asevidenc

edbythe

International Organization for Standardization (ISO) 7-layer reference model.

However, a complete IoT system contains many levels in addition to the

communications network. One objective of the IoT Reference Model is for

communications and processing to be executed by existing networks. The IoT

Reference Model does not require or indicate creation of a different network—it relies

on existing networks. As Level 1 devices proliferate, the ways in which they interact

with Level 2 connectivity equipment may change. Regardless of the details, Level 1

devices communicate through the IoT system by interacting with Level 2

connectivity equipment.

Python

Python is a general-purpose high level programming language and suitable for

providing a solid foundation to the reader in the area of cloud computing.

The main characteristics of Python are:

• Multi-paradigm programminglanguage.

• Python supports more than one programming paradigms including

object- oriented programming and structured programming.

• InterpretedLanguage.

• Python is an interpreted language and does not require an explicit compilationstep.

• The Python interpreter executes the program source code directly,

statement by statement, as a processor or scripting engine does.

• Interactive Language

• Python provides an interactive mode in which the user can submit

commands at the Python prompt and interact with the interpreterdirectly.

P

y

t

h

o

n

B

e

n

e

f

i

t

s

Python - Setup

Datatypes

Every value in Python has a datatype. Since everything is an object in Python

programming, data types are actually classes and variables are instance (object) of

these classes.

There are various data types in Python. Some of the important types are listed below.

Python Numbers

Integers, floating point numbers and complex numbers falls under Python numbers

category. They are defined as int, float and complex class in Python. We can use the

type() function to know which class a variable or a value belongs to and the

isinstance() function to check if an object belongs to a particular class.

Script.py

1. a = 5

2. print(a, "is of

type", type(a)) 3. a

= 2.0

4. print(a, "is of

type", type(a)) 5. a =

1+2j

6. print(a, "is complex number?", isinstance(1+2j,complex))

Integers can be of any length, it is only limited by the memory available. A floating

point number is accurate up to 15 decimal places. Integer and floating points are

separated by decimal points. 1 is integer, 1.0 is floating point number. Complex

numbers are written in the form, x + yj, where x is the real part and y is the imaginary

part. Here are someexamples.

>>> a = 1234567890123456789

>>> a

1234567890

123456789

>>> b = 0.1234567890123456789

>>> b

0.12345678

901234568

>>> c = 1+2j

>

>

>

c

(

1

+

2

j

)

Python List

List is an ordered sequence of items. It is one of the most used datatype in Python and

is very flexible. All the items in a list do not need to be of the same type.

Declaring a list is pretty straight forward. Items separated by commas are enclosed

within brackets [].

>>> a = [1, 2.2,

'python']

We can use the slicing operator [] to extract an item or a range of items from a list.

Index starts form 0 in Python.

Script.py

1. a = [5,10,15,20,25,30,35,40]

2. # a[2] = 15

3. print("a[2] = ", a[2])

4. # a[0:3] = [5, 10, 15]

5. print("a[0:3] = ", a[0:3])

6. # a[5:] = [30, 35, 40]

7. print("a[5:] = ", a[5:])

Lists are mutable, meaning; value of elements of a list can be altered.

>>> a = [1,2,3]

>>> a[2]=4

>

>

>

a

[

1

,

2

,

4

]

Python Tuple

Tuple is an ordered sequences of items same as list. The only difference is that tuples

are immutable. Tuples once created cannot be modified. Tuples are used to write-

protect data and are usually faster than list as it cannot change dynamically. It is

defined within parentheses () where items are separated bycommas.

>>> t = (5,'program', 1+3j)

Script.py

t =

(5,'progra

m', 1+3j) #

t[1] =

'program'

print("t[1]

= ", t[1])

t[0:3] = (5, 'program', (1+3j))

print("t[0:3]

= ", t[0:3]) #

Generates

error

Tuples are

immutable

t[0] = 10

Python Strings

String is sequence of Unicode characters. We can use single quotes or double quotes

to represent strings. Multi-line strings can be denoted using triple quotes, ''' or """.

>>> s = "This is a string"

>>> s = '''a multiline

Like list and tuple, slicing operator [] can be used with string. Strings are immutable.

Script.py

a ={5,2,3,1,4}

printing

setvariabl

e print("a

= ", a)

https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string

data type

of variable a

print(type(a)

)

We can perform set operations like union, intersection on two sets. Set have unique

values. They eliminate duplicates. Since, set are unordered collection, indexing has no

meaning. Hence the slicing operator [] does not work. It is generally used when we

have a huge amount of data. Dictionaries are optimized for retrieving data. We must

know the key to retrieve the value. In Python, dictionaries are defined within

braces {} with each item being a pair in the form key:value. Key and value can

be of anytype.

>>> d = {1:'value','key':2}

>>> type(d)

<class 'dict'>

We use key to retrieve the respective value. But not the other way around.

Script.py

d

={1:'value','k

ey':2}

print(type(d)

) print("d[1]

= ",d[1]);

print("d['key'] =

", d['key']); #

Generates error

print("d[2] =

",d[2]);

Python if...else Statement

Every value in Python has a datatype. Since everything is an object in Python

programming, data types are actually classes and variables are instance (object) of

these classes. Decision making is required when we want to execute a code only if a

certain condition is satisfied.

The if…elif…else statement is used in Python for decision making.

Python if

Statemen

t Syntax

if test

expr

essi

on:

stat

eme

nt(s

)

Here, the program evaluates the test expression and will execute statement(s)

only if the text expression is True.

If the text expression is False, the statement(s) is not executed. In Python, the

body of the if statement is indicated by the indentation. Body starts with an

indentation and the first unindented line marks the end. Python interprets non-zero

values as True. None and 0 are interpreted as False.

Python if Statement Flowchart

Example: Python if Statement

If the number is positive, we print an

appropriate message num = 3

if num > 0:

print(num, "is a positive

number.") print("This is

always printed.")

num = -1

if num >0:

print(num, "is a positive

number.") print("This is

also always printed.")

When you run the program, the output willbe:

3 is a

positivenu

mber This

is

alwayspri

nted

This is also always printed.

In the above example, num > 0 is the test expression. The body of if is executed

only if this evaluates to True.

When variable num is equal to 3, test expression is true and body inside body of if is

executed. If variable num is equal to -1, test expression is false and body inside

body of if is skipped. The print() statement falls outside of the if block

(unindented). Hence, it is executed regardless of the testexpression.

Python if...else

Statement

Syntax

if test

exp

ress

ion:

Bod

y of

if

else:

Body of else

The if..else statement evaluates test expression and will execute body of if

only when test condition is True.

If the condition is False, body of else is executed. Indentation is used to separate the blocks.

Python if..else Flowchart

Example of if...else

Program checks if the number is positive

or negative # And displays an appropriate

message

num = 3

Try these two

variations as well. #

num = -5

num = 0

if num >= 0:

print("Positiv

e or Zero")

else:

print("Negative number")

In the above example, when num is equal to 3, the test expression is true and

body of if is executed and body of else is skipped.

If num is equal to -5, the test expression is false and body of else is executed and

body of if is skipped.

If num is equal to 0, the test expression is true and body of if is executed and

body of else is skipped.

Python if...elif...else

Statement Syntax

if test expression:

Body of if

elif test expression:

B

ody

of

elif

els

e:

Body of else

The elif is short for else if. It allows us to check for multiple expressions. If the

condition for if is False, it checks the condition of the next elif block and so on. If

all the conditions are False, body of else is executed. Only one block among the

several if...elif...else blocks is executed according to the condition. The if block can

have only one else block. But it can have multiple elifblocks.

Flowchart of if...elif...else

Example of if...elif...else

In this program,

we check if the number is

positive or # negative or

zero and

display an

appropriate message

num = 3.4

Try these two variations as well:

num = 0

n

u

m

=

-

4.

5

if

n

u

m

>

0:

print("Positiv

e number") elif

num == 0:

pr

int("

Zero

")

else:

print("Negative number")

When variable num is positive, Positive

number is printed. If num is equal to 0, Zero is

printed.

If num is negative, Negative number is printed

Python Nested if statements

We can have a if...elif...else statement inside another if...elif...else statement. This is

called nesting in computer programming. Any number of these statements can be

nested inside one another. Indentation is the only way to figure out the level of

nesting. This can get confusing, so must be avoided if we can.

Python Nested if Example

In this program, we

input a number # check if

the number is positive or

negative or zero

anddisplay

an appropriate message

This time we use nested if

num = float(input("Enter a

number: ")) if num >= 0:

if

n

u

m

=

=

0:

pr

in

t(

"

Z

er

o"

)

else:

print("Positive number")

else:

print("Negative number")

Output 1

Enter a

numbe

r: 5

Positiv

e

numbe

r

Output

2

Enter a number: -1

Negat

ive

numb

er

Outpu

t 3

Enter a

numbe

r: 0

Zero

Python for Loop

The for loop in Python is used to iterate over a sequence (list, tuple, string) or

other iterable objects. Iterating over a sequence is called traversal.

Syntax of

for Loop

for val in

sequence:

Body of

for

Here, val is the variable that takes the value of the item inside the sequence on each

iteration. Loop continues until we reach the last item in the sequence. The body of for

loop is separated from the rest of the code using indentation.

Flowchart of for Loop

Syntax

Program to find the sum of all numbers

stored in a list # List of numbers

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to

store the sum

sum = 0

iterate

over the

list for val

in

numbers:

sum =

sum+val #

Output: The

sum is 48

print("The

sum is", sum)

when you run the program, the output will be:

The sum is 48

The range() function

We can generate a sequence of numbers using range() function. range(10) will

generate numbers from 0 to 9 (10 numbers). We can also define the start, stop and

step size as range(start,stop,step size). step size defaults to 1 if not provided. This

function does not store all the values in emory, it would be inefficient. So it

remembers the start, stop, step size and generates the next number on thego.

To force this function to output all the items, we can use the

function list(). The following example will clarify this.

Output:

range(0,

10)

print(range

(10))

Output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

print(list(range(10)))

Output: [2, 3, 4, 5, 6, 7]

print(list(range(2, 8)))

Output: [2, 5, 8, 11, 14, 17]

print(list(range(2, 20, 3)))

We can use the range() function in for loops to iterate through a sequence of numbers.

It can be combined with the len() function to iterate though a sequence using

indexing. Here is an example.

Program to iterate through a list

using indexing genre = ['pop', 'rock',

'jazz']

iterate over the list

using index for i in

range(len(genre)):

print("I like", genre[i])

When you run the program, the output will be:

I

l

i

k

e

p

o

p

I

l

i

k

e

r

o

c

k

I

l

i

k

e

j

a

z

z

What is while loop in Python?

The while loop in Python is used to iterate over a block of code as long as the test expression

(condition) is true. We generally use this loop when we don't know beforehand, the number
of times to iterate.

Syntax of while Loop in Python

while

test_ex

pressio
n: Body

of

while

In while loop, test expression is checked first. The body of the loop is entered only if the

test_expression evaluates to True. After one iteration, the test expression is checked again.

This process continues until the test_expression evaluates to False. In Python, the body of the
while loop is determined through indentation. Body starts with indentation and the first

unindented line marks the end. Python interprets any non-zero value as True. None and 0 are

interpreted asFalse.

Flowchart of while Loop

Program to

add natural #
numbers

upto

sum = 1+2+3+...+n

To take input
from the user, # n

= int(input("Enter

n: "))

n = 10

initialize sum
and counter sum

= 0

i = 1

whil

e i

<
=

n:

su
m

=

su
m

+

i

i=i+1 #
updatecounter #

print thesum

print("The sum is", sum)

When you run the program, the output will be:

E

nt

er

n:
1

0

T
h

e

su
m

is

5

5

In the above program, the test expression will be True as long as our counter variable i is

less than or equal to n (10 in ourprogram).
We need to increase the value of counter variable in the body of the loop. This is very

important (and mostly forgotten). Failing to do so will result in an infinite loop (never

ending loop).

Finally the result is displayed.

Python Modules

A file containing a set of functions you want to include in the application is called Module.

Create a Module

To create a module just save the code you want in a file with the file extension .py:

Example

Save this code in a file named

mymodule.py def greeting(name):

print("Hello, " + name)

Use a Module

Now we can use the module we just created, by using the import statement:

Example

Import the module named mymodule, and call the

greeting function: import mymodule

mymodule.greeting("Jonathan")

Note: When using a function from a module, use the syntax: module_name.function_name.

Variables in Module

The module can contain functions, as already described, but also variables of all

types(arrays, dictionaries, objects etc):

Example

Save this code in the file mymodule.py

person1 = {"name": "John","age": 36,"country": "Norway"}

Example

Import the module named mymodule, and access the person1

dictionary: import mymodule

a = mymodule.person1["age"]

print(a)

Naming a Module

You can name the module file whatever you like, but it must have the file extension .py

Re-naming a Module

You can create an alias when you import a module, by using the as keyword:

Example

Create an alias for mymodule called mx:

import

mymodule as

mx a =

mx.person1["

age"] print(a)

Built-in Modules

There are several built-in modules in Python, which you can import whenever you like.

Example

Import and use the platform module:

import platform

x =

platform.s

ystem()

print(x)

Using the dir() Function

There is a built-in function to list all the function names (or variable names) in a

module. The dir() function:

Example

List all the defined names belonging to the

platform module: import platform

x =

dir(pl

atfor

m)

print(

x)

Note: The dir() function can be used on all modules, also the ones you create yourself.

Import from Module

You can choose to import only parts from a module, by using the from keyword.

Example

The module named mymodule has one function and one dictionary:

def greeting(name):

print("Hello, " + name)

person1 = {"name": "John", "age": 36, "country": "Norway"}

Example

Import only the person1 dictionary from the module:

from mymodule

import person1 print

(person1["age"])

Note: When importing using the from keyword, do not use the module name when

referring to elements in the module. Example: person1["age"], not

mymodule.person1["age"].

Packages

We don't usually store all of our files in our computer in the same location. We use a

well- organized hierarchy of directories for easier access. Similar files are kept in the

same directory, for example, we may keep all the songs in the "music" directory.

Analogous to this, Python has packages for directories and modules for files. As our

application program grows larger in size with a lot of modules, we place similar

modules in one package and different modules in different packages. This makes a

project (program) easy to manage and conceptuallyclear.

Similar, as a directory can contain sub-directories and files, a Python package can

have sub- packages and modules. A directory must contain a file namedinit.py in

order for Python to consider it as a package. This file can be left empty but we

generally place the initialization code for that package in this file. Here is an example.

Suppose we are developing a game, one possible organization of packages and

modules could be as shown in the figure below.

Package Module Structure in Python

Programming Importing module from a

package

We can import modules from packages using the dot (.) operator. For example, if

want to import the start module in the above example, it is done as follows.

import Game.Level.start

Now if this module contains a function named select_difficulty(), we must use the

full name to reference it.

Game.Level.start.select_difficulty(2)

If this construct seems lengthy, we can import the module without the package prefix

as follows. from Game.Level import start

We can now call the function simply

as follows. start.select_difficulty(2)

Yet another way of importing just the required function (or class or variable)

form a module within a package would be as follows.

from Game.Level.start import

select_difficulty Now we can

directly call this function.

select_difficulty(2)

Although easier, this method is not recommended. Using the full namespace avoids

confusion and prevents two same identifier names from colliding. While importing

packages, Python looks in the list of directories defined in sys.path, similar as for

module search path.

Files

File is a named location on disk to store related information. It is used to permanently

store data in a non-volatile memory (e.g. hard disk). Since, random access

memory (RAM) is volatile which loses its data when computer is turned off, we use

files for future use of the data. When we want to read from or write to a file we need

to open it first. When we are done, it needs to be closed, so that resources that are tied

with the file are freed. Hence, in Python, a file operation takes place in the

followingorder.

• Open afile

• Read or write (perform operation)

• Close thefile

How to open a file?

Python has a built-in function open() to open a file. This function returns a file object,

also called a handle, as it is used to read or modify the file accordingly.

>>> f=open("test.txt") # open file in currentdirectory

>>> f = open("C:/Python33/README.txt") # specifying full path

We can specify the mode while opening a file. In mode, we specify whether we want

to read 'r', write 'w' or append 'a' to the file. We also specify if we want to open the file

in text mode or binary mode. The default is reading in text mode. In this mode, we get

strings when reading from the file. On the other hand, binary mode returns bytes and

this is the mode to be used when dealing with non-text files like image or exe files.

Python File Modes

Mode Description

'r' Open a file for reading. (default)

'w' Open a file for writing. Creates a new file if it does not exist or truncates the file if it

exists.

'x' Open a file for exclusive creation. If the file already exists, the operation fails.

'a' Open for appending at the end of the file without truncating it. Creates a new file if it

does not exist.

't' Open in text mode. (default)

'b' Open in binary mode.

'+' Open a file for updating (reading and writing)

f=open("test.txt") #

equivalent to 'r' or 'rt' f =

open("test.txt",'w') # write in

textmode

f = open("img.bmp",'r+b') # read and write in binary mode

Unlike other languages, the character 'a' does not imply the number 97 until it is

encoded using ASCII (or other equivalent encodings). Moreover, the default encoding

is platform dependent. In windows, it is 'cp1252' but 'utf-8' in Linux. So, we must not

also rely on the default encoding or else our code will behave differently in different

platforms. Hence, when working with files in text mode, it is highly recommended to

specify the encoding type.

f = open("test.txt",mode = 'r',encoding = 'utf-8')

How to close a file Using Python?

When we are done with operations to the file, we need to properly close the file.

Closing a file will free up the resources that were tied with the file and is done using

Python close() method. Python has a garbage collector to clean up unreferenced

objects but, we must not rely on it to close the file.

f = open("test.txt",encoding = 'utf-8')

perform file

operations

f.close()

This method is not entirely safe. If an exception occurs when we are performing

some operation with the file, the code exits without closing the file.

A safer way is to use a

try...finally block. try:

f =

open("test.txt",encoding

= 'utf-8') # perform file

operations

finally:

f.close()

This way, we are guaranteed that the file is properly closed even if an exception is

raised, causing program flow to stop. The best way to do this is using the with

statement. This ensures that the file is closed when the block inside with is exited. We

don't need to explicitly call the close() method. It is doneinternally.

with open("test.txt",encoding = 'utf-8') as f:

perform file operations

How to write to File Using Python?

In order to write into a file in Python, we need to open it in write 'w', append 'a' or

exclusive creation 'x' mode. We need to be careful with the 'w' mode as it will

overwrite into the file if it already exists. All previous data are erased. Writing a

string or sequence of bytes (for binary files) is done using write() method. This

method returns the number of characters written to the file.

with open("test.txt",'w',encoding = 'utf-8') as f:

f.write("my first

file\n") f.write("This

file\n\n")

f.write("contains

three lines\n")

This program will create a new file named 'test.txt' if it does not exist. If it does exist, it

is overwritten. We must include the newline characters ourselves to distinguish different lines.

How to read files in Python?

To read a file in Python, we must open the file in reading mode. There are various

methods available for this purpose. We can use the read(size) method to read in size

number of data. If size parameter is not specified, it reads and returns up to the end of

the file.

>>> f = open("test.txt",'r',encoding = 'utf-8')

>>> f.read(4) # read the first 4 data

'This'

>>>f.read(4) # read the

next 4 data ' is'

>>>f.read() # read in the rest till

end of file 'my first file\nThis

file\ncontains threelines\n'

>>> f.read() # further reading returns

empty sting ''

We can see that, the read() method returns newline as '\n'. Once the end of file is

reached, we get empty string on further reading. We can change our current file cursor

(position) using the seek() method. Similarly, the tell() method returns our current

position (in number of bytes).

>>>f.tell() # get the current

file position 56

>>> f.seek(0) # bring file cursor to

initial position 0

>>> print(f.read()) # read

the entire file This is my first

file

This file

contains three lines

We can read a file line-by-line using a for loop. This is both efficient and fast.

>>> for line in f:

... print(line, end = '')

...

This is

my first

file This

file

contains three lines

The lines in file itself has a newline character '\n'.

Moreover, the print() end parameter to avoid two newlines when printing.

Alternately, we can use readline() method to read individual lines of a file. This

method reads a file till the newline, including the newlinecharacter.

>>> f.readline()

'This is my first file\n'

>>>

f.rea

dline

()

'This

file\

n'

>>>

f.readline()

'contains

three

lines\n'

>>>

f.rea

dline

() ''

Lastly, the readlines() method returns a list of remaining lines of the entire file. All

these reading method return empty values when end of file (EOF) is reached.

>>> f.readlines()

['This is my first file\n', 'This file\n', 'contains three lines\n']

Python File Methods

There are various methods available with the file object. Some of them have been

used in above examples. Here is the complete list of methods in text mode with a

brief description.

Python File Methods

Method Description
close() Close an open file. It has no effect if the file is already closed.
detach() Separate the underlying binary buffer from the TextIOBase and return it.
fileno() Return an integer number (file descriptor) of the file.
flush() Flush the write buffer of the file stream.

isatty() Return True if the file stream is interactive.
read(n) Read at most n characters form the file. Reads till end of file if it is negative or

None.
readable() Returns True if the file stream can be read from.
readline(n=-1) Read and return one line from the file. Reads in at most n bytes if specified.
readlines(n=-1) Read and return a list of lines from the file. Reads in at most n bytes/characters if

specified.
seek(offset,from=SE

EK_SET)
Change the file position to offset bytes, in reference to from (start, current, end).

seekable() Returns True if the file stream supports random access.
tell() Returns the current file location.
truncate(size=None) Resize the file stream to size bytes. If size is not specified, resize to current

location.
writable() Returns True if the file stream can be written to.
write(s) Write string s to the file and return the number of characters written.
writelines(lines) Write a list of lines to the file.

Method Description

close() Close an open file. It has no effect if the file is already closed.

detach() Separate the underlying binary buffer from the TextIOBase

and returnit. fileno()Return an integer number (file descriptor) of thefile.

flush() Flush the write buffer of the file

stream. isatty() Return True if the file

stream is interactive.

read(n) Read at most n characters form the file. Reads till end of file if it is negative or None.

readable() Returns True if the file stream can be readfrom.

readline(n=-1) Read and return one line from the file. Reads in at most n bytes

if specified. readlines(n=-1) Read and return a list of lines from the file. Reads

in at most n bytes/characters ifspecified.

seek(offset,from=SEEK_SET) Change the file position to offset bytes, in

reference to from (start, current,end).

seekable() Returns True if the file stream supports

randomaccess. tell() Returns the current filelocation.

truncate(size=None) Resize the file stream to size bytes. If size is not

specified, resize to currentlocation.

writable() Returns True if the file stream can be writtento.

write(s) Write string s to the file and return the number of

characterswritten. writelines(lines) Write a list of lines to thefile.

UNIT IV

IoT PHYSICAL DEVICES AND ENDPOINTS

IoT Device

A "Thing" in Internet of Things (IoT) can be any object that has a unique identifier

and which can send/receive data (including user data) over a network (e.g., smart

phone, smartTV, computer, refrigerator, car, etc.).

• IoT devices are connected to the Internet and send information about themselves or

about their surroundings (e.g. information sensed by the connected sensors) over a

network (to other devices or servers/storage) or allow actuation upon the physical

entities/environment around them remotely.

IoT Device Examples

A home automation device that allows remotely monitoring the status of appliances

and controlling the appliances. • An industrial machine which sends information

abouts its operation and health monitoring data to a server. • A car which sends

information about its location to a

cloud-based service. • A wireless-enabled wearable device that measures data

about a person such as the number of steps walked and sends the data to a cloud-

basedservice.

Basic building blocks of an IoT Device

• Sensing: Sensors can be either on-board the IoT device or attached to thedevice.

• Actuation: IoT devices can have various types of actuators attached that allow

taking actions upon the physical entities in the vicinity of thedevice.

• Communication: Communication modules are responsible for sending

collected data to other devices or cloud-based servers/storage and receiving

data from other devices and commands from remote applications.

• Analysis & Processing: Analysis and processing modules are responsible for

making sense of the collecteddata.

Block diagram of an IoT Device

Exemplary Device: Raspberry Pi

Raspberry Pi is a low-cost mini-computer with the physical size of a credit card.

Raspberry Pi runs various flavors of Linux and can perform almost all tasks that a

normal desktop computer can do. Raspberry Pi also allows interfacing sensors and

actuators through the general purpose

I/O pins. Since Raspberry Pi runs Linux operating system, it supports Python "out of

the box". Raspberry Pi is a low-cost mini-computer with the physical size of a credit

card. Raspberry Pi runs various flavors of Linux and can perform almost all tasks that

a normal desktop computer can do. Raspberry Pi also allows interfacing sensors and

actuators through the general purpose I/O pins. Since Raspberry Pi runs Linux

operating system, it supports Python "out of the box".

Raspberry Pi

Linux on Raspberry Pi

• Raspbian: Raspbian Linux is a Debian Wheezy port optimized for RaspberryPi.

• Arch: Arch is an Arch Linux port for AMDdevices.

• Pidora: Pidora Linux is a Fedora Linux optimized for RaspberryPi.

• RaspBMC: RaspBMC is an XBMC media-center distribution for RaspberryPi.

• OpenELEC: OpenELEC is a fast and user-friendly XBMC media-centerdistribution.

• RISC OS: RISC OS is a very fast and compact operatingsystem.

Raspberry Pi GPIO

Raspberry Pi Interfaces

• Serial: The serial interface on Raspberry Pi has receive (Rx) and transmit (Tx)

pins for communication with serialperipherals.

• SPI: Serial Peripheral Interface (SPI) is a synchronous serial data protocol

used for communicating with one or more peripheraldevices.

• I2C: The I2C interface pins on Raspberry Pi allow you to connect hardware

modules. I2C interface allows synchronous data transfer with just two pins -

SDA (data line) and SCL (clockline).

Raspberry Pi Example: Interfacing LED and switch with Raspberry Pi

from time import

sleeP import

RPi.GPIO

asGPIO

GPIO.setmode(GP

IO.BCM)

#Switch Pin

GPIO.setup(25,GPIO.IN)

#LEDPin

GPIO.setup(18,GPIO.OUT)

state=false

deftoggleLED(pin):

state = not state

GPIO.output(pi

n,state)

whileTrue:

try:

if (GPIO.input(25) ==True):

toggleLED(pin)

sleep(.01)

exceptKeyboardInterrupt:

exit()

Other Devices

• pcDuino

• BeagleBoneBlack

• Cubieboard

UNIT V

IoT PHYSICAL SERVERS AND CLOUD OFFERINGS

Introduction to Cloud Computing

The Internet of Things (IoT) involves the internet-connected devices we use to

perform the processes and services that support our way of life. Another component

set to help IoT succeed is cloud computing, which acts as a sort of front end. Cloud

computing is an increasingly popular service that offers several advantages to IOT,

and is based on the concept of allowing users to perform normal computing tasks using

services delivered entirely over the internet. A worker may need to finish a major

project that must be submitted to a manager, but perhaps they encounter problems

with memory or space constraints on their computing device. Memory and space

constraints can be minimized if an application is instead hosted on the internet. The

worker can use a cloud computing service to finish their work because the data is

managed remotely by a server. Another example: you have a problem with your

mobile device and you need to reformat it or reinstall the operating system. You can

use Google Photos to upload your photos to internet-based storage. After the reformat

or reinstall, you can then either move the photos back to you device or you can view

the photos on your device from the internet when youwant.

Concept

In truth, cloud computing and IoT are tightly coupled. The growth of IoT and the

rapid development of associated technologiescreate a widespread connection of

―things.‖This has lead to the production of large amounts of data, which needs to be

stored, processed and accessed. Cloud computing as a paradigm for big data storage

and analytics. While IoT is exciting on its own, the real innovation will come from

combining it with cloud computing. The combination of cloud computing and IoT will

enable new monitoring services and powerful processing of sensory data streams. For

example, sensory data can be uploaded and stored with cloud computing, later to be

used intelligently for smart monitoring and actuation with other smart devices.

Ultimately, the goal is to be able to transform data to insight and drive productive,

cost-effective action from those insights. The cloud effectively serves as the brain to

improved decision-making and optimized internet-based interactions.However, when

IoT meets cloud, new challenges arise. There is an urgent need for novel network

architectures that seamlessly integrate them. The critical concerns during integration

are quality of service (QoS) and quality HYPERLINK

"https://en.wikipedia.org/wiki/Quality_of_experience"of HYPERLINK

"https://en.wikipedia.org/wiki/Quality_of_experience" experience (QoE), as well as

data security, privacy and reliability. The virtual infrastructure for practical mobile

computing and interfacing includes integrating applications, storage devices,

monitoring devices, visualization platforms, analytics tools and client delivery. Cloud

computing offers a practical utility-based model that will enable businesses and users

to access applications on demand anytime and fromanywhere.

Characteristics

https://en.wikipedia.org/wiki/Quality_of_service
https://en.wikipedia.org/wiki/Quality_of_experience
https://en.wikipedia.org/wiki/Quality_of_experience
https://en.wikipedia.org/wiki/Quality_of_experience

First, the cloud computing of IoT is an on-demand self service, meaning it‘s there

when you need it. Cloud computing is a web-based service that can be accessed

without any special assistance or permission from other people; however, you need at

minimum some sort of internet access.

Second, the cloud computing of IoT involves broad network access, meaning it offers

several connectivity options. Cloud computing resources can be accessed through a

wide variety of internet-connected devices such as tablets, mobile devices and laptops.

This level of convenience means users can access those resources in a wide variety of

manners, even from older devices. Again, though, this emphasizes the need for

network access points.

Third, cloud computing allows for resource pooling, meaning information can be

shared with those who know where and how (have permission) to access the resource,

anytime and anywhere. This lends to broader collaboration or closer connections with

other users. From an IoT perspective, just as we can easily assign an IP address to

every "thing" on theplanet, we can

share the "address" of the cloud-based protected and stored information with others

and pool resources.

Fourth, cloud computing features rapid elasticity, meaning users can readily scale the

service to their needs. You can easily and quickly edit your software setup, add or

remove users, increase storage space, etc. This characteristic will further empower IoT

by providing elastic computing power, storage and networking.

Finally, the cloud computing of IoT is a measured service, meaning you get what you

pay for. Providers can easily measure usage statistics such as storage, processing,

bandwidth and active user accounts inside your cloud instance. This pay per use

(PPU) model means your costs scale with your usage. In IoT terms, it's comparable to

the ever-growing network of physical objects that feature an IP address for internet

connectivity, and the communication that occurs between these objects and other

internet-enabled devices and systems; just like your cloud service, the service rates for

that IoT infrastructure may also scale with use.

Service and

Deployment

Service

models

Service delivery in cloud computing comprises three different service models:

software as a service (SaaS), platform as a service (PaaS), and infrastructure as a

service (IaaS).

Software as a service (SaaS) provides applications to the cloud‘s end user that are

mainly accessed via a web portal or service-oriented architecture-based web service

technology. These services can be seen as ASP (application service provider) on the

application layer. Usually, a specific company that uses the service would run,

maintain and give support so that it can be reliably used over a long period of time.

Platform as a service (PaaS) consists of the actual environment for developing and

provisioning cloud applications. The main users of this layer are developers that want

to develop and run a cloud application for a particular purpose. A proprietary

language was supported and provided by the platform (a set of important basic

services) to ease communication, monitoring, billing and other aspects such as

startup as well as to ensure an application‘s scalability and flexibility. Limitations

regarding the programming languages supported, the programming model, the ability

to access resources, and the long-term persistence are possibledisadvantages.

Infrastructure as a service (IaaS) provides the necessary hardware and software upon

which a customer can build a customized computing environment. Computing

resources, data storage resources and the communications channel are linked together

with these essential IT resources to ensure the stability of applications being used on

the cloud. Those stack models can be referred to as the medium for IoT, being used

and conveyed by the users in different methods for the greatest chance of

interoperability. This includes connecting cars, wearables, TVs, smartphones, fitness

equipment, robots, ATMs, and vending machines as well as the vertical applications,

security and professional services, and analytics platforms that come withthem.

Deployment models

Deployment in cloud computing comprises four deployment models: private cloud,

public cloud, community cloud and hybrid cloud.

A private cloud has infrastructure that‘s provisioned for exclusive use by a single

organization comprising multiple consumers such as business units. It may be owned,

managed and operated by the organization, a third party or some combination of them,

and it may exist on or off premises.

A public cloud is created for open use by the general public. Public cloud sells

services to anyone on the internet. (Amazon Web Services is an example of a large

public cloud provider.) This model is suitable for business requirements that require

management of load spikes and the applications used by the business, activities that

would otherwise require greater investment in infrastructure for the business. As such,

public cloud also helps reduce capital expenditure and bring down operational

ITcosts.

A community cloud is managed and used by a particular group or organizations that

have shared interests, such as specific security requirements or a common mission.

Finally, a hybrid cloud combines two or more distinct private, community or public

cloud infrastructures such that they remain unique entities but are bound together by

standardized or proprietary technology that enables data and application portability.

Normally, information that‘s not critical is outsourced to the public cloud, while

business-critical services and data are kept within the control of the organization.

CLOUD STORAGE API

A cloud storage API is an application program interface that connects a locally-based

application to a cloud-based storage system, so that a user can send data to it and

access and work with data stored in it. To the application, the cloud storage system is

just another target device, like tape or disk-based storage. An application program

interface (API) is code that allows two software programs to communicate with each

other. The API defines the correct way for a developer to write a program that

requests services from an operating system (OS) or other application. APIs are

implemented by function HYPERLINK

"http://whatis.techtarget.com/definition/function" HYPERLINK

"http://whatis.techtarget.com/definition/function"calls composed of verbs and nouns.

The required syntax is described in the documentation of the application beingcalled.

How APIs work

APIs are made up of two related elements. The first is a specification that

describes how information is exchanged between programs, done in the form of a

request for processing and a return of the necessary data. The second is a software

interface written to that specification and published in some way for use.The software

that wants to access the features and capabilities of the API is said to call it, and the

software that creates the API is said to publish it.

Why APIs are important for business

The web, software designed exchange information via the internet and cloud

HYPERLINK "http://searchcloudcomputing.techtarget.com/definition/cloud-

computing"computinghave all combined to increase the interest in APIs in general and

services in particular.Software that was

once custom-developed for a specific purpose is now often written referencing APIs

that provide broadly useful features, reducing development time and cost and

mitigating the risk of errors.APIs have steadily improved software quality over the

last decade, and the growing number of web HYPERLINK

"http://searchmicroservices.techtarget.com/definition/Web-services-application-

services" HYPERLINK "http://searchmicroservices.techtarget.com/definition/Web-

services-application-services"services exposed through APIs by cloud HYPERLINK

"http://searchcloudprovider.techtarget.com/definition/cloud-provider-API"

HYPERLINK "http://searchcloudprovider.techtarget.com/definition/cloud-provider-

API"providers is also encouraging the creation of cloud-specific applications, internet

of things (IoT) efforts and apps to support mobile devices and users.

https://searchmicroservices.techtarget.com/definition/application-program-interface-API
http://searchsoa.techtarget.com/definition/source-code
http://searchcio-midmarket.techtarget.com/definition/operating-system
http://whatis.techtarget.com/definition/function
http://whatis.techtarget.com/definition/function
http://whatis.techtarget.com/definition/function
http://whatis.techtarget.com/definition/syntax
http://whatis.techtarget.com/definition/interface
http://whatis.techtarget.com/definition/interface
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchmicroservices.techtarget.com/definition/Web-services-application-services
http://searchmicroservices.techtarget.com/definition/Web-services-application-services
http://searchmicroservices.techtarget.com/definition/Web-services-application-services
http://searchmicroservices.techtarget.com/definition/Web-services-application-services
http://searchcloudprovider.techtarget.com/definition/cloud-provider-API
http://searchcloudprovider.techtarget.com/definition/cloud-provider-API
http://searchcloudprovider.techtarget.com/definition/cloud-provider-API
http://searchcloudprovider.techtarget.com/definition/cloud-provider-API
http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

Three basic types of APIs

APIs take three basic forms: local, web-like and program-like.

• Local APIs are the original form, from which the name came. They

offer OS or middleware services to application programs. Microsoft's .NET

APIs, the TAPI (Telephony API) for voice applications, and database access

APIs are examples of the local APIform.

• Web APIs are designed to represent widely used resources like HTML pages

and are accessed using a simple HTTP protocol. Any web URL activates a

web API. Web APIs are often called REST (representational state transfer) or

RESTful because the publisher of REST interfaces doesn't save any data

internally between requests. As such, requests from many users can be

intermingled as they would be on theinternet.

• Program APIs are based on remote procedure HYPERLINK

"http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-

RPC" HYPERLINK

"http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-

RPC"call HYPERLINK

"http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-

RPC" HYPERLINK

"http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-

RPC"(RPC) technology that makes a remote program component appear to be

local to the rest of the software. Service oriented architecture (SOA) APIs, such

as Microsoft's WS-series of APIs, are programAPIs.

IoT / Cloud Convergence

Internet-of-Things can benefit from the scalability, performance and pay-as-you-go

nature of cloud computing infrastructures. Indeed, as IoT applications produce large

volumes of data and comprise multiple computational components (e.g., data

processing and analytics algorithms), their integration with cloud computing

infrastructures could provide them with opportunities for cost-effective on-demand

scaling. As prominent examples consider the following settings:

A Small Medium Enterprise (SME) developing an energy management IoT product,

targeting smart homes and smart buildings. By streaming the data of the product (e.g.,

sensors and WSN data) into the cloud it can accommodate its growth needs in a

scalable and cost effective fashion. As the SMEs acquires more customers and

performs more deployments of its product, it is able

tocollectandmanagegrowingvolumesofdatainascalableway,thustakingadvantageofa

―pay-as-you-grow‖model. Moreover, cloud integration allows the SME

to store and processmassive datasets collected from multiple (rather than a

single)deployments.

http://searchmicroservices.techtarget.com/definition/middleware
http://searchwindevelopment.techtarget.com/definition/NET
http://searchexchange.techtarget.com/definition/TAPI
http://searchmicroservices.techtarget.com/definition/HTML-Hypertext-Markup-Language
http://searchwindevelopment.techtarget.com/definition/HTTP
http://searchnetworking.techtarget.com/definition/URL
http://searchmicroservices.techtarget.com/definition/REST-representational-state-transfer
http://searchcloudstorage.techtarget.com/definition/RESTful-API
http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC
http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC
http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC
http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC
http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC
http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC
http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC
http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC
http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC
http://searchmicroservices.techtarget.com/definition/service-oriented-architecture-SOA

A smart city can benefit from the cloud-based deployment of its IoT systems and

applications. A city is likely to deploy many IoT applications, such as applications for

smart energy management, smart water management, smart transport management,

urban mobility of the

citizensandmore.Theseapplicationscomprisemultiplesensorsanddevices,alongwith

computational components. Furthermore, they are likely to produce very large data

volumes. Cloud integration enables the city to host these data and applications in a

cost-effective way. Furthermore, the elasticity of the cloud can directly support

expansions to these applications, but also the rapid deployment of new ones without

major concerns about the provisioning of the required cloud computing resources.

A cloud computing provider offering pubic cloud services can extend them to the IoT

area, through enabling third-parties to access its infrastructure in order to integrate IoT

data and/or computational components operating over IoT devices. The provider can

offer IoT data access and services in a pay-as-you-fashion, through enabling third-

parties to access resources of its infrastructure and accordingly to charge them in a

utility-based fashion.

These motivating examples illustrate the merit and need for converging IoT and cloud

computing infrastructure. Despite these merits, this convergence has always been

challenging mainly due to the conflicting properties of IoT and cloud infrastructures,

in particular, IoT devices tend to be location specific, resource constrained, expensive

(in terms of development/ deployment cost) and generally inflexible (in terms of

resource access and availability). On the other hand, cloud computing resources are

typically location independent and inexpensive, while at the same time providing

rapid and flexibly elasticity. In order to alleviate these incompatibilities, sensors and

devices are virtualized prior to integrating their data and services in the cloud, in order

to enable their distribution across any cloud resources. Furthermore, service and

sensor discovery functionalities are implementing on the cloud in order to enable the

discovery of services and sensors that reside in different locations.

Based on these principles the IoT/cloud convergence efforts have started since over a

decade i.e. since they very early days of IoT and cloud computing. Early efforts in the

research community (i.e. during 2005-2009) have focused on streaming sensor and

WSN data in a cloud infrastructure. Since 2007 we have also witnessed the emergence

of public IoT clouds, including commercial efforts. One of the earliest efforts has

been the famous Pachube.com infrastructure (used extensively for radiation detection

and production of radiation maps during earthquakes in Japan). Pachube.com has

evolved (following several evolutions and acquisitions of this infrastructure) to

Xively.com, which is nowadays one of the most prominent public IoT clouds.

Nevertheless, there are tens of other public IoT clouds as

 well, such as ThingsWorx, ThingsSpeak, HYPERLINK

"https://thingspeak.com/"Sensor-Cloud, HYPERLINK

"https://realtime.io/"Realtime.io HYPERLINK "https://realtime.io/" and more. The

list is certainly non- exhaustive. These public IoT clouds offer commercial pay-as-

http://xively.com/
http://xively.com/
https://www.thingworx.com/
https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/

you-go access to end-users wishing to deploying IoT applications on the cloud. Most

of them come with developer friendly tools, which enable the development of cloud

applications, thus acting like a PaaS for IoT in the cloud. Similarly to cloud

computing infrastructures, IoT/cloud infrastructures and related services can be

classified to the followingmodels:

• Infrastructure-as-a-Service (IaaS) IoT/Clouds: These services provide the

means for accessing sensors and actuator in the cloud. The associated business

model involves the IoT/Cloud provide to act either as data or sensor provider.

IaaS services for IoT provide access control to resources as a prerequisite for

the offering of related pay-as-you-go services.

• Platform-as-a-Service (PaaS) IoT/Clouds: This is the most widespread

model for IoT/cloud services, given that it is the model provided by all public

IoT/cloud infrastructures outlined above. As already illustrate most public IoT

clouds come with a range of tools and related environments for applications

development and deployment in a cloud environment. A main characteristic of

PaaS IoT services is that they provide access to data, not to hardware. This is a

clear differentiator comparing toIaaS.

• Software-as-a-Service (SaaS) IoT/Clouds: SaaS IoT services are the ones

enabling their uses to access complete IoT-based software applications through

the cloud, on-demand and in a pay-as-you-go fashion. As soon as sensors and

IoT devices are not visible, SaaS IoT applications resemble very much

conventional cloud-based SaaS applications. There are however cases where

the IoT dimension is strong and evident, such as applications involving

selection of sensors and combination of data from the selected sensors in an

integrated applications. Several of these applications are commonly called

Sensing-as-a- Service, given that they provide on-demand access to the

services of multiple sensors. Note that SaaS IoT applications are typically built

over a PaaS infrastructure and enable utility based business models involving

IoT software andservices.

These definitions and examples provide an overview of IoT and cloud convergence

and why it is important and useful. More and more IoT applications are nowadays

integrated with the cloud in order to benefit from its performance, business agility and

pay-as-you-go characteristics. In following chapters of the tutorial, we will present

how to maximize the benefits of the cloud for IoT, through ensuring semantic

interoperability of IoT data and services in the cloud, thus enabling advanced data

analytics applications, but also integration of a wide range of vertical (silo) IoT

applications that are nowadays available in areas such as smart energy, smart transport

and smart cities. We will also illustrate the benefits of IoT/cloud integration for

specific areas and segments of IoT, such as IoT-based wearablecomputing.

WAMP for IoT

Web Application Messaging Protocol (WAMP) is a sub-protocol of Websocket which

provides publish-subscribe and remote procedure call (RPC) messaging patterns.

WAMP

• Transport: Transport is channel that connects two peers.

• Session: Session is a conversation between two peers that runs over atransport.

• Client: Clients are peers that can have one or more roles. In publish-subscribe

model client can have followingroles:

• Publisher: Publisher publishes events (including payload) to the topic

maintained by thebroker.

• Subscriber: Subscriber subscribes to the topics and receives the events

including the payload.

In RPC model client can have following roles: –

1. Caller: Caller issues calls to the remote procedures along with call arguments. –

Callee: Callee executes the procedures to which the calls are issued by the caller

and returns the results back to the caller. • Router: Routers are peers that perform

generic call and event routing. In publish-subscribe model Router has the role of a

Broker: – Broker: Broker acts as a router and routes messages published to a topic

to all subscribers subscribed to thetopic.

In RPC model Router has the role of a Broker: –

• Dealer: Dealer acts a router and routes RPC calls from the Caller to the Callee

and routes results from Callee toCaller.

• Application Code: Application code runs on the Clients (Publisher,

Subscriber, Callee or Caller).

Amazon EC2 – Python Example

Boto is a Python package that provides interfaces to Amazon Web Services (AWS). In

this example, a connection to EC2 service is fi rst established by calling

boto.ec2.connect_to_region. The EC2 region, AWS access key and AWS secret key

are passed to this function. After connecting to EC2 , a new instance is launched using

the conn.run_instances function. The AMI- ID, instance type, EC2 key handle and

security group are passed to this function.

Amazon AutoScaling – Python Example

• AutoScaling Service: A connection to AutoScaling service is first established

by calling boto.ec2.autoscale.connect_to_regionfunction.

• Launch Configuration: After connecting to AutoScaling service, a new

launch configuration is created by calling conn.create_launch_con f iguration.

Launch configuration contains instructions on how to launch new instances

including the AMI- ID, instance type, security groups,etc.

• AutoScaling Group : After creating a launch configuration, it is then

associated with a new AutoScaling group. AutoScaling group is created by

calling conn.create_auto_scaling_group. The settings for AutoScaling group

such as the maximum and minimum number of instances in the group, the

launch configuration, availability zones, optional load balancer to use with the

group,etc.

Amazon AutoScaling – Python Example

#Creating auto-scaling policies

scale_up_policy =

ScalingPolicy(name='scale_up',

adjustment_type='ChangeInCap

acity', as_name='My-Group',

scaling_adjustment=1,

cooldown=180)

scale_down_policy

=ScalingPolicy(name='scale_down',

adjustment_type='ChangeInCapacity'

, as_name='My-Group',

scaling_adjustment=-1,

cooldown=180)

conn.create_scaling_policy(scale_up_policy)

conn.create_scaling_policy(scale_down_policy)

AutoScaling Policies:

• After creating an AutoScaling group, the policies for scaling up and

scaling down are defined.

• In this example, a scale up policy with adjustment type ChangeInCapacity and

scaling_ad justment = 1 isdefined.

• Similarly a scale down policy with adjustment type ChangeInCapacity and

scaling_ad justment = -1 isdefined.

CloudWatch Alarms

#Connecting to CloudWatch

cloudwatch = boto.ec2.cloudwatch.connect_to_region(REGION,

aws_access_key_id=ACCESS_KEY,

aws_secret_access_key=SEC

RET_KEY) alarm_dimensions =

{"AutoScalingGroupName": 'My-Group'} #Creating

scale-up alarm

scale_up_alarm = MetricAlarm(

name='scale_up_on_cpu',

namespace='AWS/EC2',

metric='CPUUtilization',

statistic='Average', comparison='>',

threshold='70',

period='60',

evaluation_periods=2,

alarm_actions=[scale_up_policy.p

olicy_arn],

dimensions=alarm_dimensions)

cloudwatch.create_alarm(scale_up

_alarm) #Creating scale-down

alarm scale_down_alarm

=MetricAlarm(

name='scale_down_on_cpu',namespace='A

WS/EC2', metric='CPUUtilization',

statistic='Average',

comparison='<',threshold='40',

period='60', evaluation_periods=2,

alarm_actions=[scale_down_policy.policy_arn],

dimensions=alarm_dimensions)

cloudwatch.create_alarm(scale_down_alarm)

• With the scaling policies defined, the next step is to create Amazon

CloudWatch alarms that trigger thesepolicies.

• The scale up alarm is defined using the CPUUtilization metric with the

Average statistic and threshold greater 70% for a period of 60 sec. The scale

up policy created previously is associated with this alarm. This alarm is

triggered when the average CPU utilization of the instances in the group

becomes greater than 70% for more than 60seconds.

• The scale down alarm is defined in a similar manner with a threshold less than50%.

Python for MapReduce

#Inverted Index Mapper in Python

#!/usr/bin/env python import sys for line in sys.stdin: doc_id, content =

line.split(‘‘) words = content.split() for word in words: print ‘%s%s‘ %

(word, doc_id)

The example shows inverted index mapper program. The map function

reads the data from the standard input (stdin) and splits the tab-limited

data into document- ID and contents of the document. The map function

emits key-value pairs where key is each word in the document and value

is the document-ID.

Python for MapReduce

#Inverted Index Reducer in Python

#!/usr/bin/env python import sys current_word = None current_docids = [] word

=

None

for line in sys.stdin: # remove leading and trailing whitespace line =

line.strip() # parse the input we got from mapper.py word, doc_id =

line.split(‘‘) if current_word

== word: current_docids.append(doc_id) else: if current_word: print

‘%s%s‘ % (current_word, current_docids) current_docids = []

current_docids.append(doc_id) current_word = word

The example shows inverted index reducer program. The key-value pairs

emitted by the map phase are shuffled to the reducers and grouped by the

key. The reducer reads the key-value pairs grouped by the same key from

the standard input (stdin) and creates a list of document-IDs in which the

word occurs. The output of reducer contains key value pairs where key is

a unique word and value is the list of document-IDs in which the word

occurs.

Python Packages of Interest

• JSON: JavaScript Object Notation (JSON) is an easy to read and

write data- interchange format. JSON is used as an alternative to

XML and is is easy for machines to parse and generate. JSON is

built on two structures - a collection of name-value pairs (e.g. a

Python dictionary) and ordered lists of values (e.g.. a Pythonlist).

• XML: XML (Extensible Markup Language) is a data format for

structured document interchange. The Python minidom library

provides a minimal implementation of the Document Object Model

interface and has an API similar to that in otherlanguages.

• HTTPLib & URLLib: HTTPLib2 and URLLib2 are Python

libraries used in network/internetprogramming

• SMTPLib: Simple Mail Transfer Protocol (SMTP) is a protocol

which handles sending email and routing e-mail between mail

servers. The Python smtplib module provides an SMTP client

session object that can be used to send email.

• NumPy:NumPy is a package for scientific computing in Python.

NumPy provides support for large multi-dimensional arrays

andmatrices

• Scikit-learn: Scikit-learn is an open source machine learning

library for Python that provides implementations of various

machine learning algorithms for classification, clustering,

regression and dimension reduction problems.

Python Web Application Framework - Django

Django is an open source web application framework for developing web

applications in Python. A web application framework in general is a

collection of solutions, packages and best practices that allows

development of web applications and dynamic websites. Django is based

on the Model-Template-View architecture and provides a separation of

the data model from the business rules and the user interface. Django

provides a unified API to a database backend. Thus web applications built

with Django can work with different databases without requiring any

code changes. With this fiexibility in web application design combined

with

thepowerfulcapabilitiesofthePythonlanguageandthePythonecosystem,

Django is best suited for cloud applications. Django consists of an object-

relational mapper, a web templating system and a regular-expressionbased

URL dispatcher.

Django Architecture

Django is Model-Template-View (MTV) framework.

• Model: The model acts as a definition of some stored data and

handles the interactions with the database. In a web application, the

data can be stored in a relational database, non-relational database, an

XML file, etc. A Django model is a Python class that outlines the

variables and methods for a particular type ofdata.

• Template: In a typical Django web application, the template is

simply an HTML page with a few extra placeholders. Django‘s

template language can be used to create various forms of text files

(XML, email, CSS, Javascript, CSV,etc.)

• View :The view ties the model to the template. The view is where

you write the code that actually generates the web pages. View

determines what data is to be displayed, retrieves the data from the

database and passes the data to the template.

Case studies illustrating

IoT design Case Study in

IoT: Home Automation

An IoT software-based approach on the field of Home Automation. Common

use-cases include measuring home conditions, controlling home appliances and

controlling home access through RFID cards as an example and windows through

servo locks. However, the main focus of this paper is to maximize the security of

homes through IoT. More specifically, monitoring and controlling servo door locks,

door sensors, surveillance cameras, surveillance car and smoke detectors, which help

ensuring and maximizing safety and security ofhomes.

A user has the following features through a mobile application in which he/she:

• can turn on or o_ LED lights and monitor the state of theLED.

• can lock and unlock doors through servo motors and monitor if

the doors are locked orunlocked.

• can monitor if the doors are closed or opened through IR sensors.

• is notified through email if the door is left open for toolong.

• is notified of who entered through the door as the camera captures the

faceimage and send it to him/her viaemail.

• is notified through email if the _re detector detectssmoke.

• is able to control the surveillance car from anywhere to monitor his/herhome.

As the field of Home Automation through IoT is a wide application in a very wide

and challenging field due to the reasons mentioned in the previous paragraphs, I

chose to work on that field as part of this thesis, specifically in maintaining and

ensuring security and safety inside home.

IoT aims in creating a network between objects embedded with sensors, that canstore,

analyze, communicate and exchange data together over the internet. This leads to

efficient industry, manufacturing, efficient energy management, resource

management, accurate health care, smarter business decisions based on analyzed data,

safer driving through smart cars that are able to communicate together, smart home

automation and countless moreapplications.

The system designed for the home automation project presented in this paper

needs a control unit, a computer, to be able to control the different electrical devices

connected to it. Raspberry Pi, is a credit-card tiny computer, that can be plugged to a

monitor, uses standard keyboard and mouse, that enables people of different ages

learn how toprogram.

Illustrates the publish/subscribe model provided by PubNub

Illustrates the system architecture used in this home automation project.

To simplify the publish/subscribe model along with the system architecture used in

this Home Automation project, here is the explanation of the steps of constructing

it: Different sensors,

cameras and servo motors were connected to the Raspberry Pi. It was programmed

to collect and publish the data, in the form of JSON string, acquired from these

devices to PubNub. Data is published from the Raspberry Pi by providing it with the

"publish key" and the "channel name". The data is sent to the channel provided by

PubNub servers, and forwarded by PubNub to the subscribers of thischannel.

The subscriber in this scenario, of a user acquiring data and readings by the sensors

and monitoring devices, is the web/mobile application. The "subscription key" and

"channel name" is embedded in the web/mobile application's code. Allowing it to

receive messages forwarded by PubNub. On the other hand, in a scenario where the

user wants to send a command to home appliances, controlling the LED lights for

example, the web/mobile application is the publisher provided by the "publish key"

and the "channel name".The commend is sent in the form of JSON string to PubNub

servers, while the "subscription key" and "channel name" is embedded in the

Raspberry Pi code. This allows the Raspberry Pi to receive any published strings on

the channel it is subscribed to. Upon receiving the JSON string, the Raspberry Pi take

the action specified by that string. This allows full control and monitoring of all

devices connected to the Raspberry Pi by theuser.

Case Study in IoT: Smart Cities

The Internet-of-Things (IoT) is the novel cutting-edge technology which proffers to

connect plethora of digital devices endowed with several sensing, actuation and

computing capabilities with the Internet, thus offers manifold new services in the

context of a smart city. The appealing IoT services and big data analytics are enabling

smart city initiatives all over the world. These services are transforming cities by

improving infrastructure, transportation systems, reduced traffic congestion, waste

management and the quality of human life. In this paper, we devise a taxonomy to

best bring forth a generic overview of IoT paradigm for smart cities, integrated

information and communication technologies (ICT), network types, possible

opportunities and major requirements. Moreover, an overview of the up-to-date efforts

from standard bodies is presented. Later, we give an overview of existing open source

IoT platforms for realizing smart city applications followed by several exemplary case

studies. In addition, we summarize the latest synergies and initiatives worldwide

taken to promote IoT in the context of smart cities. Finally, we highlight several

challenges in order to give future researchdirections.

IOT BASED SMART CITY TAXONOMY

This section presents a taxonomy of IoT based smart cities which categorizes the

literature on the basis of existing communication protocols, major service providers,

network types, standardization efforts, offered services, and crucial requirements.

Communication Protocols

IoT based smart city realization significantly relies on numerous short and wide range

communication protocols to transport data between devices and backend servers.

Most prominent short range wireless technologies include Zig-Bee, Bluetooth, Wi-Fi,

Wireless Metropolitan Area Network (WiMAX) and IEEE 802.11p which are

primarily used in smart metering, e-healthcare and vehicular communication. Wide

range technologies such as Global System for Mobile communication (GSM) and

GPRS, Long-Term Evolution (LTE), LTE- Advanced are commonly utilized in ITS

such as vehicle-to infrastructure (V2I), mobile e- healthcare, smart grid and

infotainment services. Additionally, LTE-M is considered as an evolution for cellular

IoT (C-IoT). In Release 13, 3GPP plans to further improve coverage, battery lifetime

as well as device complexity [7]. Besides well-known existing protocols, LoRa

alliance standardizes the LoRaWAN protocol to support smart city applications to

primarily ensure interoperability between several operators. Moreover, SIGFOX is an

ultra narrowband radio technology with full star-based infrastructure offers a high

scalable global network for realizing smart city applications with extremely low

power consumption. A comparative summary2 of the major communication protocols.

Service Providers

Pike Research on smart cities estimated this market will grow to hundreds of billion

dollars by 2020, with an annual growth of nearly 16 billion. IoT is recognized as a

potential source to increase revenue of service providers. Thus, well-known

worldwide service providers have already started exploring this novel cutting edge

communication paradigm. Major service providers include Telefonica, SK telecom,

Nokia, Ericsson, Vodafone, NTT Docomo, Orange, Telenor group and AT&T which

offer variety of services and platforms for smart city applications such as ITS and

logistics, smart metering, home automation and e-healthcare.

Network Types

IoT based smart city applications rely on numerous network topologies to accomplish

a fully autonomous environment. The capillary IoT networks offer services over a

short range. Examples include wireless local area networks (WLANs), BANs and

wireless personal area networks (WPANs). The application areas include indoor e-

healthcare services, home automation, street lighting. On the other hand, applications

such as ITS, mobile e-healthcare and waste management use wide area networks

(WANs), metropolitan area networks (MANs),and

mobile communication networks. The above networks pose distinct features in terms

of data, size, coverage, latency requirements, and capacity.

Case Study in IoT: Smart Environment

The rapid advancements in

communication technologies and the explosive growth of Internet of Things (IoT)

have enabled the physical world to invisibly interweave with actuators, sensors, and

other computational elements while maintaining continuous network connectivity.

The continuously connected physical world with computational elements forms a

smart environment. A smart environment aims to support and enhance the abilities of

its dwellers in executing their tasks, such as navigating through unfamiliar space and

moving heavy objects for the elderly, to name a few. Researchers have conducted a

number of efforts to use IoT to facilitate our lives and to investigate the effect of

IoTbased smart environments on human life. This paper surveys the state-of-the-art

research efforts to enable the IoT-based smart environments. We categorize and

classify the literature by devising a taxonomy based on communication enablers,

network types, technologies, local area wireless standards, objectives, and

characteristics. Moreover, the paper highlights the unprecedented opportunities

brought about by IoT-based smart environments and their effect on human life. Some

reported case studies from different enterprises are also presented. Finally, we discuss

open research challenges for enabling IoT-based smart environments.

Immense developments and increasing miniaturization of computer

technology have enabled tiny sensors and processors to be integrated into everyday

objects. This advancement is further supported by tremendous developments in areas

such as portable appliances and devices, pervasive computing, wireless sensor

networking, wireless mobile communications, machine learning-based decision

making, IPv6 support, human computer interfaces, and agent technologies to make the

dream of smart environment a reality. A smart environment is a connected small

world where sensor-enabled connected devices work collaboratively to make the

lives of dwellers comfortable. The term smart refers to the ability to

autonomouslyobtain and applies knowledge; and the term environment refers to the

surroundings. Therefore, a smart environment is one that is capable of obtaining

knowledge and applying it to adapt according to its inhabitants‘ needs to ameliorate

their experience of thatenvironment.

The functional capabilities of smart objects are further enhanced by

interconnecting them with other objects using different wireless technologies. In this

context, IPv6 plays a vital role because of several features, including better security

mechanisms, scalability in case of billion of connected devices, and the elimination of

NAT barriers1. This concept of connecting smart objects with the Internet was first

coined by Kevin Ashton as ―Internet of Things‖ (IoT).

Nowadays, IoT is receiving attention in a number of fields such as healthcare,

transport, and industry, among others. Several research efforts have been conducted to

integrate IoT with smart environments. The integration of IoT with a smart

environment extends the capabilities of smart objects by enabling the user to monitor

the environment from remote sites. IoT can be integrated with different smart

environments based on the application requirements. The work on IoT-based smart

environments can generally be classified into the following areas: a) smart cities, b)

smart homes, c) smart grid, d) smart buildings, e) smart transportation, f) smart health,

and g) smart industry.illustrates the IoT-based smartenvironments.

The taxonomy of the IoT based smart environment. The devised taxonomy is based on

the following parameters: communication enablers, network types, technologies,

wireless standards, objectives, and characteristics

Communication Enablers

Communication enablers refer to wireless technologies used to communicate across

the Internet. The key wireless Internet technologies are WiFi, 3G, 4G, and satellite.

WiFi is mainly used in smart homes, smart cities, smart transportation, smart

industries, and smart building environments; whereas, 3G and 4G are mainly used in

smart cities and smart grid environments. Satellites are used in smart transportation,

smart cities, and smart grid environments. Table presents the comparative summary of

the communication technologies used in IoT based smart environments.

Network Types

IoT-based smart environments rely on different types of networks to perform the

collaborative tasks for making the lives of inhabitants more comfortable. The main

networks are wireless local area networks (WLANs), wireless personal area networks

(WPANs), wide area networks (WANs), metropolitan area networks (MANs), and

wireless regional area networks (WRANs). These networks have different

characteristics in terms of size, data transfer, and supported reach ability.

Technologies

IoT-based smart environments leverage various technologies to form a comfortable

and suitable ecosystem. These technologies are include sensing, communication, data

fusion, emerging computing, and information security. Sensing technologies are

commonly used to acquire data from various locations and transmit it using

communication technologies to a central location. The emerging computing

technologies, such as cloud computing and fog computing, deployed in the central

location, leverage the data fusion technologies for integrating the data coming from

heterogeneous resources. In addition, smart environments also use information

security technologies to ensure data integrity and user privacy.

Local Area Wireless Standards

The commonly used local area wireless standards in IoT-based smart environments

are IEEE 802.11, IEEE 802.15.1, and IEEE 802.15.4. These standard technologies

are used inside the smart environment to transfer the collected data among different

devices. IEEE 802.11 is used in smart homes, smart buildings, and smart cities. IEEE

802.15.1 and IEEE 802.15.4 have relatively shorter coverage than IEEE 802.11 and are

used mainly in sensors and other objects deployed in the smartenvironments.

Prepared by

Dr. Chukka Santhaiah, Associate

Professor, CSE Ms. A. Soujanya, Assistant

Professor, CSE

HOD, IT

