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CHAPTER#1 

SIGNAL FLOW GRAPH 

 

 

 BASIC DEFINITION IN BLOCK DIAGRAM MODEL: 

Block diagram: It is the pictorial representation of the cause-and-response relationship between input  

and output of a physical system. 

 

 
                                                                 (a) (b) 

                                                Fig. (a) A block diagram representation of a system and  

                                                        (b) A block diagram representation with gain of a system 

 

                      Output: The value of input multiplied by the gain of the system. 

                                  

 

Summing point: It is the component of a block diagram model at which two or more signals can be            

added   or subtracted. In Fig, inputs R(s) and B(s) have been given to a summing point and its output 

signal is E(s). Here, 

                                                     
 

                             

                                Fig. A block diagram representation of a system showing its different components 

 

Take-off point: It is the component of a block diagram model at which a signal can be taken directly 

and supplied to one or more points as shown in Fig. 

Forward path: It is the direction of signal flow from input towards output. 

Feedback path: It is the direction of signal flow from output towards input. 

 

 

 

 

 



 
 

                 RULES FOR REDUCTION OF BLOCK DIAGRAM MODEL: 

 

                                  

 

. 



 
 

                       PROCEDURE FOR REDUCTION OF BLOCK DIAGRAM MODEL:  

                                         Step 1: Reduce the cascade blocks. 

Step 2: Reduce the parallel blocks. 

Step 3: Reduce the internal feedback loops. 

Step 4: Shift take-off points towards right and summing points towards left. 

Step 5: Repeat step 1 to step 4 until the simple form is obtained. 

Step 6: Find transfer function of whole system as 

 

PROCEDURE FOR FINDING OUTPUT OF BLOCK DIAGRAM MODEL WITH 

MULTIPLE  INPUTS: 

Step 1: Consider one input taking rest of the inputs zero, find output. 

Step 2: Follow step 1 for each inputs of the given Block Diagram model and find 

their corresponding outputs. 

Step 3: Find the resultant output by adding all individual outputs. 

 

                        Example 1:- Find C(s)/R(s) using block diagram reduction rules 

 

 
 

 



 
 

 

                           Example-2:- Determine output C due to inputs R & U using the superposition method. 

 



 
 

                    SIGNAL FLOW GRAPHS (SFGS) 

It is a pictorial representation of a system that graphically displays the signal transmission in it. 

 

Basic Definitions in SFGs: 

Input or source node: It is a node that has only outgoing branches i.e. node ‘r’. 

Output or sink node: It is a node that has only incoming branches i.e. node ‘c’. 

Chain node: It is a node that has both incoming and outgoing branches i.e. nodes ‘x1’, 

‘x2’,‘x3’,‘x4’,‘x5’and ‘x6’. 

Gain or transmittance: It is the relationship between variables denoted by two nodes or value of a 

branch., Transmittances are ‘t1’, ‘t2’,‘t3’,‘t4’,‘t5’and ‘t6’. 

Forward path: It is a path from input node to output node without repeating any of the nodes in between 

them. There are two forward paths, i.e. path-1:‘r-x1-x2-x3-x4-x5-x6-c’ and path-2:‘r-x1-x3-x4-x5-x6-c’. 

Feedback path: It is a path from output node or a node near output node to a node near input node 

without repeating any of the nodes in between them. 

Loop: It is a closed path that starts from one node and reaches the same node after trading through other 

nodes. There are four loops, i.e. loop-1:‘x2-x3-x4-x1’, loop-2:‘x5-x6- x5’, loop-3:‘x1-x2-x3-x4-x5-x6-x1’ and 

loop-4:‘x1-x3-x4-x5-x6-x1’. 

Self Loop: It is a loop that starts from one node and reaches the same node without trading through other 

nodes i.e. loop in node ‘x4’ with transmittance ‘t55’. 

Path gain: It is the product of gains or transmittances of all branches of a forward path. The path gains 

are P1 = t1t2t3t4t5 (for path-1) and P2 = t9t3t4t5 (for path-2). 

Loop gain: It is the product of gains or transmittances of all branches of a loop. There are four loops, 

i.e. L1 = -t2t3t6, L2 = -t5t7, L3 = -t1t2t3t4t5t8, and L4 = -t9t3t4t5t8. 

Dummy node: If the first node is not an input node and/or the last node is not an output node than a node 

is connected before the existing first node and a node is connected after the existing last node with unity 

transmittances. These nodes are called dummy nodes. ‘r’ and ‘c’ are the dummy nodes. 

Non-touching Loops: Two or more loops are non-touching loops if they don’t have any common nodes 

between them. L1 and L2 are non-touching loops 

 

PROPERTIES OF SFGS: 

 Applied to linear system 

 Arrow indicates signal flow 

 Nodes represent variables, summing points and take-off points 

 Algebraic sum of all incoming signals and outgoing nodes is zero 

 SFG of a system is not unique 

 Overall gain of an SFG can be determined by using Mason’s gain formula 

 

 



 
 

SFG FROM BLOCK DIAGRAM MODEL: 

 

 

Step-1: All variables and signals are replaced by nodes. 

 

Step-2: Connect all nodes according to their signal flow. 

 

Step-3: Each of gains is replaced by transmittances of the branches connected between two nodes of 

the forward paths. 

Step-4: Each of gains is replaced by transmittances multiplied with (-1) of the branches connected 

between two nodes of the forward paths. 

 

 

MASON’S GAIN FORMULA: 

Transfer function of a system= 

 

Where, 

N= total number of forward paths 

Pk= path gain of kth forward path 

∆= 1 - (∑loop gains of all individual loops) + (∑gain product of loop gains of all possible two non-

touching loops) - (∑gain product of loop gains of all possible three non-touching loops) + … 

∆k= value of ∆ after eliminating all loops that touches kth forward path 



 
 

Example:- Find overall transfer function of system using Mason’s gain formula 

 

 



 
 

CONSTRUCTION OF SIGNAL FLOW GRAPH FROM ALGEBRAIC EQUATIONS:- 

     Let us construct a signal flow graph by considering the following algebraic equations 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER#2 

TIME RESPONSE ANALYSIS 

 

                       TIME RESPONSE OF CONTROL SYSTEM: 

Time response c(t)is the variation of output with respect to time. The part of time response that goes 

to zero after large interval of time is called transient response ctr(t). The part of time response that 

remains after transient response is called steady-state response css(t). 

 

 

                             STANDARD TEST SIGNALS 

                              1. Impulse Signal: An impulse signal δ(t) is mathematically defined as follows. 

 

Laplace transform of impulse signal is 

 

 
 

 

                              2. Step Signal: A step signal u(t) is mathematically defined as follows. 

 

Laplace transform of step signal is 

 
 
 



 
 

 
 
 
 
 
 
 

 
 

                          3. Ramp Signal: A step signal r(t) is mathematically defined as follows. 

 

 (8.10) 
 

                                  Laplace transform of ramp signal 

is 

 

 

 
 

 
                          4. Parabolic Signal A step signal a(t) is mathematically defined as follows. 

 
 

 
                                               Laplace transform of parabolic signal is 

 
 

 

 
 

 



 
 

 

                     TIME RESPONSE OF 1ST ORDER SYSTEM: 

 

 

                       

                          
 

 
 

 



 
 

 

                             
 

                        (i) Unit Step Response:- 

                            Consider the unit step signal as an input to first order system. 
 
                            So, r(t)=u(t) 

 
 

        On both the sides, the denominator term is the same. So, they will get cancelled by each other.  
        Hence, equate the numerator terms. 
 

1=A(sT+1)+Bs 

        By equating the constant terms on both the sides, you will get A = 1. 

        Substitute, A = 1 and equate the coefficient of the s terms on both the sides. 
 

0=T+B 
⇒B=−T 

         Substitute, A = 1 and B = −T in partial fraction expansion of C(s) 

 

 

 

 

 

  

                           Apply inverse Laplace transform on both the sides. 

                              

 

                     

  



 
 

The unit step response, c(t) has both the transient and the steady state terms. 
 
The transient term in the unit step response is -  
 
   

 

 

The steady state term in the unit step response is –  
 
 
 

The following figure shows the unit step response 

 

 

 

 

 

 

 

 

 

  

 

 

  

The value of the unit step response, c(t) is zero at t = 0 and for all negative values of t. It is gradually             

increasing from zero value and finally reaches to one in steady state. So, the steady state value depends 

on the magnitude of the input. 

        (ii)  Unit impulse response: 

    Consider the unit impulse signal as an input to the first order system. 
 

So, r(t)=δ(t) 
 
     Apply Laplace transform on both the sides. 
 

R(s) =1 

 

 

 

 

 

 

 

                Rearrange the above equation in one of the standard forms of Laplace transforms. 

                                        

 

 

                          Applying Inverse Laplace Transform on both the sides, 

 

 

 

 



 
 

  

                           The unit impulse response is shown in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The unit impulse response, c(t) is an exponential decaying signal for positive values of ‘t’ and   it is 

zero for negative values of ‘t’. 

 

TIME RESPONSE OF 2ND ORDER SYSTEM 

 
Consider the following block diagram of closed loop control system. Here, an open loop transfer function, 
ωn2 / s(s+2δωn) is connected with a unity negative feedback. 

 

 
 

 
 

 



 
 

                       STEP RESPONSE OF 2ND ORDER SYSTEM 

 

Consider the unit step signal as an input to the second order system. Laplace transform of the unit step  

signal is, 

 

 

 

 
Taking the inverse Laplace Transform of above equation, we get 

 
 

 



 
 

 

 

 

 
The above expression of output c(t) can be rewritten as 

 

 

 

 
 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
TIME RESPONSE SPECIFICATION 

 
Delay Time 
 
It is the time required for the response to reach half of its final value from the zero instant. It is 

denoted by td. 

Rise Time 
 
It is the time required for the response to rise from 0% to 100% of its final value. This is 

applicable for the under-damped systems. For the over-damped systems, consider the duration 

from 10% to 90% of the final value. Rise time is denoted by tr. 

As per definition, the magnitude of output signal at Rise times is 1. That is c(t) = 1, hence 

 
Peak Time 
 
It is the time required for the response to reach the peak value for the first time. It is denoted 

by tp. At t=tp the first derivate of the response is zero. 
 
As per definition at the peak time, the response curve reaches to its maximum value. Hence at 

that point, 



 
 

 

 
 

 

 
Peak Overshoot 
 
Peak overshoot Mp is defined as the deviation of the response at peak time from the final value 

of response. It is also called the maximum overshoot. 
 
Mathematically, we can write it as  

Mp=c(tp) − c(∞) 

 

Where,c(tp) is the peak value of the response, c(∞) is the final (steady state) value of the 

response. 



 
 

 
Settling time 
 
It is the time required for the response to reach the steady state and stay within the specified 

tolerance bands around the final value. In general, the tolerance bands are 2% and 5%. The 

settling time is denoted by ts. 
 
The settling time for 5% tolerance band is –  
 

The settling time for 2% tolerance band is –  
 
 
 
 
 
 

 

Where, τ is the time constant and is equal to 1/δωn. 
 

 Both the settling time ts and the time constant τ are inversely proportional to the 

damping ratio δ. 
 
Both the settling time ts and the time constant τ are independent of the system gain. That means 

even the system gain changes, the settling time ts and time constant τ will never change. 

 
Steady state error:- 
 
The deviation of the output of control system from desired response during steady state is known 
as steady state error. It is represented as ess. We can find steady state error using the final value 
theorem as follows.  
 
 
 
 
 

 

Where, 
 
E(s) is the Laplace transform of the error signal, e(t) 



 
 

A simple closed-loop control system with negative feedback is shown as follows. 

 

  
 

E ( s ) = R ( s) - B (s ) --- (i) 

B (s )= C (s ) H (s )---- (ii) 

C (s ) = E ( s ) G ( s ) -- - - -  (iii) 

Applying value of B(s) of eq 2 into eq 1 

E ( s ) = R ( s) - C (s ) H (s ) 

Applying value of C(s) of eq 3 into above eq 

 

                                 E ( s ) = R ( s) - E ( s ) G ( s ) H (s ) 

                             

 

 

Therefore, steady-state error depends on two factors, i.e. 

(a) type and magnitude of R(s) 

(b) open-loop transfer function G(s)H(s) 

Types of input and Steady-state error: 

(i)Step Input:  

 



 
 

 
(ii) Ramp Input: 

 

 

Where,  

 
(iii) Parabolic Input: 

 
 
 

 

 

 

 

 

 



 
 

 
STATIC ERROR COEFFICIENT METHOD 

 

 

 

 



 
 

 

 
 

 

EFFECT OF POLE AND ZERO TO TRANSFER FUNCTION 

 

(i) Addition of a pole to the Forward Path Transfer Function:- 

     (a) Increases the order of the system 

     (b) Increases the overshoot 

     (c)  Reduces stability 

     (d)  Increase rise time 

     (e)  Reduces bandwidth 

(ii) Addition of a pole to the Closed-Loop Transfer function:- 

     (a) Increases rise time 

     (b) Decreases overshoot 

(iii) Addition of a zero to the Closed-Loop Transfer function:- 

     (a) Decreases rise time 

     (b) Increases overshoot 

(iv) Addition of a zero to the Forward path Transfer function:- 

     (a) Added zero far away from imaginary axis – Overshoot large & damping is very poor 

     (b) When zero moves to the right – Overshoot reduce & damping improves 

     (c)  When zero moves closer to the origin – Overshoot increases & damping improves 

 

 

      

 



 
 

PROPORTIONAL CONTROLLER 
 
The proportional controller produces an output, which is proportional to error signal. 

 
Therefore, the transfer function of the proportional controller is KP. 

Where, 
 
U(s) is the Laplace transform of the actuating signal u(t) 
 
E(s) is the Laplace transform of the error signal e(t) 
 
KP is the proportionality constant 

 

The block diagram of the unity negative feedback closed loop control system along with the 

proportional controller is shown in the following figure. 

 
DERIVATIVE CONTROLLER 
 
The derivative controller produces an output, which is derivative of the error signal. 

 
Therefore, the transfer function of the derivative controller is KDs 
 
Where, KD is the derivative constant. 
 
The block diagram of the unity negative feedback closed loop control system along with the 

derivative controller is shown in the following figure. 



 
 

 
INTEGRAL CONTROLLER 
 
The integral controller produces an output, which is integral of the error signal. 

 
Where, KI is the integral constant. 
 
The block diagram of the unity negative feedback closed loop control system along with the 

integral controller is shown in the following figure. 

 
The integral controller is used to decrease the steady state error. 

 

PROPORTIONAL DERIVATIVE (PD) CONTROLLER 
 
The proportional derivative controller produces an output, which is the combination of the 

outputs of proportional and derivative controllers. 



 
 

 
Therefore, the transfer function of the proportional derivative controller is KP+KDs. 
 
The block diagram of the unity negative feedback closed loop control system along with the 

proportional derivative controller is shown in the following figure. 

 
The proportional derivative controller is used to improve the stability of control system without 

affecting the steady state error. 
 
PROPORTIONAL INTEGRAL (PI) CONTROLLER 
 
The proportional integral controller produces an output, which is the combination of outputs of 

the proportional and integral controllers. 

 
The proportional integral controller is used to decrease the steady state error without affecting 

the stability of the control system. 
 
PROPORTIONAL INTEGRAL DERIVATIVE (PID) CONTROLLER 
 
The proportional integral derivative controller produces an output, which is the combination of 

the outputs of proportional, integral and derivative controllers. 



 
 

 
The block diagram of the unity negative feedback closed loop control system along with the 

proportional integral derivative controller is shown in the following figure. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER#3 

ANALYSIS OF STABILITY BY ROOT LOCUS TECHNIQUE 

 

STABILITY 
 
A system is said to be stable, if its output is under control. Otherwise, it is said to be unstable. 
 
A stable system produces a bounded output for a given bounded input. 
 
The following figure shows the response of a stable system. 

 
This is the response of first order control system for unit step input. This response has the values 

between 0 and 1. So, it is bounded output. We know that the unit step signal has the value of one 

for all positive values of t including zero. So, it is bounded input. Therefore, the first order control 

system is stable since both the input and the output are bounded. 
 
TYPES OF SYSTEMS BASED ON STABILITY 
 
We can classify the systems based on stability as follows. 

 

 Absolutely stable system 

 Conditionally stable system 

 Marginally stable system 

 

   Absolutely Stable System 
 

If the system is stable for all the range of system component values, then it is known as the      

absolutely stable system. The open loop control system is absolutely stable if all the poles of 

the open loop transfer function present in left half of ‘s’ plane. Similarly, the closed loop control 

system is absolutely stable if all the poles of the closed loop transfer function present in the left 

half of the ‘s’ plane. 

 

Conditionally Stable System 
 
If the system is stable for a certain range of system component values, then it is known as 

conditionally stable system. 

 

Marginally Stable System 
 
If the system is stable by producing an output signal with constant amplitude and constant 

frequency of oscillations for bounded input, then it is known as marginally stable system. The 

open loop control system is marginally stable if any two poles of the open loop transfer function 

is present on the imaginary axis. Similarly, the closed loop control system is marginally stable if 

any two poles of the closed loop transfer function is present on the imaginary axis. 

ROUTH-HURWITZ STABILITY CRITERION 
 



 
 

Routh-Hurwitz stability criterion is having one necessary condition and one sufficient condition 

for stability. If any control system doesn’t satisfy the necessary condition, then we can say that 

the control system is unstable. But, if the control system satisfies the necessary condition, then it 

may or may not be stable. So, the sufficient condition is helpful for knowing whether the control 

system is stable or not. 

 

NECESSARY CONDITION FOR ROUTH-HURWITZ STABILITY 
 
The necessary condition is that the coefficients of the characteristic polynomial should be 

positive. This implies that all the roots of the characteristic equation should have negative real 

parts. 
 
Consider the characteristic equation of the order ‘n’ is - 

 
Note that, there should not be any term missing in the nth order characteristic equation. This 
means that the nth order characteristic equation should not have any coefficient that is of zero 
value. 
 
SUFFICIENT CONDITION FOR ROUTH-HURWITZ STABILITY 
 
The sufficient condition is that all the elements of the first column of the Routh array should have 

the same sign. This means that all the elements of the first column of the Routh array should be 

either positive or negative. 
 
ROUTH ARRAY METHOD 
 
If all the roots of the characteristic equation exist to the left half of the ‘s’ plane, then the control 

system is stable. If at least one root of the characteristic equation exists to the right half of the ‘s’ 

plane, then the control system is unstable. So, we have to find the roots of the characteristic 

equation to know whether the control system is stable or unstable. But, it is difficult to find the 

roots of the characteristic equation as order increases. 

 
So, to overcome this problem there we have the Routh array method. In this method, there is 

no need to calculate the roots of the characteristic equation. First formulate the Routh table and 

find the number of the sign changes in the first column of the Routh table. The number of sign 

changes in the first column of the Routh table gives the number of roots of characteristic equation 

that exist in the right half of the ‘s’ plane and the control system is unstable. 
 
Follow this procedure for forming the Routh table. 
 

 Fill the first two rows of the Routh array with the coefficients of the characteristic 

polynomial as mentioned in the table below. Start with the coefficient of sn and continue 

up to the coefficient of s0. 
 

 Fill the remaining rows of the Routh array with the elements as mentioned in the table 

below. Continue this process till you get the first column element of row s0.  
 
Note − If any row elements of the Routh table have some common factor, then you can divide 

the row elements with that factor for the simplification will be easy. 
 
The following table shows the Routh array of the nth order characteristic polynomial. 



 
 

 
Example 
 
Let us find the stability of the control system having characteristic equation, 

 
Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. 
 
All the coefficients of the characteristic polynomial, 

  
are positive. So, the control system satisfies the necessary condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 

 
Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. 
 

All the elements of the first column of the Routh array are positive. There is no sign change in 



 
 

the first column of the Routh array. So, the control system is stable. 

 

SPECIAL CASES OF ROUTH ARRAY 
 
We may come across two types of situations, while forming the Routh table. It is difficult to 

complete the Routh table from these two situations. 
 
The two special cases are − 

 

 The first element of any row of the Routh’s array is zero. 
 

 All the elements of any row of the Routh’s array are zero. 
 
Let us now discuss how to overcome the difficulty in these two cases, one by one. 
 

 First Element of any row of the Routh’s array is zero 
 
If any row of the Routh’s array contains only the first element as zero and at least one of the 

remaining elements have non-zero value, then replace the first element with a small positive 

integer, ϵ. And then continue the process of completing the Routh’s table. Now, find the number 

of sign changes in the first column of the Routh’s table by substituting ϵ tends to zero. 
 
 All the Elements of any row of the Routh’s array are zero  

In this case, follow these two steps − 

 

 Write the auxiliary equation, A(s) of the row, which is just above the row of zeros. 

 

 Differentiate the auxiliary equation, A(s) with respect to s. fill the row of zeros with 

these coefficients. 

 

ROOT LOCUS 
 
The Root locus is the locus of the roots of the characteristic equation by varying system gain K 

from zero to infinity. 
 
We know that, the characteristic equation of the closed loop control system is 

 

 
 

 

 



 
 

 

 
From above two cases, we can conclude that the root locus branches start at open loop poles and     

end at open loop zeros. 
 
  ANGLE CONDITION AND MAGNITUDE CONDITION 
 
 The points on the root locus branches satisfy the angle condition. So, the angle condition is used    

to know whether the point exist on root locus branch or not. We can find the value of K for the 

points on the root locus branches by using magnitude condition. So, we can use the magnitude 

condition for the points, and this satisfies the angle condition. 
 
Characteristic equation of closed loop control system is 

 
The angle condition is the point at which the angle of the open loop transfer function is an odd 

multiple of 1800. 



 
 

Magnitude of G(s)H(s) is – 

 
The magnitude condition is that the point (which satisfied the angle condition) at which the 

magnitude of the open loop transfer function is one. 

 

THE ROOT LOCUS IS A GRAPHICAL REPRESENTATION IN S-DOMAIN AND IT IS 

SYMMETRICAL ABOUT THE REAL AXIS. Because the open loop poles and zeros exist in 

the s-domain having the values either as real or as complex conjugate pairs. 

 

RULES FOR CONSTRUCTION OF ROOT LOCUS 
 
Follow these rules for constructing a root locus. 
 
Rule 1 − Locate the open loop poles and zeros in the‘s’ plane. 
 
Rule 2 − Find the number of root locus branches. 
 
We know that the root locus branches start at the open loop poles and end at open loop zeros. So, 

the number of root locus branches N is equal to the number of finite open loop poles P or the 

number of finite open loop zeros Z, whichever is greater. 
 
Mathematically, we can write the number of root locus branches N as 
 
N=P if P≥Z 
 
N=Z if P<Z 
 
Rule 3 − Identify and draw the real axis root locus branches. 
 
If the angle of the open loop transfer function at a point is an odd multiple of 1800, then that point 

is on the root locus. If odd number of the open loop poles and zeros exist to the left side of a point 

on the real axis, then that point is on the root locus branch. Therefore, the branch of points which 

satisfies this condition is the real axis of the root locus branch. 
 
Rule 4 − Find the centroid and the angle of asymptotes. 
 

 If P=Z, then all the root locus branches start at finite open loop poles and end at finite 

open loop zeros. 
 

 If P>Z, then Z number of root locus branches start at finite open loop poles and end at 

finite open loop zeros and P−Z number of root locus branches start at finite open loop 

poles and end at infinite open loop zeros. 

 If P<Z , then P number of root locus branches start at finite open loop poles and end at 

finite open loop zeros and Z−P number of root locus branches start at infinite open loop 

poles and end at finite open loop zeros. 
 
So, some of the root locus branches approach infinity, when P≠Z. Asymptotes give the direction 

of these root locus branches. The intersection point of asymptotes on the real axis is known as 

centroid. 

We can calculate the centroid α by using this formula, 



 
 

 
Rule 5 − Find the intersection points of root locus branches with an imaginary axis. 
 

We can calculate the point at which the root locus branch intersects the imaginary axis and the 

value of K at that point by using the Routh array method and special case (ii). 
 

 If all elements of any row of the Routh array are zero, then the root locus branch 

intersects the imaginary axis and vice-versa. 
 

 Identify the row in such a way that if we make the first element as zero, then the 

elements of the entire row are zero. Find the value of K for this combination. 
 

 Substitute this K value in the auxiliary equation. You will get the intersection point of 

the root locus branch with an imaginary axis. 
 
Rule 6 − Find Break-away and Break-in points. 
 

 If there exists a real axis root locus branch between two open loop poles, then there will 

be a break-away point in between these two open loop poles. 

 If there exists a real axis root locus branch between two open loop zeros, then there will 

be a break-in point in between these two open loop zeros. 
 
Note − Break-away and break-in points exist only on the real axis root locus branches. 
 
Follow these steps to find break-away and break-in points. 
 

 Write K in terms of s from the characteristic equation 1+G(s)H(s)=0. 
 

 Differentiate K with respect to s and make it equal to zero. Substitute these values of s in 

the above equation. 
 

 The values of s for which the K value is positive are the break points. 
 
 
Rule 7 − Find the angle of departure and the angle of arrival. 
 

The Angle of departure and the angle of arrival can be calculated at complex conjugate open 

loop poles and complex conjugate open loop zeros respectively. 



 
 

 
Example 
 
Let us now draw the root locus of the control system having open loop transfer function, 

  
Step 1 − The given open loop transfer function has three poles at s = 0, 

 

s = -1, s = -5. It doesn’t have any zero. Therefore, the number of root locus branches is equal 

 

to the number of poles of the open loop transfer function. 

N=P=3 

 
The three poles are located are shown in the above figure. The line segment between s=−1, and 

s=0 is one branch of root locus on real axis. And the other branch of the root locus on the real 

axis is the line segment to the left of s=−5. 

 

Step 2 − We will get the values of the centroid and the angle of asymptotes by using the given 

formulae. 

 

Centroid = 2
3

150



 

The angle of asymptotes are  



 
 

 
Step 3 − Since two asymptotes have the angles of 60 and 300, two root locus branches intersect 

the imaginary axis. By using the Routh array method and special case(ii), 

the root locus branches intersects the imaginary axis at  and  

 

There will be one break-away point on the real axis root locus branch between the poles s =−1 

and s=0. By following the procedure given for the calculation of break-away point, we will get it 

as s =−0.473. 

 
EFFECTS OF ADDING OPEN LOOP POLES AND ZEROS ON ROOT LOCUS 
 
The root locus can be shifted in‘s’ plane by adding the open loop poles and the open loop 

zeros. 

 

 If we include a pole in the open loop transfer function, then some of root locus branches 

will move towards right half of ‘s’ plane. Because of this, the damping ratio δ decreases. 

Which implies, damped frequency ωd increases and the time domain specifications like 

delay time td, rise time tr and peak time tp decrease. But, it effects the system stability. 

 

 If we include a zero in the open loop transfer function, then some of root locus 

branches will move towards left half of ‘s’ plane. So, it will increase the control system 

stability. In this case, the damping ratio δ increases. Which implies, damped frequency 

ωd decreases and the time domain specifications like delay time td, rise time tr and peak 

time tp increase. 

 

 



 
 

CHAPTER#4 

FREQUENCY RESPONSE ANALYSIS 

 

FREQUENCY RESPONSE  
 

The response of a system can be partitioned into both the transient response and the steady state 

response. We can find the transient response by using Fourier integrals. The steady state response 

of a system for an input sinusoidal signal is known as the frequency response. In this chapter, 

we will focus only on the steady state response. 

 

If a sinusoidal signal is applied as an input to a Linear Time-Invariant (LTI) system, then it 

produces the steady state output, which is also a sinusoidal signal. The input and output sinusoidal 

signals have the same frequency, but different amplitudes and phase angles. Let the input signal 

be 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where, 

 

A is the amplitude of the input sinusoidal signal. 

 

ω0 is angular frequency of the input sinusoidal signal. 

 

We can write, angular frequency ω0 as shown below. 

                ω0=2πf0 

Here, f0 is the frequency of the input sinusoidal signal. Similarly, you can follow the same 

procedure for closed loop control system. 

 

 

 

FREQUENCY DOMAIN SPECIFICATIONS 
 
The frequency domain specifications are 



 
 

 Resonant peak 

 Resonant frequency 

 Bandwidth. 

 

Consider the transfer function of the second order closed control system as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

 

 



 
 

 
Resonant Peak: 
 
It is the peak (maximum) value of the magnitude of T(jω). It is denoted by Mr. At u=ur, the 
Magnitude of T(jω) is - 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Resonant peak in frequency response corresponds to the peak overshoot in the time domain 

transient response for certain values of damping ratio δ. So, the resonant peak and peak overshoot 

are correlated to each other. 

 

Bandwidth: 
 
It is the range of frequencies over which, the magnitude of T(jω) drops to 70.7% from its zero 

frequency value. 
 



 
 

At ω=0, the value of u will be zero.  
Substitute, u=0 in M.  
 
 

 
 
 
Therefore, the magnitude of T(jω) is one at ω=0  

At 3-dB frequency, the magnitude of T(jω) will be 70.7% of magnitude of T(jω)) at ω=0  
 
 
 
 
 
 
 
 
 
 
 

 
Bandwidth ωb in the frequency response is inversely proportional to the rise time tr in the time 

domain transient response. 
 

POLAR PLOTS 

Polar plot is a plot which can be drawn between magnitude and phase. Here, the magnitudes are 

represented by normal values only. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This graph sheet consists of concentric circles and radial lines. The concentric circles and the 

radial lines represent the magnitudes and phase angles respectively. These angles are represented 

by positive values in anti-clock wise direction. Similarly, we can represent angles with negative 

values in clockwise direction. For example, the angle 2700 in anti-clock wise direction is equal 

to the angle −900 in clockwise direction. 

 

RULES FOR DRAWING POLAR PLOTS 

 

Follow these rules for plotting the polar plots. 

 Substitute, s=jω in the open loop transfer function. 

 Write the expressions for magnitude and the phase of G(jω)H(jω) 

 Find the starting magnitude and the phase of G(jω)H(jω) by substituting ω=0. So, the polar 

plot starts with this magnitude and the phase angle. 

 Find the ending magnitude and the phase of G(jω)H(jω) by substituting ω=∞ So, the polar 

plot ends with this magnitude and the phase angle. 

 Check whether the polar plot intersects the real axis, by making the imaginary term of 

G(jω)H(jω) equal to zero and find the value(s) of ω. 

 Check whether the polar plot intersects the imaginary axis, by making real term of 

G(jω)H(jω) equal to zero and find the value(s) of ω. 

 For drawing polar plot more clearly, find the magnitude and phase of G(jω)H(jω) by 

considering the other value(s) of ω. 

 

Example: 

     Consider the open loop transfer function of a closed loop control system. 



 
 

 

 

 

 

 

 

 

So, the polar plot starts at (∞,−900) and ends at (0,−2700). The first and the second terms within 

the brackets indicate the magnitude and phase angle respectively. 

 

Step 3 − Based on the starting and the ending polar co-ordinates, this polar plot will intersect the 

negative real axis. The phase angle corresponding to the negative real axis is −1800 or 1800. So, 

by equating the phase angle of the open loop transfer function to either −1800 or 1800, we will 

get the ω value as √2. 

 

By substituting ω=√2 in the magnitude of the open loop transfer function, we will get M=0.83. 

Therefore, the polar plot intersects the negative real axis when ω=√2 and the polar coordinate is 

(0.83,−1800). 

So, we can draw the polar plot with the above information. 

 

BODE PLOTS 

 

The Bode plot or the Bode diagram consists of two plots − 

 Magnitude plot 

 Phase plot 

In both the plots, x-axis represents angular frequency (logarithmic scale). Whereas, yaxis 

represents the magnitude (linear scale) of open loop transfer function in the magnitude plot and 

the phase angle (linear scale) of the open loop transfer function in the phase plot. 

 

The magnitude of the open loop transfer function in dB is - 

 

The phase angle of the open loop transfer function in degrees is - 

 

Basic of Bode Plots: 

The following table shows the slope, magnitude and the phase angle values of the terms present 

in the open loop transfer function. This data is useful while drawing the Bode plots. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Case-1: 

 
 

 

 

 



 
 

 
The magnitude plot is a horizontal line, which is independent of frequency. The 0 dB line itself -

is the magnitude plot when the value of K is one. For the positive values of K, the horizontal line 

will shift 20logK dB above the 0 dB line. For the negative values of K, the horizontal line will 

shift 20logK dB below the 0 dB line. The Zero degrees line itself is the phase plot for all the 

positive values of K. 

 

Case-2: 

Consider the open loop transfer function G(s)H(s)= S 

Magnitude M=20logω dB 

Phase angle ϕ=900 

At ω=0.1rad/sec, the magnitude is -20 dB. 

At ω=1rad/sec, the magnitude is 0 dB. 

At ω=10 rad/sec, the magnitude is 20 dB. 

The following figure shows the corresponding Bode plot. 

 
 

 

 
 

The magnitude plot is a line, which is having a slope of 20 dB/dec. This line started at 

ω=0.1rad/sec having a magnitude of -20 dB and it continues on the same slope. It is touching 0 

dB line at ω=1 rad/sec. In this case, the phase plot is 900 line. 



 
 

 

Case-3: 

Consider the open loop transfer function G(s) H(s)=1+sτ. 

 Magnitude = 
2

)(1 s  

Phase angle = 

 

For  , the magnitude is 0 dB and phase angle is 0 degrees. 

For  , the magnitude is 20logωτ dB and phase angle is 900. 

The following figure shows the corresponding Bode plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The magnitude plot is having magnitude of 0 dB up to ω=1τ rad/sec. From ω=1τ rad/sec, it is 

having a slope of 20 dB/decade. In this case, the phase plot is having phase angle of 0 degrees up 

to ω=1τ rad/sec and from here, it is having phase angle of 900. This Bode plot is called the  

asymptotic Bode plot. As the magnitude and the phase plots are represented with straight lines, 

the Exact Bode plots resemble the asymptotic Bode plots. The only difference is that the Exact 

Bode plots will have simple curves instead of straight lines. 

 

 

RULES FOR CONSTRUCTION OF BODE PLOTS: 

 

Follow these rules while constructing a Bode plot. 

 

 Represent the open loop transfer function in the standard time constant form. 

 Substitute, s=jω in the above equation. 

 Find the corner frequencies and arrange them in ascending order. 

 Consider the starting frequency of the Bode plot as 1/10th of the minimum corner frequency 

or 0.1 rad/sec whichever is smaller value and draw the Bode plot upto 10 times maximum 

corner frequency. 

 Draw the magnitude plots for each term and combine these plots properly. 

 Draw the phase plots for each term and combine these plots properly. 



 
 

 

STABILITY ANALYSIS USING BODE PLOTS 

 

From the Bode plots, we can say whether the control system is stable, marginally stable or 

unstable based on the values of these parameters. 

 Gain cross over frequency and phase cross over frequency 

 Gain margin and phase margin 

 

Phase Cross over Frequency: 

The frequency at which the phase plot is having the phase of -1800 is known as phase cross over 

frequency. It is denoted by ωpc. The unit of phase cross over frequency is rad/sec. 

 

Gain Cross over Frequency: 

The frequency at which the magnitude plot is having the magnitude of zero dB is known as gain 

cross over frequency. It is denoted by ωgc. The unit of gain cross over frequency is rad/sec. 

 

The stability of the control system based on the relation between the phase cross over frequency 

and the gain cross over frequency is listed below. 

 If the phase cross over frequency ωpc is greater than the gain cross over frequency ωgc, 

then the control system is stable. 

 If the phase cross over frequency ωpc is equal to the gain cross over frequency ωgc, then 

the control system is marginally stable. 

 If the phase cross over frequency ωpc is less than the gain cross over frequency ωgc, then 

the control system is unstable. 

 

Gain Margin: 

Gain margin GM is equal to negative of the magnitude in dB at phase cross over frequency. 

GM= - 20log(Mpc) 

Where, Mpc is the magnitude at phase cross over frequency. The unit of gain margin (GM) is 

dB. 

Phase Margin: 

The formula for phase margin PM is  PM=1800+ϕgc 

Where, ϕgc is the phase angle at gain cross over frequency. The unit of phase margin is degrees. 

 

****The stability of the control system based on the relation between gain margin and phase 

margin is listed below. 

 

 If both the gain margin GM and the phase margin PM are positive, then the control system 

is stable. 

 If both the gain margin GM and the phase margin PM are equal to zero, then the control 

system is marginally stable. 

 If the gain margin GM and / or the phase margin PM are/is negative, then the control 

system is unstable. 

 

Example: Sketch the Bode plot for the Transfer function 

                                  G(s) = 
1000

(1+0.1𝑠 )(1+0.001𝑠)
 

Determine the   a) Phase Margin 



 
 

                                      b) Gain Margin 

                                      c) Stability of the System 

 

Solution:  Step-1  Put s =jω 

                 G(jω) = 
1000

(1+j0.1ω )(1+j0.001ω)
 

The given transfer function is of type '0’ system. Therefore the initial slope of the Bode plots 

        0 db/decade. The starting point is given by. 

                                        20 log10 K = 20 log10 1000 = 60 db 

         Corner frequencies ω1=  
1

0.1
   =10 rad/sec. 

                            ω2=  
1

0.001
   =1000 rad/sec. 

 

      Step 2 : Mark the starting point 60 db on y-axis and draw a line of slop 0 db/decade up to 

         first corner frequency. 

      Step 3 : From first corner frequency to second corner frequency draw a line with slope  

        (0 – 20) = -20 db/decade). 

      Step 4 : From second corner frequency to next corner frequency (if given) draw a line 

         having   the slope -20 + (-20) = -40 db/decade. 

      Step 5 : The magnitude plot is complete and now draw the phase plot by calculating 

                     the phase at  different frequencies (as given in table). 

      Step 6: From the bode plot 

                   From the point of intersection of magnitude curve with 0 db axis draw a line on  

                   phase curve. This line cuts the phase curve at - 154° 

                   P.M = -154-(-180) 

                           = +26° 

      Step 7: Gain margin G.M =∞ 

                   Since, P.M = + 26° and gain margin =∞, the system is inherently stable. 

 

ω -  Arg (1 + j0.1ω ) 

-tan-1 (0.1 ω) 

-Arg (1 + j0.001ω) 

-tan-1 (0.001 ω) 

Resultant 

50 -78.6° -2.86° - 81.46° 

100 - 84.2° -5.7° - 90° 

150 - 86.2° - 8.5° - 94° 

200 - 87.13° - 11.3° - 98° 

500 - 88.85° -26.56° -115.4° 

800 - 89.28° - 38.65° -127.93° 

1000 -89.48° -45° -134.42° 

2000 - 89.72° - 63.43° -153.15° 

3000 - 89.8° - 71.56° -161.36° 

5000 - 89.88° - 78.69° -168.57° 

8000 - 89.92° - 82.87° -172.79° 

 



 
 

 
 

CLOSED LOOP FREQUENCY RESPONSE 

Consider transfer function
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 For unity feedback H(s) =1 
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   Put s= jɷ 
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From figure 

 



 
 

From above equation 

             
 

Frequency response consists of 2 parts: (1) magnitude (2) phase angle. Both can be plotted against 

different values of ɷ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER#5 

NYQUIST PLOT 

 

NYQUIST PLOT 

 

Nyquist plots are the continuation of polar plots for finding the stability of the closed loop control 

systems by varying ω from −∞ to ∞. That means, Nyquist plots are used to draw the complete 

frequency response of the open loop transfer function. 

 

NYQUIST STABILITY CRITERION 

 

The Nyquist stability criterion works on the principle of argument. It states that if there are P 

poles and Z zeros are enclosed by the ‘s’ plane closed path, then the corresponding G(s)H(s) plane 

must encircle the origin P−Z times. So, we can write the number of encirclements N as, 

N=P−Z 

 If the enclosed‘s’ plane closed path contains only poles, then the direction of the 

encirclement in the G(s)H(s) plane will be opposite to the direction of the enclosed closed 

path in the ‘s’ plane. 

 If the enclosed‘s’ plane closed path contains only zeros, then the direction of the 

encirclement in the G(s)H(s) plane will be in the same direction as that of the enclosed 

closed path in the ‘s’ plane. 

Let us now apply the principle of argument to the entire right half of the‘s’ plane by selecting it 

as a closed path. This selected path is called the Nyquist contour. 

 

We know that the closed loop control system is stable if all the poles of the closed loop transfer 

function are in the left half of the‘s’ plane. So, the poles of the closed loop transfer function are 

nothing but the roots of the characteristic equation. As the order of the characteristic equation 

increases, it is difficult to find the roots. So, let us correlate these roots of the characteristic 

equation as follows. 

 

 The Poles of the characteristic equation are same as that of the poles of the open 

loop transfer function. 

 The zeros of the characteristic equation are same as that of the poles of the closed 

loop transfer function. 

 

We know that the open loop control system is stable if there is no open loop pole in the right half 

of the ‘s’ plane. i.e. P=0⇒N=−Z 

 

We know that the closed loop control system is stable if there is no closed loop pole in the right 

half of the ‘s’ plane. i.e. Z=0⇒N=P 

 

Nyquist stability criterion states the number of encirclements about the critical point (1+j0) 

must be equal to the poles of characteristic equation, which is nothing but the poles of the open 

loop transfer function in the right half of the ‘s’ plane. The shift in origin to (1+j0) gives the 

characteristic equation plane. 

 

 

 



 
 

RULES FOR DRAWING NYQUIST PLOTS 

 

Follow these rules for plotting the Nyquist plots. 

 

 Locate the poles and zeros of open loop transfer function G(s)H(s) in ‘s’ plane. 

 

 Draw the polar plot by varying ω from zero to infinity. If pole or zero present at s 

= 0, then varying ω from 0+ to infinity for drawing polar plot. 

 

 Draw the mirror image of above polar plot for values of ω ranging from −∞ to zero 

(0− if any pole or zero present at s=0). 

 

 The number of infinite radius half circles will be equal to the number of poles or 

zeros at origin. The infinite radius half circle will start at the point where the mirror 

image of the polar plot ends. And this infinite radius half circle will end at the 

point where the polar plot starts. 

 

After drawing the Nyquist plot, we can find the stability of the closed loop control system using 

the Nyquist stability criterion. If the critical point (-1+j0) lies outside the encirclement, then the 

closed loop control system is absolutely stable. 

 

STABILITY ANALYSIS USING NYQUIST PLOTS 

 

From the Nyquist plots, we can identify whether the control system is stable, marginally stable 

or unstable based on the values of these parameters. 

 

 Gain cross over frequency and phase cross over frequency 

 

 Gain margin and phase margin 

 

Phase Cross over Frequency 

The frequency at which the Nyquist plot intersects the negative real axis (phase angle is 1800) is 

known as the phase cross over frequency. It is denoted by ωpc. 

 

Gain Cross over Frequency 

The frequency at which the Nyquist plot is having the magnitude of one is known as the gain 

cross over frequency. It is denoted by ωgc. 

 

The stability of the control system based on the relation between phase cross over frequency and 

gain cross over frequency is listed below. 

 

 If the phase cross over frequency ωpc is greater than the gain cross over frequency ωgc, 

then the control system is stable. 

 If the phase cross over frequency ωpc is equal to the gain cross over frequency ωgc, then 

the control system is marginally stable. 

 If phase cross over frequency ωpc is less than gain cross over frequency ωgc, then the 

control system is unstable. 

 



 
 

Gain Margin 

The gain margin GM is equal to the reciprocal of the magnitude of the Nyquist plot at the phase 

cross over frequency. 

 

 

Where, Mpc is the magnitude in normal scale at the phase cross over frequency. 

  

Phase Margin 

The phase margin PM is equal to the sum of 1800 and the phase angle at the gain cross over 

frequency. 

                PM=1800+ϕgc 

Where, ϕgc is the phase angle at the gain cross over frequency. 

 

The stability of the control system based on the relation between the gain margin and the phase 

margin is listed below. 

 

 If the gain margin GM is greater than one and the phase margin PM is positive, then the 

control system is stable. 

 If the gain margin GMs equal to one and the phase margin PM is zero degrees, then the 

control system is marginally stable. 

 If the gain margin GM is less than one and / or the phase margin PM is negative, then the 

control system is unstable. 

 

Example:- Draw the nyquist plot and assess the stability of the closed loop system whose open 

loop transfer function is G(s) H(s) = 
)12( ss

K
 

 
 

 



 
 

 

 
EFFECT OF ADDITION OF POLES & ZEROS TO G(s)H(s) ON THE SHAPE OF 

NYQUIST PLOT 

 

a) Addition of poles at s=0:- It will affect the stability of the closed loop system adversely. 

A system that has a loop transfer function with more than one pole at s=0 is likely to be 

unstable or difficult to stabilize. 

b)  Addition of finite non zero pole:- It shifts the phase of nyquist plot by -90̊ at ɷ= ∞. The 

stability is adversely affected. 

c) Addition of a Zero: - The effect of addition of zero is to rotate the nyquist plot by 90̊ in 

the counter clockwise direction without effecting the value at ɷ = 0. So it has the effect of 

reducing the overshoot & the general effect of stabilization. 

 

 

 



 
 

CONSTANT MAGNITUDE CIRCLE (M- CIRCLE) 

 
If M = 1, then from the above equation we obtain X = -1/2.This is the equation of a straight line 

parallel to the Y-axis and passing through the point (-1/2, 0). 

 
Divide both the sides by (1-M2) 

 

 

 
The constant M locii for different value of M. It is clear that: 

i. The locii are symmetrical wrt to M= 1 

ii. The M-circles for M>1 are on the left side of the line M=1 and for M<1 the constant M-

circles are on the right side of the line M =1. 

 



 
 

CONSTANT PHASE CIRCLE (N- CIRCLE): 

 

 

 
It is observed that 

a) The centre is lying always at a distance x= -1/2 and y depends upon the phase shift. 

b) All the circles passes through -1 as well as 0. 

 
 



 
 

NICHOLS CHART 

 The chart consisting of constant-magnitude loci and constant phase-angle loci in the log-

magnitude versus phase diagram is called Nichols chart. 

 The critical point (-1+j0) is mapped to the Nichols chart as the point (0 dB, 180degree). 

The Nichols chart contains curves of constant closed-loop magnitude and phase angle.  

 The designer can graphically determine the phase margin, gain margin, resonant peak 

magnitude, resonant peak frequency, and bandwidth of the closed loops system from the 

plot of the open-loop locus.  

 The Nichols chart is symmetric about -180 degree axis. The constant-magnitude loci and 

constant phase-angle loci repeat for every 360 degree, and there is a symmetry at every 

180 degree. The constant-magnitude loci are centred about the critical point (0 dB, -180 

degree). 

 The intersection of the open-loop frequency response curve and the constant-magnitude 

loci and constant phase-angle loci give the values of the magnitude and the phase angle of 

the closed loop frequency response at each frequency point.  

 If the open-loop frequency response curve does not intersect the constant-magnitude loci 

but is tangent to it, then the resonant peak value of the closed-loop frequency response is 

given by that loci. The resonant peak frequency is given by the frequency at the point of 

tangency. 

 The phase crossover point is the point where the open-loop locus intersects the -180 degree 

axis, and the gain crossover point is the point where the locus intersects the 0 dB axis. 

 The phase margin is the distance (measured in degrees) between the gain crossover point 

and the critical point (0 dB, -180 degrees).  

 The gain margin is the distance (in decibels) between the phase crossover point and the 

critical point. The frequency at the intersection of the open-loop locus and the -3 dB locus 

gives the bandwidth. 



 
 

 

 

 


