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Circuit Elements and Laws

Voltage

Energy is required for the movement of charge from one point to another. Let W

Joules of energy be required to move positive charge Q columbs from a point a to



point b in a circuit. We say that a voltage exists between the two points. The voltage
V between two points may be defined in terms of energy that would be required if a
charge were transferred from one point to the other. Thus, there can be a voltage
between two points even if no charge is actually moving from one to the other.

Voltage between a and b is given by

v="3/c
Q

Worked are (W) in Joules
Charge (Q)in columbs

Hence Electric Potential (V) =

Current :

An electric current is the movement of electric charges along a definite path. In case

of a conductor the moving charges are electrons.

The unit of current is the ampere. The ampere is defined as that current which when
flowing in two infinitely long parallel conductors of negligible cross section, situated 1
meter apart in Vacuum, produces between the conductors a force of 2 x 10”7 Newton per

metre length.

Power : Power is defined as the work done per unit time. If a field F newton acts for t
seconds through a distance d metres along a straight line, work done W = Fxd N.m. or J.
The power P, either generated or dissipated by the circuit element.

w Fxd

P:;
t t



Work
time

Power can also be written as Power =

_ Work XCh arge
Charge Time

= Voltage x Current

P =V x| watt.

Enerqgy : Electric energy W is defined as the Power Consumed in a given time. Hence, if
current 1A flows in an element over a time period t second, when a voltage V volts is applied

across it, the energy consumed is given by
W=Pxt=VxIxtJorwatt. second.

The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of

energy is kilowatt. hour (Kwh)

Resistance : According to Ohm's law potential difference (V) across the ends of a conductor
is proportional to the current (1) flowing through the conductor at a constant

temperature. Mathematically Ohm's law is expressed as
ValorV=RxlI

\ : . . .
Or R = — Where R is the proportionality constant and is designated as the conductor

resistance and has the unit of Ohm (A).

Conductance : Voltage is induced in a stationary conductor when placed in a varying
magnetic field. The induced voltage (e) is proportional to the time rate of change of

current, di/dt producing the magnetic field.

Therefore e o ﬂ
dt

Ore:Lﬂ
dt



e and i are both function of time. The proportionality constant L is called inductance.

The Unit of inductance is Henery (H).

Capacitance : A capacitor is a Physical device, which when polarized by an electric field

by applying a suitable voltage across it, stores energy in the form of a charge separation.

The ability of the capacitor to store charge is measured in terms of capacitance.

Capacitence of a capacitor is defined as the charge stored per Volt applied.

= q_: Coulomb _ Farad
v Volt

Active and passive Branch :

A branch is said to be active when it contains one or more energy sources. A passive

branch does not contain an energy source.
Branch : A branch is an element of the network having only two terminals.

Bilateral and unilateral element :

A bilateral element conducts equally well in either direction. Resistors and inductors
are examples of bilateral elements. When the current voltage relations are different
for the two directions of current flow, the element is said to be unilateral. Diode is an

unilateral element.

Linear Elements : When the current and voltage relationship in an element can be
simulated by a linear equation either algebraic, differential or integral type, the

element is said to be linear element.

Non Linear Elements : When the current and voltage relationship in an element can

not be simulated by a linear equation, the element is said to be non linear elements.

Kirchhoff's Voltage Law (KVL) :

The algebraic sum of Voltages (or voltage drops) in any closed path or loop is Zero.



Application of KVVL with series connected voltage source.
R,

M\

Fig. 1.1
Vi+V2-IR1—IR2=0
=V1+V2=1(R1+Ry)

V,+V,
R,+R,

Application of KVL while voltage sources are connected in opposite polarity.

: § 3

R~

Fig. 1.2
Vi—IR1—V2—IR;—IR3=0
> Vi-V2=IR;y+ IRz +IR;
> Vi—Va=1 (R + IRz +IR)



| = Vl_VZ
R,+R,+R;

Kirchaoff's Current Law (KCL) :

The algebraic sum of currents meeting at a junction or mode is zero.

Fig. 1.3

Considering five conductors, carrying currents I1, I2, I3, 14 and Is meeting at a point O.
Assuming the incoming currents to be positive and outgoing currents negative.

i+ (-l)+ 13+ (-la) +15=0
li—lo+1I3—14+15=0

lLi+l3+ls=l+ 14

Thus above Law can also be stated as the sum of currents flowing towards any
junction in an electric circuit is equal to the sum of the currents flowing away from
that junction.

Voltage Division (Series Circuit)

Considering a voltage source (E) with resistors R: and Rz in series across it.

R,

MW\

E + @ g .

Fig. 1.4



Voltage drop across Ry = 1. Ry = E.R,
R,+R,

E.R,
R,+R,

Similarly voltage drop across R2 = LRz =

Current Division :

A parallel circuit acts as a current divider as the current divides in all branches in a

parallel circuit.

vV
VVV

Fig. 1.5

Fig. shown the current | has been divided into Iy and I in two parallel branches with

resistances R1 and Rz while V is the voltage drop across R: and Ro.

|1=X and lL,= —
Rl 2

Let R = Total resistance of the circuit.

Hence _ == i+ 1
R R, R,
> R - RlR 2



=V_ V. _V({R+R,)

R RR, RR,
R,+R,

But=V =11R1 = IbR2

IRR,L]
> |I=1R:J
DR1+R2D
1= LR+R)Y)
R,
Therefore = IR,
R,+R,

Similarly it can be derived that




Magnetic Circuits :

Introduction : Magnetic flux lines always form closed loops. The closed path
followed by the flux lines is called a magnetic circuit. Thus, a magnetic circuit
provides a path for magnetic flux, just as an electric circuit provides a path for the
flow of electric current. In general, the term magnetic circuit applies to any closed
path in space, but in the analysis of electro-mechanical and electronic system this
term is specifically used for circuits containing a major portion of ferromagnetic
materials. The study of magnetic circuit concepts is essential in the design, analysis
and application of electromagnetic devices like transformers, rotating machines,

electromagnetic relays etc.

Magnetomotive Force (M.M.F) :

Flux is produced round any current — carrying coil. In order to produce the required
flux density, the coil should have the correct number of turns. The product of the
current and the number of turns is defined as the coil magneto motive force (m.m.f).

If | = Current through the coil (A)

N = Number of turns in the coil.

Magnetomotive force = Current x turns
SOMMF=1XN

The unit of M.M.F. is ampere—turn (AT) but it is taken as Ampere(A) since N

has no dimensions.

Magnetic Field Intensity

Magnetic Field Intensity is defined as the magneto-motive force per unit length of the

magnetic flux path. Its symbol is H.



Magnetic field Intensity (H) = Magnetomotive force
Mean length of the magnetic path

> H=F_TN-
|

Where | is the mean length of the magnetic circuit in meters. Magnetic field intensity is also
called magnetic field strength or magnetizing force.

Permeability :-

Every substance possesses a certain power of conducting magnetic lines
of force. For example, iron is better conductor for magnetic lines of force than
air (vaccum) . Permeability of a material (u) is its conducting power for
magnetic lines of force. It is the ratio of the flux density. (B) Produced in a

material to the magnetic filed strength (H) i.e. u = %

Reluctance :

Reluctance (s) is akin to resistance (which limits the electric Current).
Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a
measure of the opposition offered by a magnetic circuit to the setting up of the
flux.
Reluctance is the ratio of magneto motive force to the flux. Thus

Ssz%)

Its unit is ampere turns per webber (or AT/whb)
Permeance:-
The reciprocal of reluctance is called the permeance (symbol A).
Permeance (A) =1/S  wb/AT
Turn T has no unit.

Hence permeance is expressed in wh/A or Henerys(H).



Electric Field versus Magentic Field.

1)

2)

3)

4)

5)

6)

1)

2)

Similarities

Electric Field

Flow of Current (1)

Emf is the cause of
flow of current

Resistance offered
to the flow of
Current, is called
resistance (R)

Conductance

(G)=£
R

Current density is
amperes per square
meter.

Current (1) - EMF/R

1)

2)

3)

4)

5)

6)

Dissimilarities

Current actually flows
in an electric Circuit.

Energy is needed as
long as current flows

1)

2)

Magnetic Field
Flow of flux (&)

MMT is the cause of
flow of flux

Resistance offered to
the flow of flux, is
called reluctance (S)

Permitivity(n) = A

Flux density is number
of lines per square
meter.

Flux (@) :%

Flux does not actually
flow in a magnetic
circuit.

Energy is initially
needed to create the
magnetic flux, but not



3)

B.H. Curve :

Conductance is
constant and
independent of current
strength at a particular
temperature.

3)

to maintain it.

Permeability (or
magnetic
conductance )
depends on the total
flux for a particular
temperature.

Place a piece of an unmagnetised iron bar AB within the field of a

!lrc.n bar /Soleﬂﬂid

Fig. 2.1

solenoid to magnetise it. The field H produced by the solenoid, is called
magnetising field, whose value can be altered (increased or decreased) by
changing (increasing or decreasing) the current through the solenoid. If we
increase slowly the value of magnetic field (H) from zero to maximum value,
the value of flux density (B) varies along 1 to 2 as shown in the figure and the
magnetic materials (i.e iron bar) finally attains the maximum value of flux
density (Bm) at point 2 and thus becomes magnetically saturated.

Now if value of H is decreased slowly (by decreasing the current in the

solenoid) the corresponding value of flux density (B) does not decreases along
2-1 but decreases some what less rapidly along 2 to 3. Consequently during the
reversal of magnetization, the value of B is not zero, but is ‘13" at H= 0. In other



wards, during the period of removal of magnetization force (H), the iron bar is
not completely demagnetized.

In order to demagnetise the iron bar completely, we have to supply the
demagnetisastion force (H) in the opposite direction (i.e. by reserving the
direction of current in the solenoid). The value of B is reduced to zero at point
4, when H="14'". This value of H required to clear off the residual magnetisation,
Is known as coercive force i.e. the tenacity with which the material holds to its
magnetism.

If after obtaining zero value of magnetism, the value of H is made more
negative, the iron bar again reaches, finally a state of magnetic saturation at the
point 5, which represents negative saturation. Now if the value of H is increased
from negative saturation (= '45') to positive saturation ( = '12") a curve '5,6,7,2'
is obtained. The closed loop "2,3,4,5,6,7,2" thus represents one complete cycle
of magnetisation and is known as hysteresis loop.



NETWORK ANALYSIS
Different terms are defined below:

1. Circuit: A circuit is a closed conducting path through which an electric current either
flow or is intended flow

2. Network: A combination of various electric elements, connected in any  manner.
Whatsoever, is called an electric network

3. Node: it is an equipotential point at which two or more circuit elements are joined.
4. Junction: it is that point of a network where three or more circuit elements are joined.
5. Branch: it is a part of a network which lies between junction points.

6. Loop: Itisaclosed path in a circuit in which no element or node is accounted more than
once.

7. Mesh: It is a loop that contains no other loop within it.

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of i) circuit elements ii)
nodes iii) junction points iv) branches and v) meshes.

Rs

Rz




Solution: i) no. of circuit elements = 12 (9 resistors + 3 voltage sources)
ii) no. of nodes =10 (a, b, c, d, e, f, g, h, k, p)
iii) no. of junction points =3 (b, e, h)
iv) no. of branches = 5 (bcde, be, bh, befgh, bakh)
V) no. of meshes = 3 (abhk, bcde, befh)
MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding solutions
for a network. The suitability of either mesh or nodal analysis to a particular problem depends
mainly on the number of voltage sources or current sources .If a network has a large number
of voltage sources, it is useful to use mesh analysis; as this analysis requires that all the
sources in a circuit be voltage sources. Therefore, if there are any current sources in a circuit
they are to be converted into equivalent voltage sources,if, on the other hand, the network has
more current sources,nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuits mesh
analysis is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface
without crossovers. A non-planar circuit cannot be drawn on a plane surface without a
crossover.

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a
planar circuit which looks like a non-planar circuit. It has already been discussed that a loop
is a closed path. A mesh is defined as a loop which does not contain any other loops within it.
To apply mesh analysis, our first step is to check whether the circuit is planar or not and the
second is to select mesh currents. Finally, writing Kirchhoft*s voltage law equations in terms
of unknowns and solving them leads to the final solution.

(@) (b) (©
Figure 3.2

Observation of the Fig.3.2 indicates that there are two loops abefa,and bcdeb in the
network .Let us assume loop currents 11 and lowith directions as indicated in the figure.



Considering the loop abefa alone, we observe that current Iy is passing through Ry, and (11-12)
is passing through R2. By applying Kirchhoff’s voltage law, we can write

Vs. =11R1+R2(l1-12) (3.1)
R1 R3
a % b /\/\/\/ T
Vs R>
Ra
G) I1 I2
f e d

Figure 3.3

Similarly, if we consider the second mesh bcdeb, the current 12 is passing through Rs
and Rs, and (I2 — 11) is passing through R, By applying Kirchhoff’s voltage law around the
second mesh, we have

R2 (I2-11) + R3l2 +Ral2=0 (3.2

By rearranging the above equations,the corresponding mesh current equations are
l1 (R1+R2) - 12R2 =Vs,

-11R2 +(R2+R3+R4) 12=0 (3.3)

By solving the above equations, we can find the currents I; and I> If we observe
Fig.3.3, the circuit consists of five branches and four nodes, including the reference node.The
number of mesh currents is equal to the number of mesh equations.

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of
mesh current would be 5-(4-1)=2.



In general we have B number of branches and N number of nodes including the
reference node than number of linearly independent mesh equations M=B-(N-1).

Example 3.2 Write the mesh —\\V\\
5Q 10Q2

current equations in the circuit shown 10V T 2Q

50v —|—

in fig 3.4 and determine the currents.

Figure 3.4

Solution: Assume two mesh currents in the direction as indicated in fig.
3.5. The mesh current equations are

5Q
—\VV\
0V I 12 10 Q
20 Y [s0v
Figure 3.5
511 + 2(11-12) = 10
1012 + 2(12-11) +50=0 (3.4)

We can rearrange the above equations as
711 -212 =10
-211+121>=-50 (3.5)

By solving the above equations, we have 1:=0.25 A, and I, = -4.125



Here the current in the second mesh I, is negative; that is the actual current I, flows opposite
to the assumed direction of current in the circuit of fig .3.5.

Example 3.3 Determine the mesh current 1 in the circuit shown in fig.3.6.

—AAAN —

5V

Solution: From the circuit, we can from the following three mesh equations

101145(13+15) +3(I1-13) = 50 (3.6)
215 +5(I2+11) +1(Io+13) = 10 (3.7)
3(15-1) +1(ls+l2) = -5 (3.8)

Rearranging the above equations we get

1811+512-313=50 (3.9
5114812+ 13=10 (3.10)
-3l + I+ 413=-5 (3.11)

According to the Cramer’s rule



Y50
'10

5 -3
o
8 1
I_'—5 1 40 1175
1= -
B8 5 -3 356
8
1

«
"5

1w
! 0
§—3 4f

Or 1:= 3.3 A Similarly,

Y18 50 -3
5 10 1)
=3 -5 4% _-355
218 5 -3% 36
"5 8 1 w
! o
Or 1,=-0.997A
Y18 5 50/
5 8 10%
= -3 1 -5%0_52
3 18 5 -37 356
! 00
<3 1 4y
Or I5=1.47A

- 11=3.3A, 12=-0.997A, 13=1.47A

(3.12)

(3.13)

MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be written by
inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7

The loop equation are 11R1+ R2(l1-12)

R1 Rs

Figure 3.7



Ro( 12-11)+12R3=-V> 3.14
Rals+Rs13=V> 3.15

Reordering the above equations, we have

(R1tR2)11-R2l2=V1 3.16
-Rol1+(R2+R3)12=-V> 3.17
(R4*Rs)13=V> 3.18

The general mesh equations for three mesh resistive network can be written as

R11l1 £ R12lo+ R13l3=V, 3.19
+ R21114+R2212 £R23l3= Vp 3.20
+ Ra1l1 £R3210+R33l3= V¢ 3.21

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 3.21
respectively, the following observations can be taken into account.

1. The self-resistance in each mesh

2. The mutual resistances between all pairs of meshes and

3. The algebraic sum of the voltages in each mesh.

The self-resistance of loop 1, R11=R1+Ry, is the sum of the resistances through which 14
passes.

The mutual resistance of loop 1, Ri2= -Ry, is the sum of the resistances common to loop
currents Iy and I2. If the directions of the currents passing through the common resistances are
the same, the mutual resistance will have a positive sign; and if the directions of the currents
passing through the common resistance are opposite then the mutual resistance will have a
negative sign.

Va=V1 is the voltage which drives the loop 1. Here the positive sign is used if
the direction of the currents is the same as the direction of the source. If the current
direction is opposite to the direction of the source, then the negative sign is used.

Similarly R22=R>+R3 and Rs3=Rs4+Rs are the self-resistances of loops 2 and 3
respectively. The mutual resistances R13=0, R21= -R2, R23=0, R31=0, R3,=0 are the
sums of the resistances common to the mesh currents indicated in their subscripts.

Vb= -V2, V= V2 are the sum of the voltages driving their respective loops.



Example 3.4 write the mesh equation for the circuit shown in fig. 3.8

50
10V -
Solution : the ¢
R11l1 £ Ri2lo+ R1313=V, (3.22)
+ Rai1l1+R2212+ Rasls=Vp (3.23)
+ Rs1l1+ Ra2l0+R3313=V¢ (3.24)

Consider equation 3.22

Rui=self resistance of loop 1=(1Q+ 3 Q +6 Q) =10 Q

R1>= the mutual resistance common to loop 1 and loop 2 =-3 Q

Here the negative signindicates that the currents are in opposite direction.
R13= the mutual resistance common to loop 1 & 3=-6 Q

Va=+10 V, the voltage the driving the loop 1.

Here he positive sign indicates the loop current |1 is in the same direction as the
source element.

Therefore equation 3.22 can be written as



10 13- 312-613= 10 V (3.25)

Consider Eq. 3.23
R21= the mutual resistance common to loop 1 and loop 2 = -3 Q

Roo= self resistance of loop 2=(3Q+2 Q +5 Q) =10 Q
R23=0, there is no common resistance between loop 2 and 3.
Vb = -5V, the voltage driving the loop 2.
Therefore Eg. 3.23 can be written as
-3l1 +10I= -5V (3.26)
Consider Eq. 3.24
Rs1= the mutual resistance common to loop 1 and loop 3 =-6 Q
Rs2= the mutual resistance common to loop 3 and loop 2 =0
Ras= self resistance of loop 3=(6Q2+ 4 Q) =10 Q
V= the algebraic sum of the voltage driving loop 3
=(5 V+20V)=25 V (3.27)
Therefore, Eq3.24can be written as -611 + 10l3= 25V
-611-312-613= 10V
-311+101,=-5V
-61:+1013=25V

SUPERMESH ANALYSIS

Suppose any of the branches in the network has a current source, then it is slightly difficult to
apply mesh analysis straight forward because first we should assume an unknown voltage
across the current source, writing mesh equation as before, and then relate the source current
to the assigned mesh currents. This is generally a difficult approach. On way to overcome this
difficulty is by applying the supermesh technique. Here we have to choose the kind of
supermesh. A supermesh is constituted by two adjacent loops that have a common current
source. As an example, consider the network shown in the figure 3.9.

—Ro
+ V I P R3 I3 R4
.
«— «— «—
1 I % 2 3




Here the current source I is in the common boundary for the two meshes 1 and 2. This current
source creates a supermesh, which is nothing but a combination of meshes 1 and 2.

Rl + Ra(lo-13)=V
Or Rili+ Rsl2- Rals=V
Considering mesh 3, we have
Rs(l3-12)+ R4l3=0

Finally the current | from current source is equal to the difference between two mesh currents
i.e.

11-12=I

we have thus formed three mesh equations which we can solve for the three unknown
currents in the network.

Example 3.5. Determine the current in the 5Q resistor in the network given in Fig. 3.10

3 e
2Q
f
S0v {:j,: 1 Q
Figure 3.10
Solution: - From the first mesh, i.e. abcda, we have
50 = 10(l1-1) + 5(l1-13)
Or 151;-1012-513=50 (3.28)

From the second and third meshes. we can form a super mesh
10(12-11)+212 +13+5(1s-11)=0

Or -1511+121,+613=0 (3.29)



The current source is equal to the difference between Il and 111 mesh currents
ie. l-l3=2A (3.30)
Solving 3.28.,3.29 and 3.30. we have
11 =19.99A,1,=17.33 A, and 13 =15.33 A
The current in the 5Q resistor =Ij -13
=19.99 -15.33=4.66A
The current in the 5Q resistor is 4.66A.

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the
currents, 11, 12 and Is.

10V
\‘I‘
Iy (-
P I3
[_Fjlo A 3Q 1Q
- «— 2Q
4—
I | i
Figure 3.11

Solution ; In fig 3.11, the current source lies on the perimeter of the circuit, and the
first mesh is ignored. Kirchhoff*s voltage law is applied only for second and third meshes .

From the second mesh, we have
3(I2-11)+2(I2-13)+10 =0

Or -3l1 +512-213=-10 (3.31)

From the third mesh, we have
I3+ 2 (I3-I2) =10

Or -21p+313 =10 (3.32)



From the first mesh, I1=10A (3.33)
From the abovethree equations, we get

1:=10A, 12=7.27, I3=8.18A

NODALANALYSIS

In the chapter | we discussed simple circuits containing only two nodes, including the
reference node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum
node, then it is possible to write N -1nodal equations by assuming N-1 node voltages. For
example,al0 node circuit requires nine unknown voltages and nine equations. Each node in a circuit
can be assigned a number or a letter. The node voltage is the voltage of a given node with respect to
one particular node, called the reference node, which we assume at zero potential. In the circuit shown
in fig. 3.12, node 3 is assumed as the Reference node. The voltage at node 1 is the voltage at that
node with respect to node 3. Similarly, the voltage at node 2 is the voltage at that node with respect to
node 3. Applying Kirchhoff’s current law at node 1, the current entering is the current leaving (See
Fig.3.13)

1
_
. ®
3 Figure 3.12
R2
7, = VVV'=
1
® R,

Figure 3.13

I1=V1/R1 + (V1-V2)/R>



Where V1 and V> are the voltages at node 1 and 2, respectively. Similarly, at node
2.the current entering is equal to the current leaving as shown in fig. 3.14

R2 R4

Figure 3.14

(V2-V1)/R2 + V2/R3 + V2/(R4+Rs) =0

Rearranging the above equations, we have
V1[1/R1+1/R2]-V2(L/R2)= Iy

-V1(1/R2) + V[1/R2+1/Rs+1/(Ra+Rs)]=0

From the above equations we can find the voltages at each node.

Example 3.7 Determine the voltages at each node for the circuit shown in fig 3.15

3Q

100 J\/\/\/\ﬁ 20
VWS A=A

3Q _

D) @3

10V ] 5Q 5A 1Q 6Q
Figure 3.15
Solution : At node 1, assuming that all currents are leaving, we have
(V1-10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0

Or Vi[1/10 +1/3+1/5+1/3]-V,[1/3+1/3]=1

0.96V1-0.66V2=1 (3.36)
At node 2, assuming that all currents are leaving except the current from current source, we

have

(V2-V)/I3+ (V2-V1)[3+ (V2-V3)/[2 =5

-V1[2/3]+V2[1/3 +1/3 + 1/2]-V3(1/2) =5
-0.66V1+1.16V2-0.5V3=5 (3.37)



At node 3 assuming all currents are leaving, we have
(V3-V2)/2 + V3/1 + V3/6 =0
-0.5V; + 1.66V3=0 (3.38)
Applying Cramer’s rule we get

Y 1 -0.66 0 /
! o)
J 8 1.16 -05 %

V= “05 166 ="1%_gos
1 0% -066 0 - 0887
'~0.66 116 —0.5
¢ 0 -05 1667
Similarly,
Y 09% 1 o /
, -066 5 —05
V—’ 0 0 1.66 ©_906 =102
209 -066 0 . 0.887
'~0.66 116 —05
. 0 -05 1.66";

Y 096 066 1 /
, —Q86 116 5
V= -05 0 o_ 273 =307

0% -066 0 . 0887
~0.66 116 -0.5

6
0o -05 1.660;

3

~ = =

I~

NODAL EQUATIONS BY INSPECTION METHOD The nodal equations for a general planar network can also be written by inspection
without going through the detailed steps. Consider a three node resistive network, including the reference node, as shown in fig 3.16

R1 R3 Rs

— Figure 3.16



In fig. 3.16 the points a and b are the actual nodes and c is the reference node.

Now consider the nodes a and b separately as shown in fig 3.17(a) and (b)

R1 Vi R3 Rs Vb Rs

(a) (b)
Figure 3.17 —

In fig 3.17 (a), according to Kirchhoff’s current law we have
l1+12+13=0
(Va-V1)/R1 +Va/Ro+ (Va-Vb)/R3= 0 (3.39)
In fig 3.17 (b) , if we apply Kirchhoff’s current law
l4+ 15= I3
. (Vb-Va)/R3 + Vp/Ra+(Vb-V2)/Rs=0 (3.40)
Rearranging the above equations we get
(/R1+1/R2+1/R3)Va-(1/R3)Vp=(1/R1)V1 (3.41)
(-1/R3)Va+ (1/Ra+1/R4+1/Rs)Vp=V2/Rs (3.42)
In general, the above equation can be written as
GaaVa+ GaVb=I1 (3.43)
GbaVa + GopVo=I2 (3.44)

By comparing Eqs 3.41,3.42 and Eqgs 3.43, 3.44 we have the self conductance at node
a, Gaa=(1/R1 + 1/R2 + 1/R3) is the sum of the conductances connected to node a. Similarly,
Gob= (1/R3 + 1/R4 +1/Rs) is the sum of the conductances connected to node b. Gap=(-1/R3) is
the sum of the mutual conductances connected to node a and node b. Here all the mutual
conductances have negative signs. Similarly, Gpa= (-1/R3) is also a mutual conductance
connected between nodes b and a. 11 and I» are the sum of the source currents at node a and
node b, respectively. The current which drives into the node has positive sign, while the
current that drives away from the node has negative sign.



Example 3.8 for the circuit shown in the figure 3.18 write the node equations by the
inspection method.

Fig 3.18
Solution:-
The general equations are
GaaVatGanVb=1 (3.45)
GpaVa + GppVo=I2 (3.46)

Consider equation 3.45

Gaa=(1+ 1/2 +1/3) mho. The self conductance at node a is the sum of the conductances
connected to node a.

Ghbb = (1/6 + 1/5 + 1/3) mho the self conductance at node b is the sum of conductances
connected to node b.

Gab =-(1/3) mho, the mutual conductances between nodes a and b is the sum of the
conductances connected between node a and b.

Similarly Gpa = -(1/3), the sum of the mutual conductances between nodes b and a.

11=10/1 =10 A, the source current at node a,



1,=(2/5 + 5/6) = 1.23A, the source current at node b.
Therefore, the nodal equations are
1.83V,-0.33Vp=10 (3.47)

-0.33V4+0.7V= 1.23 (3.48)
SUPERNODE ANALYSIS

Suppose any of the branches in the network has a voltage source, then it is slightly difficult to
apply nodal analysis. One way to overcome this difficulty is to apply the supernode
technique. In this method, the two adjacent nodes that are connected by a voltage source are
reduced to a single node and then the equations are formed by applying Kirchhoff’s current
law as usual. This is explained with the help of fig. 3.19

V1 V2 + V3
2
2/ 3
R2 Vx
I GE‘) R1 R3 R4 Rs
— Vv
2
FIG 3.19

It is clear from the fig.3.19, that node 4 is the reference node. Applying Kirchhoff’s current
law at node 1, we get

I=(Vi/R1) + (V1-V2)/R2

Due to the presence of voltage source V, in between nodes 2 and 3, it is slightly
difficult to find out the current. The supernode technique can be conveniently applied in this
case.

Accordingly, we can write the combined equation for nodes 2 and 3 as under.



(V2-V1)/R2 + V2R3 + (V3-Vy)/R4 +V3/Rs= 0
The other equation is

V2-V3 =V

From the above three equations, we can find the three unknown voltages.

Example 3.9 Determine the current in the 5 Q resistor for the circuit shown in fig.

3.20
2Q
V1 V> + V3
20V
1Q 5Q
QDlO A3Q
10V
Solution. At node 1
10= V1/3 + (V1-V2)/2
Or  V1[1/3 +1/2]-(V2/2)-10=0
0.83V1-0.5V»-10 =0 (3.49)

At node 2 and 3, the supernode equation is
(V2-V1)/2 + V2l + (V3-10)/5 +V3/2 = 0
Or  —V1/2 +V2[(1/2)+1]+ V3[1/5 + 1/2]=2
Or -0.5Vi+1.5V»+0.7V3-2=0
The voltage between nodes 2 and 3 is given by

V2-V3=20

(2.50)

(3.51)

2Q

fig. 3.20



The current in 5 resistor Is =(V3-10)/5
Solving equation 3.49, 3.50 and 3.51, we obtain
V3=-8.42V

Currents Is=(-8.42-10)/5 = -3.68 A (current towards node 3) i.e the current
flows towards node 3.

SOURCE TRANSFORMATION TECHNIQUE

In solving networks to find solutions one may have to deal with energy sources. It has
already been discussed in chapter 1 that basically, energy sources are either voltage sources
or current sources. Sometimes it is necessary to convert a voltage source to a current source
or vice-versa. Any practical voltage source consists of an ideal voltage source in series with
an internal resistance. Similarly, a practical current source consists of an ideal current source
in parallel with an internal resistance as shown in figure3.21. Ry and R; represent the internal
resistances of the voltage source Vs, and current source Is respectively.

Rv

[N

R

P

b fig.3.21 b

Any source, be it a current source or a voltage source, drives current through its load
resistance, and the magnitude of the current depends on the value of the load resistance. Fig
3.22 represents a practical voltage source and a practical current source connected to the
same load resistance Ry.

Rv



R1 RL

\

A

(@) (b)
Figure 3.22
From fig 3.22 (a) the load voltage can be calculated by using Kirchhoff’s voltage law as
Va=Vs-ILRy

The open circuit voltage Voc=Vs

. V
The short circuit current lgc=_%_
R

v

from fig 3.22 (b)
I.=Is-1=1s-(Vab/R1)

The open circuit voltage Voc= IsR1

The short circuit current lsc=ls

The above two sources are said to be equal, if they produce equal amounts of current
and voltage when they are connected to identical load resistances. Therefore, by equating the
open circuit votages and short circuit currents of the above two sources we obtain

Voc=IsR1=Vs
Ise=1s=Vs/Ry
It follows that
Ri=Rv=Rs; Vs=IsRs

where Rs is the internal resistance of the voltage or current source. Therefore, any
practical voltage source, having an ideal voltage Vs and internal series resistance Rs can be
replaced by a current source 1s=Vs/Rs in parallel with an internal resistance Rs. The reverse



tansformation is also possible. Thus, a practical current source in parallel with an internal

resistance Rs can be replaced by a voltage source Vs=IsRs in series with an internal resistance
Rs.

Example 3.10 Determine the equivalent voltage source for the current source shown in fig
3.23

5SA 5Q

Figure 3.23

Solution: The voltage across terminals A and B is equal to 25 V. since the internal resistance
for the current source is 5 €, the internal resistance of the voltage source is also 5 Q. The
equivalent voltage source is shown in fig. 3.24.

5Q

Fig 3.24

Example 3.11 Determine the equivalent current source for the voltage source shown in fig. 3.25

%

30Q




Solution : the short circuit current at terminals A and B is equal to

I=50/30 =1.66 A

166 A |
p

30Q2

Fig 3.26

Since the internal resistance for the voltage source is 30Q, the internal resistance of
the current source is also 30 Q. The equivalent current source is shown in fig. 3.26.



NETWORK THEOREMS

Before start the theorem we should know the basic terms of the network.
Circuit: It is the combination of electrical elements through which current
passes is called circuit.
Network: It is the combination of circuits and elements is called network.
Unilateral :It is the circuit whose parameter and characteristics change with
change in the direction of the supply application.
Bilateral: It is the circuit whose parameter and characteristics do not change
with the supply in either side of the network.
Node: It is the inter connection point of two or more than two elements is
called node.
Branch: It is the interconnection point of three or more than three elements is
called branch.
Loop: Itis a complete closed path in a circuit and no element or node is taken
more than once.
Super-Position Theorem :
Statement :" It states that in a network of linear resistances containing more than
one source the current which flows at any point is the sum of all the currents
which would flow at that point if each source were considered separately and
all other sources replaced for time being leaving its internal resistances if any".

R R,
MWW MW
EI.——
n T R, -—-:E
Explanation :

Considering E; source
Ri '

Step 1.
R,&r are in series and parallel with Rz and again series with R



(Ro#r2) || Rs
_ (Ry+ )R,y m
R,+r,+R,

="

(say)

'R

| = I, xR,

? R,+r,+R,

1, = I,(R, +1,)
R,+1,+R,;

Step—-2

Considering E2 source,R1&r; are series and R parallel and R; in series

(Ri+11) || Rs
_ (Ry+ rl)RS_ n
R+ +R,
Rt2: n+ R2+ r2
=2
2 R_t2

4= Ly (R +17)

R+T7+R

Fr+
1 1 3

I'= 1,xR
1
R¥TTR™

1 1 3

Step —3
Curlrenf in Ry branch=1-1'

Current in R, branch = ll— |’1

. 2 2

Currentin Rz branch=1-1'
3

(say)

3

The direction of the branch current will be in the direction of the greater value
current.

Thevenin’s Theorem :

The current flowing through the load resistance R; connected across any two

terminals A and B of a linear active bilateral network is given by
I _ Vth _ Voc
L= R+R “R+R
th L i L

Where Vi, = V. is the open. circuit voltage across A and B terminal when Ry is
removed.

Ri =Ry is the internal resistances of the network as viewed back into the open
circuit network from terminals A & B with all sources replaced by their internal
resistances if any.



Explanation :

Step — 1 for finding Voc
Remove R, temporarily to find V..
R,

—‘Wv l[

E-—

I = =

R,+ R,+r
Vo= IR,
Step — 2 finding R
Remove all the sources leaving their internal resistances if any and viewed from
open circuit side to find out R; or Ry,.

A

T R, h

Ri=(R;+1)|IR;
R = (R + 1R,
R,+r+R,

Step—3

Connect internal resistances and Thevenin’s voltage in series with load
resistance Ry.



Where Ry,=thevenin resistance
V=thevenin voltage
li,=thevenin current

Ri=R+ 1R,
| — Vth — Voc
" Ry+R.  R+R,
Example 01- Applying thevenin theorem find the following from given
figure
(i)  the Current in the load resistance R, of 15 A
3Q A
2 ‘L
2t 3 15Q
24V "
r=1Q
o
B

Solution : (i) Finding Voc

— Remove 15A resistance and find the Voltage across A and B
30

—W—————

24v L
=107

2120

Vo IS the voltage across 12 A resister

24x12
= ————— =18V
Voc 12+3+1

(i)  Finding Ri,
R is calculated from the terminal A & B into the network.

The 1 A resisterand 3 A in are seriesand then
parallel 30
Ry = 3+1// 12 1 1
2120 2120
4 x12
= = 3\

16




(i) lp=-YC = P —1A
R.+R 15+3

Example 02: Determine the current in 1€ resistor across AB of the network

shown in fig(a) using thevenin theorem.

Solution:The circuirt can be redrawn as in fig (b).

— B fig (a),(b),(c),(d) respectively
Step-1 remove the 1Q resistor and keeping open circuit . The current source is
converted to the equivalent voltage source as shown in fig ()
Step-02 for finding the Vi, we'll apply KVL law in fig (c)
then 3-(3+2)x-1=0
x=0.4A
Vin=Vag =3-3*0.4=1.8V
Step03-for finding the Ry, all sources are set be zero
Rin=2//3=(2*3)/(2+3)=1.2Q
Step04- Then current 1,=1.8/(12.1+1)=0.82A



Example03: The four arms of a wheatstone bridge have the following
resistances .

AB=100Q2,BC=10Q,CD=4Q,DA=50Q.AA galvanometer of 20Q
resistance is connected across BD. Use thevenin theorem to compute the current
through the galvanometer when the potential differencelOV is maintained
across AC.

Solution:

n
‘| :;}'2;\‘" ) |
| |
\ =t ,
- A 1
2 \ 4 \‘L - Wh
= ]! 2 i‘:{ Y m°r;/\lz."’”‘
¢ Y & \ S
. # x
\‘lh o g —
~ \ (= 'rcu?; P, A 3
7”1. n_‘! l \\ r‘s""l ';MZ’ L
| = »\16/ - | \;“.I | ’Z\ n
- .

step 01- Galvanometer is removed.
step02-finding the Vi, between B&D.ABC is a potential divider on which a
voltage drop of 10vtakes place.
Potential of B w.r.t C=10*10/110=0.909V
Potential of D w.r.t C=10*4/54=.741V
then,
p.d between B&D is V4,=0.909-.741=0.168V
Step03-finding Ry,
remove all sources to zero keeping their internal resistances.



Rin =Rep=10//100+50//4=12.79Q
Step04;
lastly 1n=Vi/Rn+R=0.168/(12.79+20)=5mA

Norton's Theorem
Statement : In any two terminal active network containing voltage sources and
resistances when viewed from its output terminals in equivalent to a constant
current source and a parallel resistance. The constant current source is equal to
the current which would flow in a short circuit placed across the terminals and
parallel resistance is the resistance of the network when viewed from the open
circuit side after replacing their internal resistances and removing all the
sources.
OR
In any two terminal active network the current flowing through the load
resistance Ry is given by
I, = I xR,
R; x R.
Where R; is the internal resistance of the network as viewed from the open ckt
side A & B with all sources being replaced by leaving their internal resistances
if any.
s is the short ckt current between the two terminals of the load resistance
when it is shorted

Explanation :
ﬂRﬂ”" A

E b

B

Step—1
A &B are shorted by a thick copper wire to find out I
l,=E/(R,+T)



v Isc

B

ISC = E / (R]_ +r)

Step —2
Remove all the source leaving its internal resistance if any and viewed from

open circuit side A and B into the network to find R; .

Ri=R;+ 1 IR,

e (1) §Ri gm

Step—3

Connect Is. & Rj in parallel with R,

I xR,
| =<1

Ri +R.
Example 01:Using norton's theorem find the current that would flow through
the resistor R, whenit takes the values of 12Q,24Q&36Q respectively in the fig
shown below.
Solution:



Step 01-remove the load resistance by making short circuit. now terminal AB
short circuited.
Step 02-Finding the short circuit current Iy
First the current due to E; is =120/40=3A,and due to E; is 180/60=3A.
then 15.:=3+3=6A
Step 03-finding resistance Ry
It is calculated by by open circuit the load resistance and viewed from open
circuit and into the network and all sources are taken zero.
Rn=40//60=(40*%60)/(40+60)=24Q
1) when R =12Q, 1, =6*24/(24+36)=4A
i) when R =24Q.1; =6/2=3A
i) when R =36Q,1, =6*24/(24+36)=2.4A

Maximum PowerTransfer Theorem

Statement : A resistive load will abstract maximum power from a network
when the load resistance is equal to the resistance of the network as viewed
from the output terminals(Open circuit) with all sources removed leaving their
internal resistances if any

Proof : A
I — Vth II_
" R+R, %
Power delivered to the load i
resistance is given by L
PL: I 2|_R L r
v [ ‘th
—OM R, B

DR+R



V 2R
_ L
(R+R)*

Power delivered to the load resistance R, will be maximum
dP,

L
d &« VIR <

:>d-R—¢(ﬁ—th+—FHf<_ 0

V (R+R)2 2R><2(R+R)
— L i L_0
(R+R)

:>V (R+R)2 2R><2(R+R) 0
. VZR+R)2-2VZR(R+R )=0
th i L th L i L
—=V2Z(R+R)2=2VRR(R+R)

th i L th L i L

=R +R =2R,
= Ri= RL
Yj vz /
(PL) max = —" oRL
<R+R)%
V20
—[_t[R
CART T
2
L
4RL2




COUPLED CIRCUITS

It is defined as the interconnected loops of an electric network through the
magnetic circuit.
There are two types of induced emf.

(1) Statically Induced emf.

(2) Dynamically Induced emf.

Faraday’s Laws of Electro-Magnetic :

Introduction — First Law :—>

Whenever the magnetic flux linked with a circuit changes, an emf is induced in

it.



OR
Whenever a conductor cuts magnetic flux an emf is induced in it.
Second Law :—
It states that the magnitude of induced emf is equal to the rate of change of flux
linkages.
OR
The emf induced is directly proportional to the rate of change of flux and
number of turns
Mathematically :

e oC QQ
dt
e c N
Or e =-N d¢
dt
Where e = induced emf
N = No. of turns
¢ = flux

‘- ve’ sign is due to Lenz’s Law
Inductance ;>

It is defined as the property of the substance which opposes any change in

Current & flux.
Unit :— Henry
Fleming’s Right Hand Rule:—

It states that “hold your right hand with fore-finger, middle finger and
thumb at right angles to each other. If the fore-finger represents the direction of
field, thumb represents the direction of motion of the conductor, then the middle
finger represents the direction of induced emf.”

Lenz’s Law : >

It states that electromagnetically induced current always flows in such a
direction that the action of magnetic field set up by it tends to oppose the vary
cause which produces it.

OR

It states that the direction of the induced current (emf) is such that it
opposes the change of magnetic flux.
(2) Dynamically Induced emf :—



sl Y

g
’

U

In this case the field is stationary and the conductors are rotating in an
uniform magnetic field at flux density ‘B” Wb/mt? and the conductor is lying
perpendicular to the magnetic field. Let ‘I’ is the length of the conductor and it
moves a distance of ‘dx’ nt in time ‘dt’ second.

The area swept by the conductor = 1. dx
Hence the flux cut = ldx. B

Change in flux in time ‘dt’ second = %
E =Blv
Where V = %
dt
If the conductor is making an angle ‘0’ with the magnetic field, then
e = Blvsing

(1) Statically Induced emf :—

Here the conductors are remain in stationary and flux linked with it
changes by increasing or decreasing.

It is divided into two types .
(i)  Self-induced emf.
(i)  Mutually-induced emf.
(i) Self-induced emf : — It is defined as the emf induced in a coil due to the
changeL of its own flux linked with the coil.

(00000

57
If current through the coil is changed then the flux linked with its own
turn will also change which will produce an emf is called self-induced emf.

Self-Inductance :—>



It is defined as the property of the coil due to which it opposes any
change (increase or decrease) of current or flux through it.

Co-efficient of Self-Inductance (L) :—>
It is defined as the ratio of weber turns per ampere of current in the coil.
OR
It is the ratio of flux linked per ampere of current in the coil
1st Method for ‘L’ :—>
-
Where L = Co-efficient of self-induction
N = Number of turns
¢ = flux
| = Current

2nd Method for L :(—>
We know that
N¢
L =
|
= LI =N¢
= -LI=—Ng
= —Lﬂ =-N %

g &
=-L__=-N ¢

8‘ dt

— eL

dl

dt
Where L = Inductance

e=-N d¢ is known as self-induced emf.
L dt

dl
When —= lamp/ sec.
dt

=L=

e =1volt
L =1 Henry



A coil is said to be a self-inductance of 1 Henry if 1 volt is induced in it.
When the current through it changes at the rate of 1 amp/ sec.
3rd Method for L :—»

M ,M AN 2
|
Where A = Area of x-section of the coil

N = Number of turns

L = Length of the coil
(i)  Mutually Induced emf :—

It is defined as the emf induced in one coil due to change in current in
other coil. Consider two coils ‘A’ and ‘B’ lying close to each other. An emf will
be induced in coil ‘B’ due to change of current in coil ‘A’ by changing the
position of the rheostat.

A B
Mutual Inductance :—

It is defined as the emf induced in coil ‘B’ due to change of current in coil
‘A’ is the ratio of flux linkage in coil ‘B’ to 1 amp. Of current in coil ‘A’.
Co-efficient of Mutual Inductance (M)

Coefficient of mutual inductance between the two coils is defined as the
weber-turns in one coil due to one ampere current in the other.
1st Method for ‘M’ :—

YL

I,

N2 = Number of turns

M = Mutual Inductance

¢1 = flux linkage

I, = Current in ampere
2nd Method for M :—

We know that
v N

1,
= MI, =N,
= —Ml, = N,

L=



Where e,=-N, %is known as mutually induced emf.

ey = —1volt
Then M =1 Henry

A coil is said to be a mutual inductance of 1 Henry when 1 volt is
induced when the current of 1 amp/sec. is changed in its neighbouring coil.
3rd Method for M :—

M = MoMANN,

I

Co-efficient of Coupling :

Consider two magnetically coupled coils having N; and N, turns
respectiveI)K/.I Their individual co-efficient of self-inductances are

M AN 2
Ll — Llor 2
|
M M AN 2
L2 — Llor 2
I
The flux ¢; produced in coil ‘A’ due to a current of I; ampere is
L1 %/I M AN? |
— 11 _llor 1 X—l
6 N, | N,
~ M,M,AN,l,
#= I
Suppose a fraction of this flux i.e. Ki¢; is linked with coil ‘B’
Then M= ""xN= K1N1N2 """"""""""""" (l)

I, 2 1/IMMA
Similarly the flux ¢, produced in coil ‘B’ due to I, amp. Is

M, M, AN, |
¢2: 1"Vir I 272
Suppose a fraction of this flux i.e. Ku¢, is linked with coil ‘A’
K., K.N..N
Then M= x N = 2NNy o (2)

1, L 1/MMA
Multiplying equation (1) & (2)
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[Q K,=K,=K]

Where ‘K’ is known as the co-efficient of coupling.
Co-efficient of coupling is defined as the ratio of mutual inductance
between two coils to the square root of their self- inductances.

Inductances In Series (Additive) :—

Fhuxes are in the same durection

Let M = Co-efficient of mutual inductance
L, = Co-efficient of self-inductance of first coil.
L, = Co-efficient of self-inductance of second coil.
EMF induced in first coil due to self-inductance

e“:_“ﬁl
Mutually induced emf in first coil
o =t
' dt
EMF induced in second coil due to self induction
e, =L, 3
L, Zdt
Mutually induced Smf in second coil
Y
’ dt

Total induced emf

e=eL1+eL2+eM1+eMz

If ‘L’ is the equivalent inductance, then



L d dl dl dl dl

L, —--M—-L —-M—
d%l OIIdt dt 2 dt dt
—(L-L —2m)
2
dt dt !

=L=L+L,+2M

Inductances In Series (Substnactlve) —

f‘mﬁf“mm

(Fluxes are opposﬂe in direction)

Let M = Co-efficient of mutual inductance
L, = Co-efficient of self-inductance of first coil
L, -= Co-efficient of self-inductance of second coil
Emf induced mdr‘lrst coil due to self induction,
e =-L
L 1&
Mutualely Tglgc_:elt\jﬂ anf in Nlrlaﬂ coil

l

wo By ® dt
Emf induced inoﬁecond coil due to self-induction
e =-L
L, 2 a
Mutually ind@ceﬁlﬂ%mi inl\ﬁe(gond coil
e —_—— — =

v, B 4B dt
Total induced emf
e—e ] L, De D@
dI dl dl dl
Then - L —=— 2.
dtOII df dt dt
=-L =- + L 2|\/|) =>L=L+L —-2M
2
dt dt 1 2 1

Inductances In Parallel :—>



L

Let two inductances of L, & L, are connected in parallel

Let the co-efficent of mutual inductance between them is M.
I=i,+1,

i _diy i, (1)
dt dt dt
e= L dl1 d|2
gt dt
d|2 YL dl1
ddt
= L =L d|2+ di
L dt OIIdt fdtodt
=(L-M) *=(L-M)?
1 d 2 dt

Y PV 1 e ——— )
dt  (L,— M) dt
ol _di_dp
dt dt dt
_(L-M)di, di,
(L,—M) dt dt
dl OL-M ~ Cdi
= dt =L =M +1[ gt --m-mmmmmmmmmmmmmmmemeoeee (3)
1 H
If ‘'L’ is the e uivalent inductance
e=L_-, d# M di,
di dt dt dt
L—:L%+MdL
dé- 11dt di dt di
== EL Mm@
dt Lo tdt dtD

Substituting the value of

dlzl_YL L,— |\/|+M/dI2

dt L<*L-M  fdt
Equating equation (3) & (5)

()



@LZ_M@+1/09'2 = 1EEL ~Mil v 5 i
L-M L-M * dt—

<11 0 f S 01 0

L,-—M 1YDL—M* /

L M

) +1= 4_1@ %+Mf0

L M+L-—- lIVI LNII_—LM+LM M2/
- 1 _ ,12 1 1
= = 0

L+L-2M 1YLL-M2/

-, 12
L-M L< L-M f
=L+L-2M= iLL M2]
? L
LL-M?
Ly+L,—2M

—__ 1 2
—

=L=

When mutual field assist.

When mutual field opposes.
CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS

=  The Loop equation are from fig(a)

V=L di oy diz

Loage U dt

V=L dl2 dL

2 2

Y.
L" L-_W L‘k-ﬂ]
\ 1”‘2
*q' gf"l n
e o
- __“L_'_,_-o
=  The loop equation are from fig(b) o v Gl
Vs M)

+M (. +1,)
dt(Il 2



di, d
V,=(L, _M)E+M a(|l+|2)

Which, on simplification become
v=L diy \adip

Lo1gt dt
v=L di Mdi_l
2 2 gt dt

So called conductively equivalent of the magnetic circuit . Here we may
represent Za = Li-M .
g = (Lz-M) and Zc=M
In case M is + ve and both the currents then Za =L3-M , Zg = L,-M and Z¢ =
M, also , if is — ve and currents in the common branch opposite to each other
Za=L1+M , Zg=L,+Mand Zc =- M.
Similarly, if M is —ve but the two currents in the common branch are additive,
then also.
Zpn=L1+M , Zg=L,+M and Zc = - M.

Further Za , Zg and Zc may also be assumed to be the T equivalent of the
circuit.
Exp.-01:

Two coupled cols have self inductances L;= 10x10°H and L,= 20x10" 3H.
The coefficient of coupling (K) being 0.75 in the air, find voltage in the second
coil and the flux of first coil provided the second coils has 500 turns and the
circuit current is given by i; = 2sin 314.1A.
Solution :

M=K L.,

M = 0.750 x10-3 x 20 x10°3

= M =10.6x10°H

The voltage induced in second coil is
v =M di =M di
? dt dt

=10.6x103 i(z sin 314t)
dt

=10.6 x10% x 2 x 314 cos 314t.
The magnetic CKt being linear,
v = N2 _ 500 x (Khn)
I I
b= M ci 10.6 x10°3
500 xK 500 x 0.75
= 5.66 x107° sin 314t

x2 sin 314t




¢,=5.66 x10~> sins 314t,
Exp. 02

Find the total inductance of the three series connected coupled
coils.Where the self and mutual inductances are
L, =1H,L,=2H, L; =5H
M12= 05H, M23 = 1H, M13 =1H
Solution:

LA =L+ M+ Mz

=1+205+1
= 2.5H

Le =L+ M+ My

=2+1+05
= 3.5H

Lc =L3+ My+ Mis

=5+1+1
=7H

Total inductances are

Lea = Lat+tLle+Le

=25+35+7
= 13H (Ans)
Example 03:

Two identical 750 turn coils A and B lie in parallel planes. A current
changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate
the mutual inductance of the arrangement .If the self inductance of each coil is
15mH, calculate the flux produced in coil A per ampere and the percentage of
this flux which links the turns of B.

Solution: We know that
Mdl,
de

€y =

now,
=502 b 5. 2 g 10-SwWhiA
B B My ol
M 75«10 0.5 = 50%

- JTL 15+10°



A.C FUNDAMENTAL

Direct Current

Alternating Current

N

1

t—>

il

(

{ —>

1)

(2)
3)

(4)

D.C. always flow in one
direction and whose magnitude
remains constant.

High cost of production.

It is not possible by D.C.
Because D.C. is dangerous to the
transformer.

Its transmission cost is too high.

1)

(2)
3)

(4)

A.C. is one which reverse
periodically in

direction and whose magnitude
undergoes a definite cycle changes
in definite intervals of time.

Low cost of production

By using transformer A.C. voltage
can be decreased or increased.

A.C. can be transmitted to a long
distance economically.

Definition of A.C. terms :-
Cycle : It is one complete set of +ve and —ve values of alternating quality

spread over 360° or 2] ] radan.

Time Period : It is defined as the time required to complete one cycle.
Frequency : It is defined as the reciprocal of time period. i.e. f=1/T

Or

It is defined as the number of cycles completed per second.
Amplitude : It is defined as the maximum value of either +ve half cycle or —ve

half cycle.

Phase : It is defined as the angular displacement between two haves is zero.




OR

Two alternating quantity are in v

phase when each pass through their zero I

value at the same instant and also attain v T
their maximum value at the same instant in

a given cycle. il t—
V =V sin wt
I = I sin wt

Phase Difference :- It is defined as the angular displacement between two
alternating quantities.
OR
If the angular displacement between two waves are not zero, then that is
known as phase difference. i.e. at a particular time they attain unequal distance.

v

5 o— NS

OR

Two quantities are out of phase if they reach their maximum value or
minimum value at different times but always have an equal phase angle between
them.

Here V =V, sin wt

I = I Sin (wt-¢)

In this case current lags voltage by an angle ‘¢’.

Phasor Diagram :
Generation of Alternating emf :-

Consider a rectangular coil of ‘N” turns, area of cross-section is ‘A’ nt? is
placed in
x-axis in an uniform magnetic field of maximum flux density Bm web/nt?. The
coil is rotating in the magnetic field with a velocity of w radian / second. At
time t = 0, the coil is in x-axis. After interval of time ‘dt’ second the coil make
rotating in anti-clockwise direction and makes an angle ‘0’ with x-direction.
The perpendicular component of the magnetic field is ¢ = ¢n cos wt

According to Faraday’s Laws of electro-magnetic Induction



e= NI
dt
=-N (4 coswt)
dt m
=—N (—¢@mw cos wt)
= Nw¢n sin wt
= 27N ¢ sin wt(Qw = 2f)
= 27fNB,, Asin wt
e = E,,sin wt
Where E, = 27NB,A
f —frequency in Hz
Bm—> Maximum flux density in Wh/mt?
Now when 6 or wt = 90°
e=En
l.e. Em=2nfNBnA

Root Mean Square (R.M.S) Value :—»

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which
when flowing through a given circuit for a given time produces same heat as
produced by the alternating current when flowing through the same circuit for
the same time.

Sinuscdial alternating current is

I = Ipnsinwt =Iysin 6

The mean of squares of the instantaneous values of current over one

complete cyclez,[i2 40

:ieﬁ—m
The square root of this value is
Tzdﬁ
27

f(l sin 9)2

0



(1-cos29)d@

1,2 Y 0—sin262
dr< 2 fo

Average Value :—>

The average value of an alternating current is expressed by that steady
current (d.c.) which transfers across any circuit the same charge as it transferred
by that alternating current during the sae time.

The equation of tr}re ?I(tjegrnating currentisi=Insin 6

Iav = _[ (72__0)

0
:I”Mdg — [sin 6. a6
71-0

0
— I_mhcose]” _ln [ cos z - (cos0°]
T 0

T
=![1-0¢-)]
21

Iav = 5
T
| = 2 x Maximum Current

av

T
Hence, 1,,=0.6371,

The average value over a complete cycle is zero



Amplitude factor/ Peak factor/ Crest factor :- Itis defined as the ratio of
maximum value to r.m.s value.
Ka — MaximumValue _|

J2 =1.414
R.M.S.Value

m_
IL

J2

Form factor : - It is defined as the ratio of r.m.s value to average value.

K — r.m.s.Value _ 0.707Im= \/E: 1414
Average.Value 0.6371,,
Kf=1.11

Phasor or Vector Representation of Alternating Quantity :—
. Ay Al

=::
N

An alternating current or voltage, (quantity) in a vector quantity which
has magnitude as well as direction. Let the alternating value of current be
represented by the equation e = E,, Sin wt. The projection of E,, on Y-axis at
any instant gives the instantaneous value of alternating current. Since the
instantaneous values are continuously changing, so they are represented by a
rotating vector or phasor. A phasor is a vector rotating at a constant angular
velocity

Att, e =E,sinwt,

Att,, e,=E,sinwt,

Addition of two alternating Current :—

Let e,=E, sinwt
e,=E,sinwt - ¢) E
The sum of two sine waves of the same =
frequency is another sine wave of same o
frequency but of a different maximum value and ' E >

Phase.

e :\/e12+ e 2ee £osg
Phasor Algebra :—>
A vector quantity can be expressed in terms of
(i)  Rectangular or Cartesian form
(i)  Trigonometric form
(ili)  Exponential form



(iv) Polar form

E sin g

E=a+jb
=E(cos O+ jsin @)

Where a = E cos 6 is the active part Ecos g
b = E sin 0 is the reactive part

o-tan° '~ Phase angle

0 0
j =~/~1(90°)
j2 =-1(180°)
j®=-j(@70°)
j4=1 (360°)

fﬁ. n

(i)  Rectangular for :-
E=a+jb
tand=b/a

(i) Trigonometric form :-
E =E(cos@+ jsin )

(ili) Exponential form :-
E=Eet?

(iv) Polar form :-
E=E/te (E=+a?+b?

Addition or Subtration :-
Ei=a,+ jb
E,=a,+jb,

E,+E,=(@,+4a,) (b +b,
~17 b +b, 5
g=tan 5.3
[]1 2 [
Multiplication : -
E,x E;=(a,+]ja;) £ (a,+jb,)
= (a,@,— byb,) + j(a,a,+ b;b,)



4 tan_lﬁ a,b,+ b,a, [

[J12 12[]
E,=E,Z6,
E,=E,Z6,
E,xE,=EE, Z¢+ ¢,
Division :-
E,=E,Z6,
E,=E,Z6,
E_E/0 ="120-0
1
E, E,Z6& E,

1 2

A.C. through Pure Resistance :—>
Let the resistance of R ohm is connected across to A.C supply of applied
voltage

é I
g —>V
e \AW
o‘\i
</
) e = Emsin Wt or v = Vgsin wt
e=E,sinwt (1)
Let ‘I’ is the instantaneous current .
Heree = IR
=i=elR
I = Ensin Wt / R-----------mmm e - (2)

By comparing equation (1) and equation (2) we get alternating voltage
and current in a pure resistive circuit are in phase
Instantaneous power is given by

P=ei
= Emsinwt. Iy, sin wt e = Bsin Wt
= Eml Im sin? wt [ = Imsin wt
=_m ™ 2sin® wt T
E2I
=_", ™.(1 - cos 2wt)
N0 ! =
E_ | E |
Pz_m.m___m_ m_c0os 2wt
22 25
V| V|

le. P=—m. m_ M ™ _cos2wt
2 V2 -2 3



Where Yo In_is called constant part of power.
J2 2

(VA ) i
—n m 2wt IS called fluctuating part of power.
7 B apartofy

7

The fluctuating part \%.cos 2wt of frequency double that of voltage and current

waves.

v, |
RIS VN
2 2 ms - rms

Hence power for the whole cycleis P=

= P = VI watts

A.C through Pure Inductance :—»
Let inductance of ‘L’ henry is connected across the A.C. supply

iﬂﬁtﬁ
B LLLL0)

41

()
N

v = Vmsin wt

v=V,sinwt (@D
According to Faraday’s laws of electromagnetic inductance the emf induced
across the inductance

v=Ld

di dt V= Vmsin wt
Y is the rate of change of current i I sowi— 1)
dt
V sinwt = Lﬂ

m dt

di _V,sinwt %
a— L —nll—p

=di= V—E“sin wt.dt
Integrating both sides,
Idi :J.\isin wt.dt

L
i :Vm [0 coswt(

—0 0
Lo w [




V,, cos wt

wL
. V.,
I =——"cos wt
W y4n
i=— "Msin wt-
L 0 %D
VWL ing
=— ""sin- wt—= " [QX =2afL=wL]
— O [ L
Xi 0l 21

Maxvnum value of i is
" when bUis 20 is unity.
m smjvvt ]
X O 2q

L
Hence the equation of current becomes i = I, sin(wt — 7/ 2)
So we find that if applied voltage is rep[resented by  v=V,sinwt, then current
flowing in a purely inductive circuit is given by

i=1,sin(wt— /2)

Here current lags voltage by an angle =/2 Radian. N

Power factor = oS ¢
= cos 90° .
=0 |:)

Power Consumed = VI cos ¢ %
=VIx0
=0

Hence, the power consumed by a purely Inductive circuit is zero.

A.C. Through Pure Capacitance : -

C i =1 sn{wt— 7/2)
, .' Vv = Vmsin wt
11
Y
) NS
\=~) —riy— T2
= Vmsin wt

Let a capacitance of ‘C” farad is connected across the A.C. supply of applied

voltage
v=V,sinwt (¢))

Let ‘q’ =change on plates when p.d. between two plates of capacitor is ‘v’
q=cv

g = cVp Sin wt



d d
_q= c_ (V sinwt)

dt (o[ L
I =cVpy sin wt
= wcV,, cos wt

_ Vi =coswt [ox _1_1 Is known as capacitive reactance
c ¢ wc 2afc

=1, sin(wt + 7/ 2)
Here current leads the supply voltage by an angle ©/2 radian.

Power factor = oS ¢
=cos90° =0

Power Consumed = VI cos¢
=VIx0 =0

The power consumed by a pure capacitive circuit is zero.
A.C. Through R-L Series Circuit : >

L
: (00000 __
—— AW\
. VR * VL —
J—
-
e=FE_sn wi

The resistance of R-ohm and inductance of L-henry are connected in series
across the A.C. supply of applied voltage
e=E, Sinwt -----=--==-=-=-==-mmmmemoe- (1)

= jV
MRV Y. PRt

Volzsg=tant X Vi=IXL

Vr=1R



Where Z=,/R?+X?

=R +jX_ Is known as impedance of R-L series Circuit.
V. _E;sinwt
24 244
I =1, sin(wt— @)
Here current lags the supply voltage by an angle ¢.
Power Factor :— It is the cosine of the angle between the voltage and current.
OR
It is the ratio of active power to apparent power.
OR
It is the ratio of resistance to inpedence .
Power :—
=V.i
=V, sin wt.I, sin(wt — @)
=V, I, sinwt.sin(wt — ¢)

1
=_V I 2sinwtsin(wt — ¢)

N PN

VI [cosg—cos 2wt — §)]

Obviously the power consists of two parts.

(i) aconstantpart ~ VI cosg which contributes to real power.
2 mm

. . 1 : :
(i)  apulsating component ~V 1 cos(2wt - ¢) which has a frequency twice
2 mm
that of the voltage and current. It does not contribute to actual power since its
average value over a complete cycle is zero.
Hence average power, consumed
= V| cos¢

N

—ﬁ I—mCOS ¢
V2 V2
= VI cos¢

Where V & | represents the r.m.s value.
A.C. Through R-C Series Circuit : —
The resistance of ‘R’-ohm and capacitance of ‘C’ farad is connected across the
A.C. supply of applied voltage



e = E,,sin wt

R
—W\

. A% 3k Ve

- 0

¥

(=)
\=/

V=Vt (=]jVe)
=R+ (—=jIX.)
1R %)

V=I1Z

Where Z=R-jX.= /R>+ X2 is known as impedance of R-C series Circuit.
Z=R-jX_

=,B%+ X2
Z-¢g=tan”! QC -
w0 ‘
V=122 ¢ v
_ v
2~ NS
_ E,,sin wt
Z/— ¢
= E_msin(wt + @)
Z/
= I =1, sin(wt + @)
Here current leads the supply voltage by an angle ‘¢’.
A.C. Through R-L-C Series Circuit : —»
Let a resistance of ‘R’-ohm inductance of ‘L.’ henry and a capacitance of ‘C’

farad are connected across the A.C. supply in series of applied voltage

=1

e=E,sinwt (1)



- - -

=Vp + VL = V¢
=V + j(VL = V¢)

=I[R+ j( X =X¢)]
=1 Liqﬁ:tanfljxfxcj
JRZ+ (X=X )’ 0 0

7 R O

=124+ ¢
Where Z=1,/R2+(X-X.)? isknown as the impedance of R-L-C Series

Circuit.
If X > X, then the angle is +ve.
If X, <X, then the angle is -ve.

Impedance is defined as the phasor sum of resistance and net reactance

e=1Z224+t ¢
e —C izsag =MW Gt )
77+ 77+ §

(1) If x >xc,then P.f will be lagging.
(2) If X <X, then, P.f will be leading.
(3) If X =X, then, the circuit will be resistive one. The p.f. becomes unity

and the resonance occurs.

REASONANCE
_It is defined as the resonance in electrical circuit having passive or active
elements represents a particular state when the current and the voltage in the
circuit is maximum and minimum with respect to the magnitude of excitation at
a particular frequency and the impedances being either minimum or maximum
at unity power factor
Resonance are classified into two types.
(1)  Series Resonance
(2) Parallel Resonance
(1) Series Resonance :- Let a resistance of ‘R’ ohm, inductance of ‘L’
henry and capacitance of ‘C’ farad are connected in series across A.C. supply



110

P
N/
e=E_sn wt
e = E,,sin wt

The impedance of the circuit
Z=R+j(X_ =X
Z:\/RZ"'(XL_X c)z
The condition of series resonance:
The resonance will occur when the reactive part of the line current is zero
The p.f. becomes unity.
The net reactance will be zero.

The current becomes maximum.
At resonance net reactance is zero

=f= L

° 27z4LC
1 1

Resonant frequency (f,)=— ———

27 \/E
Impedance at Resonance
Zo =R
Current at 5esonance

° R
Power factor 3t resonance
p.f.="—"="=1 [z =R]
Z, R °



Resonance Curve :-

Unity p.f.(up.f) ©b

Lagging
P.f

fo fo
At low frequency the X is greater and the circuit behaves leading and
at high frequency the X_ becomes high and the circuit behaves
lagging circuit.
If the resistance will be low the curve will be stiff (peak).
o If the resistance will go oh increasing the current goes on decreasing and

the curve become flat.
Band Width :—»

At point ‘A’ the power loss is I¢R.
The frequency is fo which is at resonance.

| 2R

At point ‘B’ the power loss is 0T

The power loss is 50% of the power loss at point

A

GA”/ I[]

Hence the frequencies
corresponding to point ‘B’ is known as half power frequencies f; & fs.
f; = Lower half power frequency

R
ey
F. = Upper half power frequency
f,= fo+ R
0 an

Band width (B.W.) is defined as the difference between upper half power

frequency ad lower half power frequency.

BW.= f,—f=
27



Selectivity : —>
Selectivity is defined as the ratio of Band width to resonant frequency
BW. R
f, 27
Quality Factor (Q-factor) :—
It is defined as the ratio of 2z x Maximum energy stored to energy dissipated
per cycle

Selectivity = R
af, L

0

Selectivity =

27T % 1 L] 2

o 0

factor = 2
Q | 2RT

nLNElf

| 2RT
212
T I2RT
_aL.21?
CIRT
24

RT

1. ./

24 L. '
e 70

Quiality factor = = o ,YQ=
<

Quiality factor is defined as the reciprocal of power factor.

Q factor == L
COS ¢

It is the reciprocal of selectivity.
Q-factor Or Magnification factor

_ Voltage across Inductor.
Voltage across resistor

W, L

- factor = =
Q R

Q_factor factor _Voltage across Capacotor.
Voltage across resistor

_ g X,
LR




R
_ 11
24f,C 2 ,CR
Q-factor = !
W,CR
(32_W0|‘>< 1
R W.CR
1
2 _
Q R2C
1
={re
o=1 L
RVC

Graphical Method :—

(1) Resistance is independent of frequency It represents a straight line.
(2) Inductive Reactance X = 2xfL

It is directly proportional to frequency. As the frequency increases , X,
Increases

(3) Capacitive Reactance X¢ = = L

27fC

f ———

It is inversely proportional to frequency. As the frequency increases, Xc
decreases.
When frequency increases, X, increases and X¢ decreases from the

higher value. -
z _-*1*_‘;:.

g

.-

-‘D'o



fo

NS

-Xc
At a certain frequency. X, = Xc
That particular frequency is known as Resonant frequency.
Variation of circuit parameter in series resonance:

(2) Parallel Resonance :- Resonance will occur when the reactive part of the
line current is zero.

i

Y
B

At resonance,
lc—Ising =0
l.=1.sin ¢

_ V ]
—= ——sing
Xc \/R2+XL2
:L v x X
Xe \/RZ"'XL2 \/R27L>(|_2 Iicos 4
1

= = X L I]_Silld) ¢
Xc RZ+X. I




z2=t
C
S R24X =L

L
= R2+ (24,L) =—

C
:>R2+47r2§2|-2:%

- argi=t

C .

= f2= ! :DL—RZ*

° 4r¥fz, HC
1 |1 R
== — |———
2z\LC L

f,= Resonant frequency in parallel circuit.
Current at Resonance = 1 cos¢g

Y R
JRZ+X 2 JRZ+ X
VR

T RZ4 X2

VR

"z

VR _ VvV
“L/C L/RC

_ Vv

Dynamic Impedence
L/RC — Dynamic Impedance of the circuit.
or, dynamic impedances is defined as the impedance at resonance frequency in
parallel circuit.
Parallel Circuit :—>

I Ri [ Uﬁrjﬁnl

The parallel resonance condition:



When the reactive part of the line current is zero.
The net reactance is zero.
The line current will be minimum.
The power factor will be unity
Impedance z,=R,+jX,
Z,=R,- jxc
1

Rt jX |
_ (Ri+jX )

(R, +_jX DR =X )
_Ri+ X
N R12 4 XL2

R, L Xy
R2+ X2 O R2+ X7
L1
Z, B Ri+iXe
_ (Ry+jXc)

(R2,— jXc)(Ry+  JXc)
_Ry+ X

RZ+ X2

R, o Xe
RZ+X? R2+X¢
Total Admittance Admittance E;ﬂmz P

Admittance

=<

1
1—Z1

Y,=

Admittance Y,=

2:

=>Y=Y+Y,
. X . X
=YY= le 2—J - +R_ZE-§(_2+J :
R2+ X RZ2+ X2 2 c R+ X2
R, R2 0oX, Xo [

:Y:R1+X L " 2+ c _jm}_qiz—i_xf: R2+X cl]

At Resonance,

XL . XC :O
R%+X. 2 R2+XZ2

Xo X
T RZ+XZ TRZ+X?

1 L 2 C
:>XL(82+XCZ):XC(R2+XLZ)
S2doR?s 1 Ao 1 (RPvanrgs)

;DZ 47z2f2025 24C 1

2
= 27fLR,’ zﬂfCZ ﬁ 27?‘




2
LRI oAl

= _bh_ 27fLR
2A4C? 24C % - 2,
C
N 1 DL_RZDZZMLDL_RZD
— O 10 O~ 20
24C ] C 1|_D oc 279
-R?2 2
= 472f2LC=C ! L-CR,
"-R? L-CR?
6 2
1L -CR20
= 4r2f2=__ 1 !
LC[|L-CR, |
1 [L-CR20
:>f2_ N 1
47LCL-CR, -
L f- 1 [L-CR’C

27JLC |- L -CR,}
1 L-CR? [

27\~ L)C-LCR,

f is called Resonant frequency.

IfR%2=0
_ 2
Then =1 [E=CR
27 L2C
_ 1 |L-CR/
24 C
:i L_RZ
24.Nc
1 [L R?
=— . |—— _1
2z \L2C L2
1 [L R?
=T _1
27V LC ~ L2
Ileand R2=O,then
o1 L
22\ L2C

1T
22VLC 2z/LC

Comparison of Series and Parallel Resonant Circuit :—

Item Series ckt (R-L-C) | Parallel ckt (R- L and
C)




% Impedance at Resonance

Minimum

Maximum

% Current at Resonance

\Y

Maximum= R

Vv
Minimum= (_; cR)

% Effective Impedance R C—LR
< P.f. at Resonance Unity Unity
% Resonant Frequency Zﬂ\}E zlﬂ /Ilc_ RF
& It Magnifies Voltage Current
% Magnification factor % %

Parallel circuit ;>

I R mmu

v.f

Z,=R, + X =yR2+ X 2 Z¢

IS A S CI '
it i
L

Z,=R, jXe= |R22+ X2/~ ¢
Ve

W= - 4_¢1=|14_¢1

L 7742

1 1 1

v
Where ~ =VY
1
1

Here Y; — Admittance of the circuit
Admittance is defined as the reciprocal of impedence.




\Y
I, =VY, =
S RHIX,
V \Y;
= = h =, Ld= 2L
2224_¢21 22@ 2¢ 2¢2

| =12+ 1,2 + 21,1, cos(¢ + ¢
=1,/ —¢1+ 1,ZL

3 T"Q;t\'\ ¢,

The resultant current “I” 1s the vector sum of the branch currents I; & |»
can be found by using parallelogram low of vectors or resolving I, into their X



—and Y- components ( or active and reactive components respectively) and then
by combining these components.

Sum of active components of I; and I, = I, cos ¢1+ 1, €0S ¢z
Sum of the reactive components of I and 1, = 1, sin ¢2 - 11 sin ¢4

EXP-01:
A 60Hz voltage of 230 V effective value is impressed on an inductance of
0.265 H
(i)  Write the time equation for the voltage and the resulting current. Let the
zero axis of the voltage wave be att = 0.
(i) Show the voltage and current on a phasor diagram.
(iii)  Find the maximum energy stored in the inductance.
Solution :-
V., =2V = /2 x 230V
f=060Hz, W=2af =27xx60=377rad/s.
X, = Wl =377 x 0.265=100A

(i)  The time equation for voltage is V (t)= 2302

| =V, ./ = 230¥2 1100, = 233

¢=90° (lag ).

QCurrente quation is.

i(t) = 2.3 ¥sin(377t — 7/ 2)
or =2.3v2cos377t

sin 377t.

(i) Iti .

(iii) or E =" LI%mx="x0.265x (23 22 =14
max 2 2

Example -02 :

The potential difference measured across a coil is 4.5 v, when it carries a
direct current of 9 A. The same coil when carries an alternating current of 9A at
25 Hz, the potential difference is 24 v. Find the power and the power factor
when it is supplied by 50 v, 50 Hz supply.

Solution :
Let R be the d.c. resistance and L be inductance of the coil.
R=V/1=45/9=05A



With a.c. current of 25Hz, z = V/1.

Ez 2.66A
9
x=vZ2-R?=4/2.66%—0.52
=2.62A
X, =27 25xL
X, =0.0167A

At 50Hz
X, = 2.62x 2 = 5.241
Z =~/0.5% +5.24?
=5.06 A
| =50/5.26 =95 A
P =1%/R =9.52 x 0.5 = 45 watt.
Example — 03 :
A 50- uf capacitor is connected across a 230-v, 50 — Hz supply. Calculate
(@)  The reactance offered by the capacitor.
(b)  The maximum current and
()  The r.m.s value of the current drawn by the capacitor.
Solution :
1 L 1

(a) X= —7~ N
wceC 2nfe 27 x50x50x108

(c)  Since 230 v represents the r.m.s value
Ql ,,s=230/x =230/63.6=3.62A

) =1 .x J2=362xvY2=511A
Example — 04 :

In a particular R — L series circuit a voltage of 10v at 50 Hz produces a
current of 700 mA. What are the values of R and L in the circuit ?
Solution :

(i)  Z=R?2+(2rx50L)2
= vR? +98696L 2

V=1z

10 = 700x103 /(R? + 98696L2)

J(R? +98696L2) =10/ 700 x10-3 = 100/ 7

R? + 98696L2 =10000/ 49 -----n-nnnnmmmmeen- )
(i)  Inthe second case Z= \/R2 + (27 x 75L)?

Q10 =500 x10-3,/R? + 222066L2) = 20

JR? +222066L2) = 20

=63.61




R? + 22206612 = 400 ---=-==========n=mmmmmmmmmmmmmmema (1))
Subtracting Ea.(l) from (ii), we get,
22206612 — 9869612 = 400 — (10000 / 49)

— 123370L2 =196
L2196

123370

Lo [ ® —0.0398H =40 mH.
123370

Substituting this value of L in equation (ii) we get R 2+ 222066L2 (0.398) = 400
=R=6.9A.

Example — 04 :
A 20 resistor is connected in series with an inductor, a capacitor and a

ammeter across a 25 —v, variable frequency supply. When the frequency is
400Hz, the current is at its Max™ value of 0.5 A and the potential difference
across the capacitor is 150v. Calculate
(a) The capacitance of the capacitor.
(b) The resistance and inductance of the inductor.
Solution :
Since current is maximum, the circuit is in resonance.
= V./1=150/0.5=300A
(@)  x,=1/27fe=300=1/27x400xC
= ¢=1.325x10"°f=1.3254f .
(b) x=x =150/0.5=2300A
21 x 400 x L =300
=L =0.49H
(c)  Atresonance,
Circuit resistance = 20+R

= V/Z = 25105
= R =30A
Exp.-05

An R-L-C series circuits consists of a resistance of 1000, an inductance
of 100MH an a capacitance of wp puf or 10PK
(i)  The half power points.

Solution :

6
L -1 _ 150kHz

; fo=
1) 2rd0t x104 27




/10 1
_ / — 100
¢= 1000 10"

1000

iy  fi= fo-—=159x10° - = 158.2KHz
47Z| 47 x1071
f,= fo- =159 x10-2 4 1000 - = 159.8KHz.
4 47 x10™

Exp. -06
Calculate the impedance of the parallel —turned circuit as shown in fig.

14.52 at a frequency of 500 KHz and for band width of operation equal to 20
KHz. The resistance of the coil is 5A.
Solution :

At resonance, circuit impedance is L/CR. We have been given the value
of R but that of L and C has to be found from the given the value of R but that

of L and C has to be found from the given data.
R

BW= —,20 x10% = or 1 =39uH
2 27 x|
fo—iz L_R_‘=i\/ 1 _ 5*
27 VLC L* 22\39x10°%C (39 x10°6)
C=2.6 x107
Z = L/CR =39x10°/2.6 x10° x5
=3 x10%A

Example: A coil of resistance 20 and inductance of 200uH is in parallel with
a variable capacitor. This combination is series with a resistor of 8000€Q2.The
voltage of the supply is 200V at a frequency of 10°H.Calculate

1) the value of C to give resonance

i) the Q of the caoil

iii) the current in each branch of the circuit at resonance

Solution:

X =2nfL=21*10%*200*10°=1256Q

The coil is negligible resistance in comparison to reactance.
1

2myIC

I'=




L
2ry2gd .~ O+ 107

T : —4
i) Q=225 = 21 = 10° + 200 = ——=62.8
iii) dynamic impedance of the circuit Z=L/CR=200*10-%/(125*10-
12%20)=800002
total Z=80000+8000=88000Q2
1=200/88000=2.27mA

p.d across tuned circuit=2.27*103*80000=181.6VV

18l.&

current through inductive branchzm = 144.5m4

current through capacitor branch=wl’C
=181.6*%2n*10%*125*1012=142.7mA

POLY-PHASE CIRCUIT
Three-phase circuits consists of three windings i.e. R.Y.B

O~ —

Er=E,sinwt=E_, £0
E,=E,sin(wt—120) =E, £ — 120
Eg=E,sin(wt—240)=E, £ - 240 =E,, £120



3 - ¢ Circuit are divided into two types
e Star Connection
e Delta Connection

Star Connection :—>

S Neutral

Vin

Y

B

If three similar ends connected at one point, then it is known as star connected
system.

The common point is known as neutral point and the wire taken from the
neutral point is known as Neutral wire.
Phase Voltage :—>

It is the potential difference between phase and Neutral.
Line Voltage : —»

It is It is the potential difference between two phases.
Relation Between Phase Voltage and Line Voltage :(—»




VN

Line VolatageV,, = Ve — Vi

V, = \/VRN +Vyy, — 2V.)(,£0s60°

1

2
=\/vph+v2 =¥ xo

= \/37% = ‘/;VPh
Vo= \/;VPh

Since in a balanced B —phase circuit Ven= Vyn = Ven=Vph
Relation Between Line current and Phase Current :-
In case of star connection system the leads are connected in series with
each phase
Hence the line current is equal to phase current
||_ = Iph
Power in 3- Phase circuit:-
P=V oh | oh cos ¢ per phase

=3V oh | oh €0 ¢ for 3 phase
VL
:Sﬁchowﬁ(QVL: \/§Vph

P =+/3V] cos¢
Summaries in star connection:
i) The line voltages are 120 apart from each other.
ii) Line voltages are 307 ahead of their respective phase voltage.
Iii) The angle between line currents and the corresponding line voltage is 30+o
Iv) The current in line and phase are same.

Delta Connection :-



If the dissimilar ends of the closed mesh then it is called a Delta
Connected system

Relation Between Line Current and Phase Current :-

- -

Line Currentin wire—1 = "R-'y

- -

Line Currentin wire-2="'y-'B
Line Current in wire—3="B-'R

| =1q—1

Y
\/|R2+|Y2—2|R|Ycosso°

1
:\/Iph2 + Iph2 =21, XE

:él ph i ’IL:V3IDh2

.LFE = ";{gf k

Relation Between Line Voltage & Phase Voltage : —»
V.=V,

Power = = /3V, I  cos¢

Summaries in delta:



jj) Line currents are 307 behind the respective phase current.

ii) The angle between the line currents and corresponding line voltages is 30+o
Measurement of Power : —»

(1) By single watt-meter method

(2) By Two-watt meter Method

(3) By Three-watt meter Method
Measurement of power By Two Watt Meter Method :-

Phasor Diagram :-
Let Vg, Vy,Vz are the r.m.s value of 3-¢ voltages and Ig,lv,lg are the r.m.s.
values of the currents respectively.
Current in R-phase which flows through the current coil of watt-meter
W1 = IR
And W, =y

Potential difference across the voltage coil of W, =V, = V-V,

- -

-

And W, =V, =V,—V,
Assuming the load is inductive type watt-meter W; reads.
W, = Vgg 15€0S(30 — ¢)
W, =V, I, c0S(30— @) ----=-=-=====mmmmmmmmmmee- 1)
Wattmeter W, reads
W, =V l,c0S(30 + ¢)
W, =V, 1, COS(30+ @) -------=====m=mmmmmmmmmmees (2)
W, +W, =V, 1, cos(30—-¢) +V, I, cos(30+ ¢)
=V, 1 [cos(30—¢) +V, I, cos(30+ ¢)]
=V, | (2 cos 30° cos¢)

=V, IL(2><—\/2_3-C05¢)

W, +W, =3V 1, cosg/(3)
W, —W,=V,_ I [cos(30 — @) — cos(30 + ¢)



=V, | (2 sin 30° sin @)
1 .
=VL|L(2 XEXSIn ?)

W,—W,_ VI sin ¢
W,+W, 3V, 1 cosg

i: tan ¢

J3

HW, — 0
= tan ¢= \/‘3‘ Wl MW.
I 2 [

4 aHW,—W,E]
= ¢g=tan \/:L wl WZB
o1 2 [

Variation in wattmeter reading with respect to p.f:

Pf W; reading W, reading
o=0,cos o=1 +ve equal +ve equal
0=60,cos 0=0.5 0 tve
0=90,cos o0=0 -ve, equal +ve equal
Exp.:01

A balanced star — connected load of (8+56). Per phase is connected to a
balanced 3-phase 100-v supply. Find the cone current power factor, power and
total volt-amperes.

Solution :

Z = V8% + 6% =10

V,,=400/3=23/v

I n= V! Z j=231/10 = 23.1A
i) IL = Zpn=23.1A
i)  P.f.=co0s6 = Rpn/zpn = 8/10 = 0.8 (lag)

iii) PowerP =+/3V, I, cos®
=+/3x400x23.1x0.8

=12, 800 watt.

iv)  Total volt ampere s =V3 V| I,

=3 x 400x 23.1

=16, 000 VA.




Exp. -02

Phase voltage and current of a star-connected inductive load is 150V and
25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3-wire
and power is measured using two watt meters, find the readings of watt meters.
Solution :

Vo = 150V
VL =3 x 150
lon = I = 25A

Total power = V3 VI cos ¢ = V3 x 150x V3 x 25 x 0.707 = 7954 watt.
W; + W, =7954.00, cos ¢=0.707
¢ =cost (0.707) =45°,tan 45° =1
Now for a lagging power factor,
tan ¢=v3(W, - W,) /(W,+ W,)
—=1= osWi-W2) &

¥ +

¥ 7954

- (W, —W,) = 4592w
From (i) and (ii) above, we get

W, = 6273w W, = 1681w




TRANSIENTS

Whenever a network contalnln%energy storage elements such as jnductor or capacitor is
switched from one condition to anothér,eitherby change in agplled source or change In
network elements,the response current and volt%ge hange from one state to the other
stat%Thetlm_e takento gh nge from an initial steady state to the final steadg state is known
as the transjent period. ThiS response Is_ known as transient response or
transients, The response ofthe network afteritattainsafinal steady valueisindependent
oftime andis calledthe steady-state response.The complete resporise of the networkis
determined with the help of a differential equation.

STEADY STATE AND TRANSIENT RESPONSE

In a netwark containing energy storage elements, with change in excitation, the currents and
voltagesin the circuitchange from one state to other state. The behaviour of the voltage
orcurrentwhenitis change from one state to another is called the transient state. Thetime
takenforthe circuitto change from one steady state to another steady state is calledthe
transienttime. The afP licationof KVL and KCL to circuits containing energ_y storage .
elementsresultsindifrerential, ratherthan algebralc equations. whenwe consider a circuit
contamm% storage elements which are indépendent of the sources, the response
depends Upon the nature of the circuit and is called natural response. Storage elements
deliver their energy to the resistances. Hence, the response changes, gets saturated after
some time,and isTeferred to as the transient respaonse. When we €onsider a source actin
onacircuit, the response depends on the nature of the source or sources. This response |
called forced response. In other words,the complete response of a circuit consists of two
parts;theforcedresponse andthetransientresponse. Whenwe consideradifferential
equation, the complete solution consists of two parts: the complementary function and the
particular sqlution. The complementary function dies out after shortinterval, andisreferred to
as the transient response or source free response. The particular solution is the steady state
restponse, orthe forced response. The first step in finding the complete solution of a cjrcuit is
to form a differential equation for the circuit. By obtaining the differential equation,
several methods can be used to find out the complete solution.

DC RESPONSE OF AN R-L CIRCUIT

Consideracircuitconsisting ofaresistance andinductance as showninfigure. The inductor
inthecircuitisinitially uncharged andisinserieswiththe resistor. Whenthe switch Sis
closed ,we can find tHe compléte solution for the current. Application of kirchoff's voltage
law to the circuit results in the following differential equation.

g R
A Vv

vr? | D a:.




Figure 1.1
V=Ri+LZ
=
g .
e B 1.10r = + 1=
L L )
1.2
In the above equation, the current listhe solution to be found and Vis the applied constant
voltage. The voltage Vis applied to the circuit only when the switch Sis closed. The above equation

is a linear differential equation of first order.comparing it with a non-homogenious differential
equation

o%
it

whose solution is
X = 877 [ ™ Ot +Comfiinniiiiiceceeeee e 1.4

Where c is an arbitrary constant. In a similar way , we can write the current equation as

B R R
. -] = — | # ¥ 15Te
1=C¥#¢ 2 + e Wz jEe\L-[‘ dt
. (Bl w
Hence,1=C¢g& "& FXRETTRTTRRTTRTTRITPRTE 1.5
|

Todetermine the value of cinequation ¢, we use the initial conditions .In the circuit shownin
Fig.1.1,theswitchsisclosed att=0.att=0-,i.e. justbeforeclosingtheswitchs, thecurrentinthe
inductoriszero. Since theinductor does not allow sudden changesin currents, at t=o+ just after
the switch is closed, the current remains zero.

Thusatt=0,i=0
Substituting the above conditioninequationc, wehave

O=c+

LT

Substituting the value of c in equation c , we get

vy v ZRE
i== -= ¢
noR
v 1 i1y
i=— (1- et
" (1- et
i=i, (1- €T ) (Where I, = =3
i=I; (1- e7) (where = TE'.*HEISIS'?‘!EE‘&?LE":LE N 1.6



a1

0 1 2 3 4 5 &8 1C
Figure 1.2

Equationdconsistsof twoparts, thesteadystatepart ©f; =V/R) and the transientpart [, ¢t .

WhenswitchSisclosed, the responsereachesasteady state value aftera timeintervalas
shown in figure 1.2.

Here the transition period is defined as the time taken for the current toreach its final
or stedy state value from its initial value.In the transient part of the solution, the
quantity L/Risimportant in describing the curve since L/Ris the time period required

forthecurrenttoreachitsinitial value of zeroto the final value I, =V/R. The time
=iz
constant of a function i, #T isthetimeatwhichtheexponentofeisunity,wheree

isthe base of the natural logarithms.The term L/Ris called the time constant and is
denoted by t.

L
So, T=—sec
R

Hence, the transient part of the solution is

¥ —Rt » E
1=—=— €& =—aT
B it

At one Time constant , the transient term reaches 36.8 percent of its initial value.

i()=--€" =Let =-0.368-

Similarly,
i(21) = 267 =-0.1352
i(30) = L2 =-0.0498"
i(5r)=-%g-i = -0.0067 =

After 5 TC the transient part reaches more than 99 percent of its final value.



Infigure Awe can find out the voltages and powers across each element by using the current.

Voltage across the resistor is

=l
L

2|

v==Ri=R ’{T; (1- €T)

=8

Hence, vz=V(1-¢1)

LsT

Similarly, the voltage across the inductance is

He

et f.-' e
:"5=LF=L—_A- gl =Vel

Pt

The responses are shown in Figure 1.3.

Figure 1.3

Power in the resistor is

The responses are shown in figure 1.4 .



Figure 1.4
Problem : 1.1
VAV
B0V i 1 g
Figure 1.5

Aseries R-L circuit with R=30Q and L = 15 H has a constant voltage V = 50 V applied at t=0 as
showninFig. 1.5. determine the currenti, the voltage across resistor and across inductor.

Solution :
ByapplyingKirchoff’svoltageLaw, weget

152 +30i =60

== 42i=4

Thegeneral solutionfor alinear differential equationis
j=ce P+ o7F" [ KeFodt

where P=2,K=4

putting the values

j=ce "+ g% [ 4e7dt

==j=ce”" +2



At t=0, the switch s is closed.

Since theinductor never allows sudden change in currents. At t=0" the currentin the circuitis
zero. Thereforeat t=07, =0

==0=c+2

=>C=-2

Substitutingthevalue of cinthecurrent equation, we have
i=2(1- e™ %) A

voltage across resistor (Vz) =iR =2(1- e7*%) x 30=60(1- e™*%) v

voltage acrossinductor (Vz) = L'% =15 §2(1- e” %) = 30 287 v= 45087

DC RESPONSE OF AN R-C CIRCUIT

Consider acircuit consisting of aresistance and ﬁapaci,tanceassh wninfigure.The capacitorinthe
circuitis initially unchargedand is in series with the resistor. When the switch Sis closed att=0, we

can find the comlplet_e solution for the current.Application of kirchoff’s voltage law to the circuit
results in the following differential equation.

. £
o ' M

v -
— - C
i@
Figure 1.6
. 1p.
V=Ri+=[idt
£
....................................................................... 1.7 By
differentiating the above equation, we get
et i
0= RE + E L
...... 1.8
Or
B 3020 e



Equation cis alinear differential equation with only the complementary function. The particular
so(?utlonforthe above equation |gzero.The sol tlonforthﬁ)stype ofglf%jerentlal equ%tlon is

Todetermine the value of cin equation ¢, we use the initial conditions .In the circuit shownin
Fig. the switchsisclosed at t=0. Since the capacitor does not allow sudden changesinvoltage, it
will act as a short circuit at t=o+ just after the switch is closed.

So the current in the circuit at t = 0+ +s
Thus at t = 0, the current i f

Substituting the above condition in equation c , we have

Substituting the value of c in equation c , we get

S N
T -7 1.11
it

i<

Figure 1.7

When switch Sisclosed, the response decays as shownin figurre.
The term RC is called the time constant and is denoted by t.
So, T = RC sec
After 5 TC the curve reaches 99 percent of its final value.
Infigure Awe can find out the voltage across each element by using the current equation.

Voltage across the resistor is



Hence, wvg=V &t

Similarly, voltage across the capacitor is

Att=0,voltage acrosscapacitoris zero
So,c=V

And

Ve=V (l— &7%)

The responses are shown in Figure1.8.

R

Pr

PR

0 1 2 3 4 5 8 TE'

Figure 1.8

Power in the resistor is

- - L

Bo=yoi= Vel x . of

P
e

-3

pa i
=" &n
E

w7y

Powerinthe capacitoris

‘e.}; sTE

RC

Fc=i"ci=V(1'lS‘



12 =f =0
=— (eRC-gRE
— (s7-60)

The responses are shown in figure 1.9.

P

2l

Figure 1.9

Problem : 1.2

Aseries R-C circuit withR=10Qand C=0.1F has a constant voltage V =20V applied at t=0 as
shownin Fig. determine the current i, the voltage across resistor and across capacitor.

58
0

)(s

=0.1F

§i

= o

Figure 1.10
Solution :
ByapplyingKirchoff’svoltageLaw, weget
10i + — [1dt=20
Differentiatingw.r.t. t weget

10£+2=0

o &l

=:}E+ i=0

L]

The solution for above equation is



i=ce™"
At t=0, the switch s is closed.

Since the capacitor neverallowssuddenchange involtages. Att=07 the currentin the circuit is
i=V/R=20/10=2 A

. Thereforeatt=0, i =2 A
== the current equation is i=2e7"

voltage acrossresistor (Vz) =iR=2 e7*x 10=20 e *v

voltage across capacitor (V) = V{1l = eﬁjm 20(1- 79 V

DC RESPONSE OF AN R-L-C CIRCUIT

Consider a circuit consisting of aresistance, inductance and capacitance as shown infigure.The
capacitor and inductor inthe circuitisinitially uncharged and are in series with the resistor. When the
switch Sisclosed att=0, we canfind the complete solution for the current. Application of
kirchoff’s voltage law to the circuit results in the following differential equation.

. SR

i —=c

Figure 1.11
V=Ri+ L5+ 21 d
....................................................................... 1.12 By
differentiating the above equation, we get

Or

AEAET HR A+ 1 =00 1.14

Lol Lc



The above equatjon c is a second order linear differential equatjon with ong/ the comBIementa%
function. The particular solution for the above equation Is zero. The charactéristics equation for this
type of differential equation is

ﬂ:+ED+;:O ........................................................ 1.15
The rcr_)ots o?cequation 1.15are

By, Dy =- .

By assuming K; =- z and K-= _.rj (—HT —ﬁ

By=Ky~ K: and Dy =g _ K-

Here K> may be positive,negative or zero .

, ¥ 1
Casel: i s Fusitive [:FET > —

Then, theroots are Real and Unequal and give an over damped Response as shown in figure
1.12.

The solution for the above equation is: i= C; g® a4 C, gli—Hais

A

Figure 1.12

Casell: K. Is Negative [ir = i.:
Then, therootsare Complex Conjugate, and give an under-damped Response as shownin
figure 1.13.

ey




Figure 1.13

The solution for the above equation is: i= ™) cosK,t +C; sin Kot}

Case lll: k, ts Zero EET: -1

1 Lc

Then , the roots are Equal and give an Critically-damped Response as shown in figure 1.14.

if

Figure 1.14

The solution for the above equation is: i= ef{C + Ct)

Problem :1.3

Aseries R-L-C circuit withR=20Q, L =0.05H and C = 20 pF has a constant voltage V=100V
applied at t=0 as shown in Fig. determine the transient currenti.

s R
Ke T8
2080 L3 o0osH
100V~
CT 20 pF
Figure 1.15
Solution :

ByapplyingKirchoff’svoltageLaw, weget

100=30i 0.05 :_+ 1 [iar

lud Dl

Differentiating w.r.t. t we get

':1"":+20|::+ 1 '|=0
005c "¢ /ar de 2Ex10m#



== g3y/de? +400$+ 10%i =0
== (pe t400D + J.Eﬁ'i =0
Theroots of equation are

Dy Dy =22 iﬂ[ﬁT - 1¢¢

= -200+,/ 720007 — 107

fl; =-200+j979.8

0; = -200-j979.8
Therefore the current

i=e"%F[C cosK, 4+ CooosK,r]

=" [0 co9798 + CrEn 9798 ] A

At t=0, the switch s is closed.

Since theinductor never allows sudden change in currents. Att=07 the currentin thecircuitis
zero. Thereforeat t=07, i =0

== i=0=(1) [y cog 0+ C; =ln 0]

=2 G =0andi=e"28[C, sin 7988 ] A

Differentiating w.r.t. t we get

% = 0 [e™ 259798 cog97 9.8 ¢ + &~ 208 200 8in 97 9.8 |
At t=0, the voltage across the inductoris 100V

8 it _
=2 L =100 or £ =2000
At t=0, j— = 2000=C,979.8 cozd

== Cr=52=2.04

The current equation is



= 2002 (daln 979.BE) 4

ANALYSIS OF CIRCUITS USING LAPLACE TRANSFORM
TECHNIQUE

The Laplace transformis a powerful Analytical Technique that is widely used to study the
behaviorof Linear,Lumped parametercircuits. Laplace Transformconvertsatimedomain
functionf(t) toafrequency domain function F(s) and also Inverse Laplace transformation
converts the frequency domain function F(s) back to a time domain function f(t).

LEf(E)3 = F(S) = 8™ F(E) b eenn e e LT 1

I {R(S)}= () =277 F(s) 27dS Lo, LT 2

DC RESPONSE OF AN R-L CIRCUIT (LT Method)

Letusdetermine thesolutioniof the first order differential equation given by equation Awhich
is for the DC response of aR-L Circuit under the zero initial condition i.e. currentiszero, i=0 at
t=0"and hence i=0 at t=" in the circuit in figure A by the property of Inductance not allowing
the current to change as switch is closed at t=0.

XS R
A
v—? i ) a L
Figure LT 1.1
V=R|+L§ ....................................................................... LT 1.1

Taking the Laplace Transform of bothe sides we get,

T=RIGS)+LISIS)-10) Joereiniiniiiiiiiiiiiienns LT1.2
5

;:»% =RI(s) +L[sI(s)] (1(0) =0: zero initial current )

=== =I(s)[R+Ls]



Taking the Laplace Inverse Transform of both sides we get,
== FHI(s)} = #F) = .r.-igﬁ}

i(t)= L% ﬁ} ( Dividing the numerator and denominator by L )

putting & = H/L we get

BiE - d 1 .1
T PGP

i(t)= L4

i(t)= L E (%_ u;.vni:f:r‘:;-

}f?:} (again putting back the value 0%}

. ¥l 1 o V ol i v
i(t)= E.'l{g (E_ .;_rns:.-';;-f’} =E(1' e )=I,(1-eT) (where ], = E:'

i()=Fo(1- €7) (where 7=Tumeconstant="5) e, LT1.4

It can be observed that solution fori(t) as obtained by Laplace Transform technique issame as
that obtained by standard differential method .

DC RESPONSE OF AN R-C CIRCUIT(L.T.Method)
Similarly ,

Letus determine the solutioniof the first order differential equation given by equation Awhich
is for the DC response of a R-C Circuit under the zero initial condition i.e. voltage across
capacitor is zero, 1. =0at t=0"and hence 1 =0 at t=07 in the circuit in figure Aby the property

of capacitance not allowing the voltage across it to change as switch is closed at t=0.
o A

i (#)

=

Figure LT 1.2
V:Ri+%,|‘.fa‘z ....................................................................... LT 1.5

Taking the Laplace Transform of both sides we get,

I L
5 =RIG) + 2L =4O ] LT1.6
=*:»§ =R I(s) + %[ ]—5] (1(0) =0 zero initial charge )

EE
¥

Roatl

= ISR +=]1=1(5)[ =]




- i &g ¥e
O Rl b R S— ALT1.7

Taking the Laplace Inverse Transform of both sideswe get,

=2 HI(s)} = 8) = L]

ot

¥
i(t)= 7L —[f-i]-] ( Dividing the numerator and denominator by RC))
TG

putting o LWe get
RC

: i VB, _¥
i(t) = L™ =] =1

gk

i(t) =— eﬁé( putting back the value ofi
i(t) =40 (Where ;= 2 o LT1.8

i(t)= i E“_?:) (where t=Timeconstant= RC)

It can be observed that solution fori(t) as obtained by Laplace Transform techniquein q is
same as that obtained by standard differential method in d.

DC RESPONSE OF AN R-L-C CIRCUIT (L.T. Method)

i~ =

Figure LT 1.3
Similarly ,

Letusdetermine the solutioniof the first order differential equation given by equation Awhich
isfor the DC response of aR-L-C Circuit under the zeroinitial condition i.e. the switchsisclosed
att=0.att=0-,i.e. justbefore closing the switchs, thecurrentintheinductoriszero. Since the
inductor does not allow sudden changes in currents, at t=o+ just after the switchis closed,the
currentremainszero. alsothe voltageacrosscapacitoriszeroi.e. 1. =0 at t=0"and hence . =0

att=07 inthecircuitin figure by the property of capacitance not allowing the voltage acrossit
V. to suddenly change as switch is closed at t=0.

Taking the Laplace Transform of both sideswe get,



= =RI(S) ++ LL51(5) -1(0) 1+ [ ZE+1(0) Tevrnveveveniaieeenes LT 1.10

=::=~§ =R I(s) + L[z I{z1] +% [ ]'TF (140} = Q:zero initial current & 1(0) =0 : zero initial

=2 % =|(s)[R+Ls+=]=I(s)[ —“fszf‘f“i]

cs ve
)= crsacn] Ticesacn

=2I(5) = — [ s e, LT1.11

Taking the Laplace Inverse Transform of both sides we get,

o - Fe
== IHI(8)} = 10 = LM pmmmemmr)

¥E
i(t)= L 1{—[;_‘5“—,;-} ( Dividing the numerator and denominator by LC )
ol 7

0= 2 o 2]

putting™ = — and m= \lc weget

I
-

I=

0= Y e

Thedenominator polynomial becomes = [#% -I-2 225 - ca®]

R Ty — -
where, 5, ,5; = Bl SR TS0 | K- =t 5
T
=R - = [ = —r -
where, ., LI »qlec and 5= JT—g?

¥ ¥
_ L - L
CEg—g} WEmEg
v
_ f 1 - 1 "
I(S) - (8= 5g ( fa=sy LE=ay

Taking the Inverse Laplace Transform



i(t) =4y &F+ g’

Where 4; and 4; are constants to be determined and sy, and s, aren theroots of the
equation.

Now depending upon the values of 51 and 5: ,wehavethreecasesoftheresponse.

CASE | : When theroots are Real and Unequal, it gives an over-damped response.

E > |1 e = 4w

= Je= or ; In this case, the solution is given by
i(t)=e 7 (& e" Ae™FE) LT 1.12
or i(t)=4; g&f+ A et fort= 0

CASE Il : When the roots are Real and Equal, it gives an Critically-damped response.

i = ﬂjltl—c or ®=uw ;Inthiscase, thesolutionisgivenby
or
i(t)= ™™ (A+ Mt ) fort=0.vviiiiniininannnn.. LT1.13

CASE 11l : When the roots are Complex Conjugate, it gives an under-damped response.

— or ®=«w ;Inthiscase, thesolutionisgivenby
i(t)=A &%+ dge"®  fort. 0

-lEmSy R me—-E

f— 2
where, 5, .55 = = —WIvRT—we

Let vorr—w® =4=T4WF =6 =j ws where j= «=1 and wgs= 40~ —x*

Hence, i(t) = g= T, glwdr A, E——.Fu.'d.-")

i(0) =7 |G + A P gy - ) [

3
i(t)=8""" [(% + A )cosmgt +16(84 — &) sinwgt ]

i(t) =6~ (By coougt +Bg Bl 03gT)  weomemeeeeeseesessssssssssssssssene LT1.14
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TWO PORT NETWORKS

Gen rall¥, ang network may be represented schematicall _b%/arectangular box. A network may be
usedforreprésenting either Source or Load, orforavatrie yof{)_uré) ses, Apairofterminals at
which a sighal may enter or leave a network is called aport._Ag)Igr is def

ined as anly pair of termjnals
e

into whichenergy is withdrawn ,or where the network variak sma)ibe measured.Onesuch
network having only one pair of terminals (1-1’)is shown figure 1.1.

1

Network
4
to——> | 44 be |l =*— 3>
I ¥, v, Output
port port
Figure 1.1

Atwo-port network is simply a network a network inside a black box, and the network has only two
pairs of accessible terminals; usually one one pairsrepresents the inputandthe otherrepresents the
output. Such abuilding blockis very commoninelectronic systems, communication system,
transmission and distribution systém. fig 1.1 shows a two-port network,or two terminal pair
network,inwhichthefourterminals have beenpairedintoports1-1’and 2-2". Theterminals 1-1’
together constitute a port. Similarly, the terminals 2-2’ constitute another port. Twg ports containing no
sourcesintheir branches are called passive ports ; among them are power transmission lines and
transformers. Two ports containing source in their branches are called active POYIS.- Avoltagte and
currentassigned to each of the twoports. The volta%e anci,cugent at}he inputterminalsare V1 and /:;
whereas V>:"and are entering into the network are V1, Vs and [y, /2. Two of these are
dependent variable, the other twd are indepent varjabie. The number of possible combinatjons
generated by four variable, taken two at time, is six. Thus, there are six possible sets of equations
escribing a two-port network.

OPEN CIRCUIT IMPEDANCE (Z) PARAMETERS

A general linear two-port network is shown below in figure 1.2.

The z parameters of a two-port network for the positive direction of voltages and currents may be
defined by expressing the port voltages Tr}and V5 in terms of the currents {1 and {=. Here Viand I
are two dependentvariablesand {;"and {: are two independent variables.

""1 Iz
to——> | oa b._Li'z
Py, V. Jutput
port ! 2 port
: —ui,'——-a" b'f————:z’
Figure 1.2

The voltage at port 1-1’is the response produced by the two currents /1 and 1-.
thus

o= i T 0 1.1
Vo = Zogdy T 8ol e 1.2

21y &2, 2;y and Z3; arethe network functions, and are calledimpedance(Z) parameters, and are
defined by equations 1.1 and 1.2.



These parameters also can berepresented by Matrices.
We may write the matrix equation [V] = [Z][l]

. . W
where Visthe columnmatrix=[ L;i ]

_ By Eyg
Zis asquare matrix = [;:: ;,-1;'“]

P . I
and wemaywrltel’| inthe columnmatrix= = ;; ]

14 Z Ziza kb
Thus, [ [,;; 1= [Zi;l z;;] [ g; ]

The individual Z parameters for a given network can be defir}ed by setting each ofthe port currents
equalto zero. suppose port 2-2’iS left open circuited, then - =0

Thus £y4 = %
i

=1

where

Fuiahe griving point impedance at port 1 — 1'with port 2 =
:2 ope-n’cﬁ:c ulted. [t Iz called the open clrouit Input Impedancs,

}[:=ﬂ

B
wherek

Zoq 1z thetransfer impedanceat port 1 — 1 withport 2 —
2'open circulted. It iz called the open clreult forward transfer lmpedance



Suppose port 1-1’is left open circuited, then [y =0.

Thus, Z.l::% L =0

where

&7 lathe transfer Impedanceatport 2 — 2" withport 1 -
ditnariyircuited. It Iz called the open clrcult reverse transler Impedance

Zyg=h
ke
where

Z,; 12 the open clronitdriving point impedance at port 2 — 2'with port 1 —

A R e S Hhgaliens 11and 12 ie. open

f-1=q

— ,1 . — ’2 ]
1 : 7’
T 211 Zy T
V1 V!
| Ziyty AN Znh
1 o
Eie 10 3
Figure 1.3

If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

Sp=0 - Hp=0
i I

or

2= dy

It is observed that all the parameters have the dimensions of impedance. Moreover, individual
parameters are specified only when the currentin one ofthe portsis zero. This corresponds toone of
the ports being open circuited from which the Z parameters also derive the name open circuit
impedance parameters.

Problem 1.1



Find the Z parameters for the circuit shown in Figure 1.4

-
b

S e oAy,
":"‘:-a-;.y,:

M SRR

gl : :
Figure 1.4
Solution The circuit in the problem is a T network. From Eqgs 16.1 and 16.2 we have
V=L +Izl; and Vz = Zgqly +Igzl3

When port b-b’ is open circuited,
= \:!:-'!L

gl — .

Vihere 1 =1yizs +2)

Where Vo =y 2y n il =2y
When port a-a’is open circuited, [1=0

where 15 =12, and 245 = 2

Itcan be observedthat Zyo = Zaq sothe network is a bilateral network which satisfies the
principle of reciprocity. ~~ -

SHORT-CIRCUIT ADMITTANCE (Y) PARAMETERS




— 1 bk +— '2
1 & +
Linaer
Vi network V2
¥ = =5
Figure 1.5

A general two- port network which is considered in Section 16.2 is shown in Fig 16.5The Y
parameters of atwo-portforthe positive directions of voltages and currents mae/bedefinedb
expressing the port currents /3 and fz in terms ofthe voltages Yiand 2. Herel}, 2 are dependent
variables and V3and V: are independent variables. /1 may be considered to be the superposition of
twocomponents, onecausedby 1; andthe otherby V7%,

Thus,
I = TV i 1.3

Similarly, Iz = Tag W+ ooV 14

¥y1, F120 ¥y and Yio are the network network functions and are also called the admittance

(Y) Parameters. They are defined by Eqs 16.3and 16.4. These parameters can berepresented by
matrices as follows

[=[Y1V]

I 1 Yao ’
where I=[Iiﬂ]; Y=[~?-:': ‘1’1::] andV=[::;1

]Thus ,
Lo My YooV
[ I 1= [‘1-:1 Yag ] [1;?,_]

Theindividual Y parameters for a given network can be defined by setting each port voltage to zero. If
welet Vz be zero by short circuifing port 2-2’ then

134 isthe driving point admittance at port 1-1’, with port 2-2’ short circuited.It is also called the short
circuit inputadmittance.

Tz1 isthe transfer admittance at port 1-1’, with port 2-2’ short circuited. It is also called the short
circuited forward transfer admittance. Ifwe let V1 be zero by short circuiting port 1-1°,then



r Ll..
T2 = v,l Vi=0

Tiz isthetransfer admittance at port 2-2’, with port 1-1’ short circuited. Itis also called the short
circuited reverse transfer admittance.

)
1ls-_": = # ¥y =0

Tz isthe short circuit driving point admittance at port 2-2’, with port 1-1’ short circuited. Itis also
called the short circuited output admittance.The equivalent circuit of the network governed by
equation 1.3 & 1.4 is shown in figure 1.6.

—= |

1T Tz

; l ] veve . P van | =

v = . 2
Figure 1.6
If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

N

oy =0 = Ee=0
=1

or

¥iu ¥y

It is observed that all the parameters have the dimensions of admittance. Moreover, individual
parameters are specified only when the voltage in one of the portsis zero. This corresponds to one of
the ports being short circuited from which the Y parameters also derive the name short circuit
admittance parameters.

Problem 1.2 Find the Y-parameters for the network shown in Fig.1.7

a AVAVAYS NN b
T T I 0 20 T

V1 20 4 Q V2

.

a8ty i ; : b’

B y—



Figl.7

Solution :

N 1
11 = va=0

e

When b-2'is short circuited, V2 = 0 and the network looks as shown in Fig. 1.8(a)

. I
T — =

so,-I, =¥
, =1 -0 =
e

de i

2Q

2Q

Fig.1.8(a)

bl

similarly, whenporta-a' is short circuited, V== 0 and the network looks as shown in Fig. 1.8(b)



= R
a AVAYAY, AVAVAY T b
1Q 20 T
V=0 gzg 4Q V2 ~— Za4
a’ b
-'f':: :;—:TJ_:O

V;=lzdeg where e isthe equivalentimpedance as viewed from b-b".

Zyp=20

V=l %=

1 I: E

1’r.-- = E Wy =0 =
= %], =0

Ty v;lh

ti | ra

with a-a’ is short circuited , -1y =

) W
Since I, =5 =

'Ij_ = ){5

w |7

Vg

[l

So, Tjz=1=-1
Ve o 4
The describing equations in terms of tye admittance parameters are

T- -_— %‘-Fi + l‘.fg

Transmission (ABCD) parameters




Figure 1.9

Transmission parameters or ABCD parameters are widely used in transmission line theory and
cascaded networks. In describing the transmission parameters, the input variables 1iand f at port
1-1’, usually called the sending end are expressed in terms of the output variables Vyand at port
2-2’, called, the receiving end. The transmission parameters provide a direct relationship between
input and output. Transmission patameters are also called general circuit parameters, or£hain
nparameters. They are definedby

T.'F-l = J":I'I-?: - Ef:

The negative signisusedwith -, and not for the parameter B and D. Both the port currents {3 and -

1, aredirectedtotheright, i.e. withanegative signinequationaandbthe currentsatport2-2’
which leavesthe ﬁort is designated as positive.The parameters A,B,C and d are called Transmission
parameters. In the matrix form, equation a and b are expressed as ,

W, & By, V2
[y 1=0¢ pll-i]
The matrix [‘é IB;] is called Transmission Matrix.

For a given network, these parameters can be determined as follows. With port 2-2’ open circuited
i.e. I; =0; applying avoltage Vy atthe port 1-1’, using equ a , we have

A=¥s
=

"

.= andC= %

"I

f:='§1

1
hence, Iy =0 =g [1;=0

¥
= I

1/A s called the open circuit voltage gain a dimension less parameter. And 2 = ¥z =g Elt,

=0 is called open circuit transfer impedance. with port 2-2’ short circuited, iefv; Lo applying
voltage Vi at port 1-1’ from equn . b we have

g and D=l
I,

=] =
— - = C
] -

2 =10

-B=v. B
.
-




i 1_2 S Q[ ‘l'" I

B =wl 7 = "=0 is called short circuit transfer admittance

and ,

N P a = v =0 iscalled shortcircuit current gain a dimension less parameter.
DIt R

Problem 1.3

Find the transmission or general circuit parameters for the circuit shown in Fig.1.10

= AT )
a VNV A"AYA b

T 1Q 20 t

Vy § 5Q Vo

Fig. 1.10

Solution : From Equations 1.5 and 1.6 , we have
1.}-1 = J"':I-':: - Bf:
I"_ - E’ﬁlF: - D]:

Whenr b’is open circuited i.e. I; =0, we have
m]

wherey; =g andy_ =g andhence, A=

—and C= =

F L i-:"' = 1

wherb-b’is shortcircuited i.e. > =0, we have
B=- and D=-

1.
= Ty = i
Inthe’@Jrcwt -Io = 11 y, and'so, Bl



similarly, Iy =— Vi and -1, =,; V4

and hence D #

Hybrid parameters

Hybrid parameters or h-parameters find extensive use intransistor circuits. They are well suited to
transistor circuits as these parameters can be most conveniently measured. The hybrid matrices
describe a two-port network, when the voltage of one port and the current of other port are taken as
the independent variables. Consider the network in figure 1.11.

Ifthe voltage at port 1-1" and current at port 2-2’ are taken as dependent variables,we can
expressthemintermsof Iy and Vs .

W =hyyfy +Iya Vs

....................................................... 1.7
Il = hapdy + RV
.......................................................... 1.8
The coefficientinthe above terms are called hybrid parameters.In matrix notation [
W, Mgy B,k
I 1= “hgy h::] [ V:]
1 ﬁh- x: +
+o—= 1l aa be |l =*— 3>
port 11 £ port
. . , ry ’
- '1.'__.“ b.——-——:z’
Figure 1.11

from equation aand b the individual h parameters may be defined by letting Iy =10 and Vz=0. when
V2= 0,the port 2-2’ is short circuited.

Then My =¥l .. =0 = shortcircuitinput

a

Iy
impedance. #:1 ==0 = short circuit forward current
1
gain §:rL1Frarly, by letting port1-1'open, Iy =0
by = =0 = open circuit reverse voltage gain

'.Ii

Yo

|




¥
Y

7. 1=0 =open circuited output admittance

-- = TE

Since h-parameters represent dimensionally an impedance, an admittance,a voltage gain and a

currentgain, they are called hybrid parameters .An equivalent circuit of atwo-port network in terms of
hybrid parameters is shown below.

t | & hiaq l'1. T
Vi | <D " | B2 T

l 1z Va

Figure 1.12

Problem 1.4
Find the h-parameters of the network shown in Fig 1.13.

a W VWA~ - [2 oy
T h 19 20 t
V4 ? 2Q 4Q V2.
aI
Fig.1.13
Solution :

From equations 1.7 and 1.8 , we have

¥, } ¥, !
by :f = =0 ;ligq :]—f 12 =0; by, :1"?_— ly=0; Hoo :'-.’_:r {1=0

Ifport b-by"is short circuited, ¥z = 0 and the network looks as shown in Fig. 1.14(a)



E AR —MW
— I
T 1 1Q 20
— V ; 2Q 4Q
Zeq
a
Fig.1.14(a)

¥
b1 :i vo=0: W =k Zg

Z.,isthe equivalentimpedance as viewed from porta-a‘ is 2Q

so, Vi =12V

by =V = 20
I,
By = k| .. =Owhen,, =0;-I;=!:and hence hz;=-1
1. = J 3

bl

If port -a-ﬂ +is open circuited, I; = 0 and the network looks as shown in Fig. 1.14(b) then

ly
—> =0 iG ) A - b T
T 20 i
V4 §ZQ 4Q

Fig.1.14(b)

f1=p andV] = ,2; I_.l:?—.:

v,
by = Ve

2 = 'TJ.4 1 IA'=]F



vy 1 I 4
By =3.| a=e=; and haz =% 4=0 =

INTER RELATIONSHIPS OF DIFFERENT PARAMETERS

Expression of z parameters in terms of Y parameters and vice-versa

From equations 1.1,1.2,1.3 & 1.4, itis easy to derive the relation between the oPen circuit
impedance Parameters.and the short circuit admittance parameters b){ means of two matrix
equations of the respective parameters. By solving equationaandbfor 1y and I; , we get

Vi 2 &y ¥
I-_:[VE 21:] /4 ; and Iz = 23: 1;‘]/":"2

where 4A; isthe determinant of Z matrix

_ré13 &2
Ae = [321 322]
1 =& V- B ettt 1.9
iz iz =
L=-2 oy 4 2y
i & 1 sz L

........................................................................ 1.10 comparing
equations 1.9 and 1.10 with equations 1.3 and 1.4 we have

. oo - Zip
Yy =—— ; Tig=-7
-z z
¥ Zgy T Ziy
gl —- y Y38 -
i iy

Inasimilar manner, the z parameters may be expressed in terms of the admittance parameters by
solving equations 1.3 and 1.4 for V; and V-

I = by I
1=l vl /8 5 and Va= [ 1A

where A, isthedeterminantof Y matrix

. CTR iF:
Bz [y vl
T SR L e L 1.11

1.12 comparing

equations 1.11and 1.12 with equations 1.1 and 1.2 we have



L=

General Circuit Parameters or ABCD Parameters in Terms of Z parameters
and Y Parameters

We know that

h=alp—Bly; W =2yl +3500 I =TV + T3V
L=0Vo=D) » Vo=0ply + 25207 - [o =TV + T2 W
=S E=0. o2 h=v . B=.Bw=0 .p=. & =0
z LTy ’ I ’ I

Substituting the condition I =0 in equations 1.1 and 1.2 we get

e =

T

— Wy

¥

Substituting the condition I, =0 in equations 1.4 we get,

_Ve
A=t

"

T
Y;f

f: =1 =

Substituting the condition I =0inequations 1.2 we get
1

= -
= l;=0
Sub'étitutingthe condition;, =0inequation 1.3 and 1.4 and solving for;_ gives

=l 5 Where 4; is the determinant of the admittance matrix

=

X

|.!.-.=I:[ :—-I'I'- :C

Substituting the condition Vz =0 in equations 1.4, we get

'";_;-lxlfz=q =-1 =B

Tas
Substituting the conditiony;. =0inequation1.1and1.2andsolvingfory gives

Zge , . . .
=V, == Where . is the determinant of the impedance matrix
=z



o

-

B=0 = g

Substituting the condition V= =0 in equation 1.2 we get ,

T — = Zm _
'\.—‘:—':[ Z.. D

e

L

Substituting the condition V; =0inequations 1.3 and1.4
we get

-1
—

I

‘.5:=':[ = _r_ =D

T and; renresentation

A two-port network with any number of elements may be converted into a two-port three-
element network. Thus, a two-port network may be represented by an equivalent T-
geiv%/ork, I.e. three impedances are connected together inthe form ofa T as shown infigure

+ —
1 = =2
,1~> Za Zb . 12
1" - =i
Figure 1.15

Itis possible to express the elements of the T-network interm of Z parameters,or ABCD
parameters as explained below.

Z parameters of the network

Iy =V, quo = ZE"Z.E
]I’ =

¥
o

.=0 =z,

£
5
]E




From the above relations, it is clear that

zﬂ. = E'l'l - z:'l

7, = oy - S22

Z, =2y %

ABCD parameters ofthe network

¥, ZE +Z.;

——s| [, = =
o 0 2

:T:" 7= 0

When 2-2' is short circuited

—I. = Vile
2 EyBotEalZy+Eo)
HA
B=(z, +I,)+ 5"
C= '::—r' IE: 0 = l
- Z,
D ==l . = 0
] S
When 2-2' is short circuited
1, =1, =
- Eptdg
D = Iz,

iy

From the above relations we can obtain

=]
|

£=]
|

[
11

Problem :1.6



The Z parameters of a Two-portnetwork are 2,4 = 100, Z,, = LB, %, =2,,=5Q.

Findthe equivalent T network and ABCD Parameters.
Solution :
The equivalent T network is shown in Figure 1.16
where EE = zn '221: 5Q
Zh: Z:: '2-12: 10 Q
and Z. =5Q
The ABCD parameters ofthe network are
A=Z4+1=2;B=(  )+Ef=250
v v
zﬂ. T z&-
C= =002;D=1+=3

1

In azsimilar way a two-port network may be represented by an equivalent. -network, i.e.
three impedances or admittances are connected together in the form of as shown in Fig

1.17. i3
Zy Zs
Z;
+ 1 +
| R0
S + Y, I =




Fig. 1.16 Fig.1.17

Itis possible to expressthe elementsofthe . -networkinterms of Y parameters or ABCD
parameters as explained below.

Y-parameters of the network

= =0 = +
w2, GYs
=vd = =0 = ‘1: -
3 5|V
1 :%— ¥E0 = Y4
T
- L] )
12 = '.|== "1 :0 = ‘:I.':

TSE 3r e i
C= —Uli £1'1 +ig+ T

_=Vax _ Yo iV
D=- = _‘.;"

from the above results, we obtain

D=1 . _1
‘Y.l_ z ’15[3-_;1
A a1
Y, < g



CLASSIFICATION OF FILTERS

Afilteris areactive network that freely passes the desired band of frequencies while almost
totally suppressingall other bands. Afilteris constructed from purely reactive elements, for
otherwise the attenuation would never becomes zerointhe pass band of the filter network.
Filtersdifferfrom slm?le resonantcircuitinproviding asubstantially constanttransmission
over the band which heK accept; this band may lie between any limits depending on the
design. Ideally, filters should produce no attenuation in the desired band, called the
transmission band or pass band, and should provide total or infinite attenuation at all other
frequencies, called attenuation band or stop band. The frequency which separates the
transmission band and the attenuation band is defined as the cut-oft frequency of the wave
filters, and is designated by fc

Filter networks are widely used in communication systems to separate various voice
channelsincarrier frequency telephone circuits. Filters alsofind applications ininstrumentation,
telemeteringequipmentetc. whereitis necessarytotransmitor attenuate alimited range of
frequencies. Afilter may, in principle, have any number of pass bands separated by attenuation
gan((jjs.ll-_lowevter, they are classified into four commontypes, viz.low pass, high pass, band passand

and elimination.

Decibel and neper

The attenuation of a wave filter can be expressed in decibels or nepers.Neper is defined as the
natural logarithm of the ratio of input voltage (or current) to the output voltage (or current), provide
that the network is properly terminated in'its characteristic impedance Zo .
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| Fig .9.1 (a)

Fromfig. 9.1 (a) the number of nepers, N=log e [V1/V2] or loge [l1/]2]. Aneper can also be
expressedinterms ofinput power,P; and the output power P> as N=1/2 loge P1/P>. Adecibelis
deftined as tentimes the common logarithms of the ratio of the input power to the output power.

Decibel D=10 log.0P1/P-



The decibel can be expressed in terms of the ratio of input voltage (or current) and the output
voltage (or current.)

D=20 |Og10[V1/V2] =20 |Oglo[|1/|2]
* One decibel is equal to 0.115 N.

Low Pass Filter

By definition alowpass (LP)filteris one which passes without attenuation allfrequencies
up to the cut-off frequency f. , and attenuates all other frequencies greater than f. The
attenuation characteristic of an ideal LP filter is shown in f|g.9.1(b?.Th|s transmits currents of all
frequencies from zero up to the cut-off frequency. The band is called pass band ortransmission
band.Thus,the pass band for the LPfilteristhe frequency range 0tof..The frequency range
over which transmission does not take place is called the stop band or attenuation band. The stop
band for a LP filter is the frequency range above f. .
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Fig.9.1 (b)

High Pass Filter

A high pass (HP) filter attenuates all frequencies below a designated cut-off frequency, f. , and
Passes all frequencies above f. . Thus the pass band of this filter is the frequency range above f, and
fhegtgrztt)))and Is the frequency range below f. . The attenuation characteristic of a HP filter is shown in
ig.9. .

Band Pass Filter



Aband Passfilter passesfrequencies betweentwo designated cut-off frequenciesand
attenuates all other frequencies. Itis abbreviated as BP filter. As shown infig.9.1 (b), a BP filter has
two cut-off frequencies and will have the pass band f. —fi; f1 is called the lower cut —off frequency,
while f; is called the upper cut-off frequency.

Band Elimination filter

Aband elimination filter passes all frequencies lying outside acertainrange, while it attenuates
allfrequencies between the two designated frequencies. Itis also referred as band stop filter. The
characteristic of an ideal band elimination filter is shown in fig.9.1 (b). All frequencies between f;
and f, will be attenuated while frequencies below f; and above f, will be passed.

FILTER NETWORKS

_ ldeally afilter should have zero attenuation in theﬁ,ass band. This condition canonly be
satisfied if the elements of the filter are dissipationless.which cannot be realized in practice. Filters are
designed with an assumption thatthe elements of thefilters are purely reactive. Filters are made of
symmetrical T, or rrsection. T and trsection can be considered as combination of unsymmetrical L
sections as shown inFig.9.2.
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Fig. 9.2

~ The ladder structure is one of the commonest forms of filter network. A cascade
connection of several T and mrsections constitutes aladder network. Acommon form of the ladder
network is shown inFig.9.3.

Figure 9.3(a) represents a T section ladder network, whereas Fig.9.3 (b) represents the Trsection
ladder network. It can be observed that both networks are identical except at the ends.



Fig. 9.3

EQUATIONS OF FILTER NETWORKS

The study of the behavior of anyfilter requires the calculation of its fropagation constanty,
attenuation a, phase shift fand its characteristic impedance Zo.

T-Network

Consider a symmetrical T-network as shown in Fig. 9.4.

£ L1
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Fig.9.4

_ Iftheimage impedancesat port 1-1'and port 2-2' are equal to each other ,theimage
impedance isthen called the characteristic, or the Iterative m;edance, Zo.Thus, if the network in
Fig.9.4is terminated in Z, its inputimpedance will also be Z,. The value of input impedance for
the T-network when it is terminated in Zois given by
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The characteristic impedance of a symmetrical T-section is

! ZE :
Zor = _‘;‘ tZ\Z,

(9.1)

Zor canalso be expressed interms of open circuitimpedance Zoc and short circuitimpedance Z
scof the T—network . From Fig. 9.4, the open circuitimpedance Zoc=Z1/2 +Z ; and

7 3 - Zo
L Aoyt Wit L i
Y Z
= L+ 2Z,
2

72 +42,2,
e

ZZ
Z()(' > Z.\'(‘ YT § Zl Z;! -4 "i—

T Z(%‘l' or Zyp = \ZoeZye
(9.2)
Propagation Constant of T- Network

By definitation the propagation constant Yof the network in Fig.9.5 is given by Y= log e l1/I2



Writing the mesh equation for the 2nd mesh, we get
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The characteristic impedance of a T — network is given by
2
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Squaring Esq. 9.3 and 9.4 and subtracting Eq.9.4 from EQq.9.3, we get

(9.3)

(9.4)
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Rearranging the above equation, we have

e V(e 4+1—2eY) = <
Z>

(e’ +e 7 —Z)ZQ

Z>

Dividing both sides by 2, we have

e e Y Zs
2 2Z,

7

coshy =14 —L
2Z,

(9.5)
Still another expression may obtained for the complex propagation constant in terms of
the hyperbolic tangent rather than hyperbolic cosine.
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Dividing Eq.9.6 by Eq.9.5, We get
Zor
tanh vy = ; + Z,
Z
) (e
But Zz + ST — ZOC
2
Also from Eq. 9.2,
Zor = \/TZO._AT
i — :‘;71-:';
tanh -y Zo.
Also sinh ‘% == / :;_(cosh v — 1
Where coshy = 1| +(Z,/27Z,)
i
i 9.7)

m - Network

Consider asymmetrical T— section shown in Fig. 9.6. When the network is terminated in Z ( at port 2
— 2 " its input impedance is given by
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Fig.9.6
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Rearranging the above equation leads to

Z12h
2, = |
\+Z,/4Z,
@which is the characteristic impedance of a symmetrical m-network

2.7,

Zow =
:]Z.Z2 +2Z2/4

ZZ
Zor = \/—4'_ + Z,Z,

From Eq. 9.1
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(9.9)



ZonCan be expressed interms of the o‘oer] circuitimpedance Zoc and shortcircuitimpedance
Z sc of the Tnetwork shown in Fig.9.6 exclusive of the load Z ¢

From Fig.9.6, the input impedance at port 1-1 when port 2 — 2" is open is given by
5 222 +22,)
o | [ Sabas , -

Z, +4Z,

Similarly, the input impedance at port 1 — 1" when port 2 — 2 is short circuit is given by
27,723
g 2Z5 + Z,

;4/1/2 2 Zl Z;’.

Hence 4Z£,.X%XZ,. . = e
Z, +4Z, 1+ Z,/4Z,

Thus from Eqg. 9.8

Lo = \/_/(u Z e
(9.10)
Propagation Constant of m - Network

S The propagation constant of a symmetrical m—section is the same as that for asymmetrical T —
ection.

1.e. cosh y =14 ——
2Z,

CLASSIFICATION OF PASS BAND
AND STOP BAND

Itis possible to verify the characteristics of filters from the propagation constant of the network. The
propagationconstanty, beingafunction offrequen%/, the passband, stop band andthe cut-off
point, i.e. the point of separation between the two bands, can be identified, For symmetrical T or 11—
section, the expression for propagation constant Yin terms of the hyperbolic functionsis given by Eqs
9.5and 9.7 in'section 9.3. From Eq.9.7, sinh ¥/2=~N(Z 1 /14Z,) .

If Z1 and Z, are both pure imaginary values, their ratio, and hence Z; /4Z, , will be a pure real
number. Since Z: and Z; may be anywhere inthe range from -jato +jo, Z1/4Z> may also have any



real value between the infinite limits . Then sin h Y/2 =~Z 1 [N4Z, will also have infinite limits, but may
be eitherreal orimaginary depending uponwhether Z,/ 4Z, is positive or negative.

We know that the propagation constant is a complex function Y= a+jp, the real part of the
complex propagation constant a, is a measure of the change in magnitude of the current or voltage in
the network ,known as the attenuation constant. Bis ameasure of the difference in phase
between the input and output currents or voltages. Known as phase shift constant Therefore aand 8
take on different values depending upon the of Z1/ 4Z, . From Eq.9.7, We have

sinh Y = sinh[g— + i[—'))—] = sinh 2cos?- + jcosh gsinE
2 ot 2 5 el Ao X2
Z,
(9.12)
Case A

IfZ,and Z,arethe sametype ofreactances,then[Zi/4Z;]isrealand equaltosay a+x.
The imaginary part of the Eq. 9.11 must be zero.

(9.12)
sinh % cos% X iin B 0
(9.13)

aand Bmust satisfy both the above equations.

Equation 9.12 can be satisfied if /2 = 0 or ntr, where n =0, 1, 2,....., then cos 3/2 = 1 and sinh a/2= x
=\(Z1142Z,)

That x should be always positive implies that

L l
i,

(9.14)

> 0and @ = 2sinh”




Since a#0, it indicates that the attenuation exists.
Case B

Consider the case of Z1 and Z2 being opposite type of reactances, i.e. Z1/ 4Z; is negative
making vZ1 / 4Z, imaginary and equal to say Jx

*Thereal part of the Eq.9.11 must be zero.

B

. o
sinh — cos — =
o) o)

(9.15)
ik
cosh —sin — = x
2 2
(9.16)

Boththe equations must be satisfied simultaneously by aand 8. Equation 9.15 may be satisfied
when a= 0, orwhen B=11. These conditions are considered separately hereunder

_ (i) Whena=0;from Eq.9.15, sinh a/2 =0.and from Eq.9.16 sin /2 =x=(Z1/4Z>) . Butthe
sine can have a maximum value of 1. Therefore, the above solution is valid only for negative Z1/4Z,
,and having maximum value of unity. Itindicates the condition of pass band with zero attenuation
and follows the conditionas

AN =
1< -—1_ =0
427,
B = 2sin ! 2
4z,

(9.17)
(i) When B=r, from Eq.9.15, cos B/2 = 0. And from E.9.16, sin B/2 =+ 1; cosh a/2 = x = (Z1/ 4Z>)

Since cosh a/2 21, this solution is valid for negative Z,/ 4Z, ,and having magnitude
greater than, or equal to unity. It indicates the condition of stop band since a#0.

G
—O —— < — ]
az,
« = 2cosh ™! <)
4z,

(9.18)

_ltcanbe observed that there are three limits for case A and B. Knowing the values of Z,
and Z,, itis possible to determine the case to be applied to thefilter. Z, and Z, are made of
different types of reactances, or combinations of reactances, so that, as the frequency changes,a
filter ma)ép_ass from one case to another. Case A and (ii) in case B are attenuation bands, whereas (i)
in case B is the transmission band.



Thefrequencywhichseparatesthe attenuation bandfrom passband orvice versais
called cut-offfrequency. The cut-offfrequencyis denoted by fc, andisalsotermed as nominal
frequency. Since Zois realinthe pass band and imaginary in an attenuation band, fcis the frequency
atwhich Zo changes from being real to being imaginary. These frequencies occur at

= O Oor Z, =0

4z, 9.18(a)
4] lorZ, +4Z, =0
gl S G0 +-4Z, =
4z, : # 9.18
(The above conditions can be represented graphically, as in Fig.9.7.
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Fig. 9.7

CHARACTERISTIC IMPEDANCE IN
THE PASS AND STOP BANDS

Referring to the characteristic impedance of a symmetrical T-network, from Eq. 9.1 We have

Zf 7
Zin= Al A 202 = |2 |V =
07 4 J 542 152 422

If Z; and Z are purely reactive, let Z; = jx; and Z; = jx2 , then
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Z()l — "‘.\‘l.\.') 1 + T

(9.19)
A pass band exists when x; and x; are of opposite reactances and

X

—1< < 0

4x,

.-

Substituting these conditions in Eqg. 9.19, we find that Zor is positive and real. Now consider
the stop band. A stop band exists when x; and x. are of the same type of reactances; then x1/4x2> 0.
Substitutingthese conditionsin Eqg. 9.19, wefindthat Zoris purleyimaginaryinthis attenuation
region. Another stop band exists when x; and X » are of the same type of reactances, but with x1/4x,

<-1.Then from EQq.9.19, Zor is again purly imaginary in the attenuation region.

_ Thus,inapassbandifanetworkisterminatedinapureresistance Ro(Zot=Ro), theinput
impedance Is Ro and the network transmits the Ilo_ower received from the source to the Ro without
any attenuation. Ina stop band Zoris reactive. Therefore, if the network is terminated ina pure
reactance (Zo = pure reactance), the inputimpedance is reactive, and cannot receive or transmit
power. However, the network transmits voltage and current with 90° phase difference and with
attenuation. It has already been shown that the characteristics impedance of asymmetrical 1r-
section can be expressed interms of T. Thus, from EQ.9.9,Zor= Z1Z5/Zor .

~_ SinceZiand Z;are purelyreactive, Zorisreal, if Zorisreal and Zoxisimaginaryif Zot
is imaginary. Thusthe conditions developed for T—section are valid for TT—sections.

CONSTANT -K LOW PASS FILTER

A rlwet'gwork, either T or 1T, issaidto be ofthe constant—ktypeif Z, and Z, of the network satisfy the
relation

le 2= k2
(9.20)

Where Z; and Z; are impedances inthe T and trsections as shown in Fig.9.8.Equation 9.20 states
thatZ,and Z,areinverse iftheir productis a constant, independentoffrequency. Kisareal
constant trﬂ(at |fs_|the resistance. kis often termed as designimpedance or nominal impedance ofthe
constant k —filter.



The constantk, T or mitype filter is also known as the prototype because other more complex
network can be derived from it. A prototype T and TT— section are shown in

4 Z;
2 20 Z
—— VO —T——— BV ——e . T
L/2 L/2 i

A 1

R 2Z; T cl2 cl2 Jf 27,
(a) (b)

Fig.9.8

Fig.9.8(a) andf(b), where Zi=jwLand Z2=1/jwc . Hence Z1Z>=L/C =k?whichis

independent o

L
Z\Z, = k* = — or k= ’—L—
( \c

frequency.

(9.21)

Since the product Z; and Z; is constant, the filter is a constant — k type. From Eq.9.18 (a) the

cut-off frequencies are Z; /4Z, =0,

i.c. S L salin-c -0

4
i.e f=0 and —-

—wiC .,

4

or [ = — o
wNLC
(9.22)

The pass band can be determined graphically. The reactances of Z; and 4Z, will vary with
frequency as drawnin Fig.9.9.The cut-off frequency atthe intersection of the curves Z; and -4z, is
indicated asfc.Onthe X—axisas Z:=-4Z,atcut-offfrequency, the pass bandlies betweenthe

frequencies at which Z, =0, and Z; =-4Z, .
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Fig.9.9

Allthe frequencies above fc lie in a stop or attenuation band , thus,

pass filter . We also have from Eq.9.7 t‘f)mat

Ly 2, ,—szc JovLC
sinh—= |—= =
2 \4z, 4 2

From EQg.9.22

7 |

JLC =

S LR 2SSyt

2 27/, JSe
We also know that in the pass band
Z,

Somw
s

and
In the attenuation band,

Zy . )
< —1,1.e.5—
a4z, s

= 28in '[

o = 2cosh ™!

The plots of aand Bfor pass and stop bands are shown in Fig

the network is called a low-

.9.10




Thus, from Fig. 9.10, a= 0, B= 2 sinh™* (f /fc ) for f < fc
o= 2cosh (f/fc); B= rfor f > fc
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Fig .9.10

The characteristics impedance can be calculated as follows

Loy = JZ'ZI[l -4 AZZ‘Z]
\/£1[| F?Z{f:J
” 4
f 2
K |l —| =
=)

Zor —

(9.23)

N4
o

~ FromEQq.9.23, Zgrisraelwhen f<fc,i.e.inthe pass band atf =fc, Zor; and for f > fc, Zoris
imaginary inthe attenuation band, rising to infinite reactance atinfinite frequency . The variation of Zor

with frequency is shown in Fig.9.11

Zonr Zor [ —

g ]

Attenuation

/P —



Fig.9.11
Similarly, the characteristics impedance of a T— network is given by

A TR
F S TR
07 \/l : [ / ]
b
(9.24)

__Thevariation of Zonwith frequency isshowninFig.9.11. Forf <fc, Zorisreal; atf =fc, Zotis
infinite , and for f > fc, Zonis imaginary . Alow pass filter can be designed from the specifications of
cut-off frequency and load resistance.

Z()TI’ s

At cut-off frequency, Z1 = -4Z,

Jw L = =2
Jw C

T2 2LC = 1

Also we know that k = VL /C is called the design impedance or the load resistance
o
I\'" - e
(
,"2/(2 k22 = ]

1 : ’ :
i gives the value of the shunt capacitance
A

i
D k - . . .

and L =k°C = - / gives the value of the series inductance.

™

(

Example 9.1.

Design a low pass filter (both Trand T — sections ) having a cut-off frequency of 2 kHz
to operate with aterminated load resistance of 500 Q.
solution. Itisgiventhat k=+(L/C) =500 Q, and fc=2000

Hz we knowthat L =k/mfc =500/3.14 x 2000 =79.6
mH

C = 1/mfck = 1/3.14.2000.500 = 0.318 pF



The T and 11— sections of this filter are shown in Fig.9.12 (a) and (b) respectively.

L/2 = 39.8 mH L/2 = 39.8 mH L =796 mH
e 1Y B RO — S I LI
= L g4
| | & 3
- C = 0.3189 uf - i 2=
S S
(a) (b)
Fig.9.12
Constant K — high pass filter can be obtained by changinq the positions of series and shunt arms of
the networks shown in Fig.9.8.The prototype high pass filters are shown in Fig.9.13,where Z; = -jlwc
and Z; = jwlL .
2C 2C C
— A * 1 .
Z1 Z1 Z1
2 2
L K22, 2L Q 22 2L Q 22,
(a) (b)
Fig.9.13

_Adgain, itcan be observed that the product of Z; and Z is independent of frequency, and the
filter design obtained will be of the constant k type .Thus, Z:Z; are given by

) By Vi
2.2, =——jol=—=k
142 wC'l C

(=
G

The cut-off frequencies are given by Z; =0 and Z, = -4Z, .
Z1 = 0 indicates j/wC =0, or w—a



From Z, =-4Z,

-jlwC =-4 jwL
w?LC = 1/4
. l
or f =
Je
4m/-L_5

(9.25)

The reactances of Z; and Z; are sketched as functions of frequency as shown in Fig.9.14.
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Reactance —
N

42,
-— Passband —

Fig.9.14

As seen from Fig.9.14, the filter transmits all frequencies between f = fc and f = a. The point fc
from the graph is a point at which Z;= -4Z, .
From Eq.9.7,

hep! wocyjor=1

sinh—y—: s g e
47, 40°*LC

From Eq. 9.25,
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In the pass band, -1< Z1/4Z, < 0, a= 0 or the region in which fc / f < 1 is a pass band B= 2 sin * (fc/ f
)
In the attenuation band Z/4Z,< -1,i.efc/f>1
o= 2 cosh [Z1 / 4Z;]
=2cost(fc/f);B=-m
o
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Fig.9.15

The plots of aand Bfor pass and stop bands of a high pass filter network are shown in Fig.9.15.

A high pass filter may be desi%\ed sim\i/lar to the low pass filter by choosing a resistive load r
equal tothe constantk , suchthatR =k =+L/C



k 1

Since \/(‘ = 1‘-

and C = l_
4/, 4w/ k

The characteristic impedance can be calculated using the relation

= ;. Z A
Zor = [Z1Z> [1 + = J \/£[1 e —21—]
4z, C 4w’ LC

PR%
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Similarly, the characteristic impedance of a T— network is given by

Zy
TK —————————————

(9.26) Zor
Fig,9.16

haracteristic impedanes with respect to frequdncy is shown in

0
The plot of ¢
Example 9.2.




Design a high pass filter having a cut-off frequency of 1 kHz with a load resistance
of 600 Q.

Solution. Itis giventhat R =K =600 Qand fc =1000 Hz

L =K /47if.=600/4 xTIx 1000 = 47.74
mH C = 1/41rkfc = 1/41Tx 600 x1000 =
0.133pF

The T and m— sections of the filter are shown in Fig.9.17.

2C = 0.266 uF 2C = 0.266 nF C = 0.133 nF
- 11 | I— ——j
E
=R L =47.74 mH ] b e © 2L 2 9548 mH
= v
o
* o o —e
(a) (b)
Fig.9.17

m - DERIVED T - SECTION FILTER

Itis clear from Figs.9.10 and 9.15 that the attenuation is not sharp in the stop band for k-type filters.
The characteristic impedance, Zois afunction of frequency and varies widely in the transmission
band. Attenuation can be increased in the stop band by using ladder section, i.e.by connecting two or
moreidentical sections. Inordertojointhe filter sections, itwould be necessary thattheir ~
characteristic impedances be equal to each other at all frequencies. If their characteristic
impedances match atall frequencies, they would also have the same pass band . However,
cascading is not a proper solution from a practical point of view .

~ This is because practical elements have a certain resistance, which gives rise to
attenuation in the pass band also. Therefore, any attempt to increase attenuation in stop band b
cascading also results in an increase of ‘o’ in the pass band .If the constant k section is regarded as
the prototype, itis possible to design afilter to have rapid attenuation in the stop band, and the.
same characteristicimpedance as the prototype at all frequencies . Such afilter is called m — derived
filter. Sugj ose a prototype T —network shown in Fig.9.18(a) has the series arm modified as shown in
Fig.9.1 80) ,wheremisaconstant. Equating the characteristicimpedance of the networksin
Fig.9.18, we have




21/2 21/2 mZ4/2 mZ,/2

2 Z%
(a) (b)
Fig.9.18
Zor=Zot’

Where Zor ,is the characteristic impedance of the modified (m — derived) T — network.

ZZ 222
,/T'+Z,zz = J'"4 L mZ,Z,

ZZ ZZZ
Sl 2l Sl Sl 7 2
4 4

72
Mzl Tl(l —m?)+2Z,Z,

Z Z
Z} ==L (1=m?)+ 2
4m m

(9.27)
It appears that the shunt arm 2Z " consists of two impedances in series as shown in Fig.9.19.

=472 =4 /2
s Py TR el i 5or
Zz/m

Z 1 (1 —r232)

Fig.9.19



_ From Eq.9.27, 1 — m?4m should be positive to realize the impedance Z ', physically ,
i.e.0<m<1.Thus m-derived section can be obtained from the prototype by modifying its series and
shuntarms.The sametechnlcaue canbe appliedtotrsection network. Sulgpose aprototype m—

network shown in Fig. 9.20 (a) has the shunt arm modified as shown in Fig. 9.20(b).
21 Zli
° T s pa |
. et °
22, 22 2Z;lm 2Zylm
(a) (b)
Fig.9.20
ZOT[: Z ‘0

Where Z ‘onis the characteristic impedance of the modified (m — derived) T— network.

Zi
Hiit et
\ 4-Z5/m



Squaring and cross multiplying the above equation results as under.

; 4Z/Z, + Z, Z/!
(42,Z, + mZ|/Z,) = 42,2, + 2,2,

m
Y [ 47, : -
zZ/| =+ < m/,J - 47,7,
m m .
or P e ins /l_/2
: Z, * Z, mZ,
4m m 4
L4y
Zn Z,
£ 4 (1—m~)
m m
Zx 4m“’ M, Z, 4'):
o AT ) (1—m*)
Zs - - 5 mad 09 AL
2 “ ! Z4m
Z4m - Zm MZ | o s
m(l —m~) (1—m~)

(9.28)

It appears that the series arm of the m — derived T1section is a parallel combination of mZ; and
4mZ,/1—m? . The derived m section is shown in Fig.9.21.

m - Derived Low Pass Filter

In Fig.9.22 , both m — derived low pass T and Trfilter sections are shown. For the T —section shown in
1|::Ig. .22(a)f, the shunt arm is to be chosen so that it is resonant at some frequency fsabove cut-off
requency fc .

Ifthe shuntarmis series resonant ,its impedance will be minimum or zero . Therefore , the
outputis zero and will correspond to infinite attenuation at this particular frequency . Thus, atfq

1/mw,C = 1 —m?/4m wr L , where wy is the resonant frequency



mZ4

e =
P s ey
2Z5/m r'Q_Ln_ Zs 2Z-/m
- -®
Fig.9.21
2
T oF
mi/2 ml/2 it
’—WWW orr -
_J miL

mec/2

(a)
Fig.9.22

s 4

T A—m?)LC

— l —
mwJLCA —m?)

Sr S

Since the cut-off frequency for the low pass filter is f. = 1/mVLC

/.
Ju = s
1—m
(9.29)
ﬁ]z
m= [1—|==
of [ 4

(9.30)

(b)



Ifasharp cut-offis desired,foshould be neartof. . From Eq.9.29,itis clear that for the
smallerthevalue of m,fo,comes closetof..Equation 9.30 showsthatiff.andf,are specified, the
necessary value of m may then be calculated. Similarly, for m —derived trsection, the inductance
and capacitance inthe series arm constitute aresonantcircuit. Thus, atf.afrequency corresponds to
infinite attenuation, i.e. at fq

i, L - ——
[l 7 ]U)r(-'
4
2 4
W = —— 5
L.C(l —m~)
: 1
Sy = — —
’"’\/1.( (1 —m~)
Sinc o 1
*rrﬁ.( :

(9.31)

Thus for both m — derived low pass networks for a positive value of m(0 <m < 1), fo>fc .
Equations 9.30 or 9.31 can be used to choose the value of m, knowing fc and f; After the value of
m Is evaluated, the elements of the T or TT—networks can be found from Fig.9.22. The variation of
attenuationforalow pass m —derived section can be verified from a=2 cosh*VZ,/4Z, for fc< f <f.
For Z1 = jwL and Z2 = -j/wC for the prototype.

/
m -
a = 2cosh ™’ —-'—/»"-_—,-
-7
S
}— m 1
and B = 2sin b=l VR Je LT
4Z, f 2 AN
| —~1 (1 m)2
.

J

Figure 9.23 shows the variation of a, Band Zo with respect to frequency for an m — derived
low passfilter.



feka = 10,

Example 9.3

_ Design a m—derived low pass filter having cut-off frequency of 1kHz, design
impedance of 400 Q, and the resonant frequency 1100 Hz.

Solution. k=400 Q, fc=1000Hz; f,=1100
Hz From Eq.9.30

/. 2 \/ 1000 ]2
= _[1 R W G - LY e | o |y 3
” \/ [_/:,. ] 1100 0.416

LetusdesignthevaluesofLand Cforalowpass, K—typefilter (prototypefilter).

Thus,
k 400
L= = - w127,
wf.  ar <1000 R
ok s o, — 0.795 wF
" arkf, w=<400x<1000 72 MW

The elements of m —derived low pass sections can be obtained with reference to Fig.9.22.
Thus the T-section elementsare



mL _ 0.416x127.32x10°°
2 2

mC = 0.416 X 0.795 X 106 = 0.33 pF

= 26.48 mH

l—m& 1--(0.416)°

- %127.32%102 = 63.27 mH
4m 4-0.416

The ar-section elements are

6

mC  0.416%x0.795x10

= 0.165 wF
2 2

1 —m* o 1 —(0.416)°

Y % 0.795%10 ° = 0.395 wF
Am 4%0.416 .

mL = 0.416 X 127.32 X 103 = 52.965 mH

The m —derived LP filter sections are shown in Fig.9.24.

52.965 mH
26.48 mH 26.48 mH —/m—‘
'——’HUU\—T—JTFW-—‘ - S
11
0.33 uF L 1y u,
§ ) 0395 uF | .5
- T b
63.27 mH o o
(a) (b)
Fig.9.24

m — Derived High Pass Filter

In Fig.9.25 both m — derived high pass T and 17— section are shown.
If the shunt arm in T — section is series resonant, it offers minimum or zero

impedance.Therefore, the outputis zeroand, thus, atresonance frequency or the frequency

corresponds to infinite attenuation.



F a4m
nm w — C
1 —m
—amry
4=
2C/m 2CIm [
} LR i i s
L/im c/m
20/m
Am o 2L/m
" . T 1-m? . L i
(a) (b)
Fig.9.25
1 | —m?
w'z — (1)2\ —= == s
L 4m 41.C
3 €
ml-—m
35 e e V1 —m? BT = 1 =T
R ANLC TS AmJLC
From Eqg. 9.25, the cut — off frequency fc of a high pass prototype filter is given by
ke 1
"¢ 4mLC
£ = fi1—m?
(9.32)
/. 2
m=_{1—|=—==
Je
(9.33)

_Similarly,for the m —derived 1—section , the resonant circuit is constituted by the series
arm inductance and capacitance . Thus, at fs



A 1
s w0, L = ——
1 7t @,. C
read
2 2 1 — ”72
(._)'._ - —— wx ——
471.C”
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e NARBE or e
2JEC A~ LC

co L_ hgad _l_ il |
] | |
o | |
Atten'uation_> Ipass band
Band I
|
l
I
0 |
—ch.: fc S f
(a)
Fig.9.26

Thus the frequency corresponding to infinite attenuation is the same for both sections.

Equation 9.33 may be usedto determine m foragivenfsandfc. The elements ofthe m —
derived high pass T or T—sections can be found from Fig.9.25. The variation of a, fand Z, with

frequency is shown in Fig. 9.26.

B
0 ’:- fc ) f
|
|
—7T : Pass band
Attenuation

Band ™

(b)

Fig.9.26



Example 9.4.

_ Design am-derived high pass filter with a cut-off frequency of 10kHz; design
impedance of 5Qand m = 0.4.

Solution .For the prototype high pass filter,

e Kf.7 0 500
4rf. 4 <1 =< 10000

= 3.978 mH

DR b |
Amkf. 47w =500 10000

= 0.0159 wF

The elements of m-derived high pass sections can be obtained with reference to Fig.9.25.Thus,
the T-section elements are

2 2x0.0159<10 °

m w 0.4 = 0.0795 wF
L 3978107 e
” 0.4 = 9.945 mH
dm 4<0.4
——C = ———"—%0.0159%10"% = :
1 — m? 1 —(0.4)2 x1 0.0302 i

The rr-section elements are

2L _ 2x0.0159x107?

= 0. == 19.89 mH
————'n €W, == ————X - = 3.978 10 3 .50
= O78 < ¥ = 7 .
- ’"2 1 (0. )2 » mkl

C  0.0159 S
= e O e 00307

T and trsections of the m —derived high pass filter are shown in Fig.9.27.

e

7.5777 mH
0.0795 pF 0.0795 uF ALl R
——} e ® e
4}
9.945 mH

% 0.0397 uF %

19.89 mH

T 0.0302 nF

19.89 mH

(a) (b)



Fig.9.27

BAND PASSFILTER

As already explained in Section 9.1, aband passfilter is one which attenuates all frequencies below
alower cut-oft frequency f; and above an upper cut-off frequency fs. _Fre%‘uenmes lying between f;
and f>comprise the pass band ,and are transmitted with zero attenuation .A band pass filter may be
obtained by using a low pass filter followed by a high pass filter in which the cut-off frequency of the
LP filter is above the cut-off frequency of the HP filter , the overlap thus allowing only a band of
frequenciesto pass . This is not economical in practice; itis more economical to combine the low

and high pass functions into a single filter section .

Consider the circuitin Fig.9.28, each arm has a resonant circuit with same resonant
frequency, i.e.the resonant frequency of the series arm and the resonant frequency of the shunt
arm are made equal to obtain the band pass characteristic.

Ly L4
2 2C1 2C1 24 Cq L
~“OET A 1 588 {f AT
e
C, e Ly Cyl2 T__[ b 2Ly Cyf2 T 2Ly
(a) (b)
Fig.9.28

For this condition of equal resonant frequencies.
For this condition of equal resonant frequencies.

L : :
w, — = ——— for the series arm
2 2w,(
from which, ?,L,C, =1
(9.34)



and _]— = wyL, for the shunt aiii

0y G,

from which, w3 L,C; =1
(9.35)

DL Cy — 1 = w3 L>CH
L,.Cy = L;C,
(9.36)
The impedance of the series arm, Z, is given by

. 2

. 7 | o L, Cy —1

oy = «w —_———— == Sttt —
: [" 2 wC & [ w )

The impedance of the shunt arm, Z, is given by

Jwl, 1

Z ol jw(:‘z ok j"’l‘z
Rl 73 2
T e A=t Oy
JwC,
TR A AN Mo

_ ol [0l LG !
Cy | 1= w?LiC,

From Eqg.9.36

Wherg k isél constant. Thus, thefilterisaconstant k—type . Therefore, foraconstant k—typeinthe
pass band.

—1< £ < 0, and at cut-off frequency
e A
Zt = —-4Z,Z, = —4k*
Z, = x j2k



i.e. the value of Z; atlower cut-off frequency is equal to the negative of the value of Z; at the upper
cut-off frequency .

|
. - -+[(.0 =-—'—"—'—+ij]
[_/w,(,, lL‘] [./wzcl e
1 |
L, — = — W, L
o [m, l “’lCl] [wzc'l 5 l]

«w
(A—wiL,C) = —L(wiL,C, —1)
w>

(9.37)
From Eq.9.34, L:C1 = 1 /we?
Hence EQ.9.37 may be written as

2 2
2
2
2
(.00 = (J.)l(l)z
fo =N Sa
(9.38)
Z,=—2jk
| |
g | Pas baia '
ass ban | z
g |
o " ~42,
1 l ,0 fz i f




Fig.9.29
Thus, theresonantfrequency isthefgeometric mean of the cut-off frequencies. The
requency is shown in Fig.9.29.

variation of the reactances with respect to
If the filter is terminated in a load resistance R = K, then at the lower cut-off frequency.

1
————— e J L == —2 7k
[j")lCl JW, L, 2 jk

Since L, C -
(l)(‘;
2
I (.); = 2’\’(.1)'('1
wq
or 1 [LL] = darkf,C,
./()
5’ : P
I fir 4mkf,C CoSo=~H1)
/> fl e 417/\/| lv(l
oo JSo =0
Y amks, fs
(9.39)
Since L,C, = “l;’
(l)“
. 1= Aarkf, />
wiC, @s(fa — i)
3 k
: (/o —Ny)

(9.40)



To evaluate the values for the shunt arm, consider the equation

p - o TN
Z,Z, = b k
L = ch = L= T
awif, 1
(9.41)
1
and C,= ﬁz b e
k* w(f— Nk
(9.42)

~ Equations 9.39through 9.42 are the design equations ofa8rototype band passfilter. T he
variation of a, Bwith respect to frequency is shown in Fig.9.30 .

It

Fig.9.30

Example 9.5.

_ Design k—tme band pass filter having a design impedance of 500 Qand cut-off
frequencies 1 kHz and 10 kHz.

Solution .

k =500 Q; f; = 1000 Hz; f, = 10000 Hz
From Eq.9.40,

¥

From Eq.9.39,

Bh e 0 9000 it
YU dmkfif,  4xax500%1000%10000

k Ul 2392 mH = 16.68 mH

T w(f,—f,) w9000

al

43 uF



From Eq.9.41,

L,=Ck*=35TmH

From EQ.9.42,

5 s e
Cy =5 = 0.0707pk

Each of the two series arms of the constant k, T — section filter is given by

L, _17.68
2

2(_'] = 2 X ()143 = ().286 “lh'

= 8.84 mH

And the shunt arm elements of the network are given by
C, = 0.0707 pF and L, = 3.57 mH

For the constant-A, 1r section filter the elements of the series arm are
C, = 0.143 wF and L, = 16.68 mH

The elements of the shunt arms are

C, 0.0707
2

— 0.035 wF

2L, = 2 X 0.0358 = 0.0716 H

BAND ELIMINATION FILTER

Aband eliminationfilteris one which passes without attenuation all frequencies less than the lower
cut-off frequency f;, and greater than the upper cut-off frequency f» . Frequencies lying between f;
andf.are attenuated. Itis also known as band stopfilter. Therefore, a band stopfilter can be
realized by connectlnﬂalqw passfilterin parallel with a high pass section, in which the cut-off
frequency of low pass filter is below that of a high passfilter. The configurations of T and Trconstant k
band stop sectionsare shown inFig.9.31. The band eliminationfilteris designedinthe same
manner as is the band pass filter.



L4/2 L4/2

~ 58 ) =a IR
cen =i r——.
2C, Lo 2C,
I ”
(a)

Asfor the band pass filter, the series and shuntarms are chosen to resonate atthe same

Fig.9.31

Ly
B0 Y
______{ }___4
2Lz C1 2L,
Cy/2 Caol2
(b)

frequency wo. Therefore, fromFig.9.31 (a), forthe condition of equal resonantfrequencies

wq 1-1_ = 1
2 2w, C
1
or Wa = ——
Ll C 1

(9.43)

wol, = IT for the shunt arm

(-)0(-2
1
2
) 1.5
(9.44)
aivos ady oyl
T LECh

Thus L,Cy, = L,C,
(9.45)

It can be also verified that

Z\Zy == L.l == _1_2 = k*

(9.46)

and /l : /Ij\

I =N

(9.47)

At cut-off frequencies, Z1 = - 4Z;
Multiplying both sides with Z, , we get

for the series arm



2,2, = —4Z3 = K’

k
Ly = j—
2 J >
(9.48)
If the load is terminated in a load resistance, R = k , then at lower cut-off frequency
: k
Zy = j -y | = J=
2 'I[w,Cz 1'2] J2
l ——wyly = i
(I.)|C»2 2
1 —w,ZC_q_IQ = w'Cz %
From Eq.9.44,
LGt = 12
o A 0)(2)
w? k
wWe

2
I"*[A] - kTr/‘Cz

et /m/,l [/] ,

Since Jo = NS>

P 1 1 l]

o |7 e

Fo ,/2 N
C, =
Wk Az
(9.49)
From Eq.9.44,
1
2 ——
Wo LC.
1 awk/, /-
L, = — = 122

waCy @S i)

Since Jo = NS>

Tyt s k
2L =)

(9.50)



Also from Eq. 9.46,

~Amk(f, — ;)

Pass

i

Z1

Attenuation

BT =S

1 o

Fig.9.32

Pass

The variation ofreactances withrespecttofrequencyis showninFig.9.32. Equation 9.49
through Eqg.9.52 is the design equations of a prototype band elimination filter. The variation of a,3

with respect to frequency is shown in Fig.9.33..
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Example 9.6.

Design aband elimination filter having a designimpedance of 600 Qand cut-off
frequencies f; =2 kHz and f, = 6 kHz.

Solution. (f> —f1) = 4 kHz

Making use of the Egs.9.49 through 9.52 in Section 9.10, we have



y k(L= fi)__600xdo0 .
w| ff; ) mx2000x6000

(el : = 0.033 puF
amk(f, — f;)  4xwx600(4000)

PO it
dmk(f, — f;)  4m(4000)

i e 4000 ]:0.176@
kw| fify | 600 2000%6000

Each of the two series arms of the constant &, 7-section filter is given by
% =31.5mH

2C, = 0.066 pF
And the shunt arm elements of the network are
L, = 12mH and C, = 0.176 wF
For the constant £, 1r-section filter the elements of the series arm are
L, = 63 mH, C, = 0.033 pF

and the elements of the shunt arms are

2L, = 24 mH and 522— = 0.088 wF



