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COURSE CONTENTS:

1.Introduction:
Aim, object and scope of study the subject.

2.Solution of determinate beams.

Define a beam

Explain various types of supports.

Explain various types of beams.

State and illustrate the concept of shear force, bending moment, shear force and bending
moment diagram in case of cantilever and simply supported beam subjected to concentrated
load and U.D.L acting separately.

3.Bending stress in beams.

Show the use of pure bending equation (No derivation) for followings.
Rectangular solid.

Circular, solid.

4.Slope and deflection of beams by double integration method.

State and explain the differential equation of elastic curve (expression only).

State and explain the sign conventions for slopes and deflection.

State and explain the slope and deflection calculation for simply supported beam subject to
single concentrated load at mid span and U.D.L over entire span.
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1.Introduction:

Aim, object and scope of study the subject.

The strength of a material may be defined as ability, to resist
its failure and behaviour, under the action of external forces.
It has been observed that, under the action of these forces
the material is first deformed and then its failure takes place.
A detailed study of forces and their effects , alongwith some
suitable protective measures for the safe working condition is
known as strength of material.

Behaviour of solid bodies subjected to various types of
loading

Compression Tension Bending Torsion (fwisted) Shearing

. This subject is useful for a detailed study of forces and
their effects . This knowledge is very essential for an
engineer, to enable him, in designing all type of
structure and machine.

. To Provide the basic concepts and principles of strength
of materials and to give an ability fo analyze a given
problem in a simple manner.

. To give an ability to calculate siresses and deformations
of objects under external forces.

4. To give an ability to apply the knowledge of strength of
materials on engineering applications and design
problems.

CHAPTER -2

2. Solution of determinate beams



Define a beam:

Beam is the horizontal structural member subjected to a system of external forces at right angles to
its axis, bending moment and shear force. The loads are applied over the span as udl or point load.

Explain various types of supports:

Types of supports

1) Simple support :-

In this type of support,beam is simply
supported on the support.
There is no connection between beam and
support.
At this type of support,only vertical reaction will
be produced.

Simple N

e

“Support Reactions”

e Support - A support prevents translation of
a body in a given direction, a force is
developed on the body in that direction.

* Reactions:- The forces and moments

exerted on an object by its supports are called
reactions.




2) Fix end support :-

Beam is completely fixed at end in the wall or
support.
Beam cannot rotate at end.
Reactions may be vertical,horizontal,inclined and
moment.

Fixed End Support

3) Roller support:-

In this type of support,rollers are placed below beam and
beam can slide over the rollers.

Reaction will be perpendicular to the surface on which
rollers are supported.

This type of support is normally provided at the end of a
bridge.

Due to breaking forces of vehicles and temperature
forces,bridge slab can slide over the roller support and damage to

bridge pier can be avoided.

Roller Support




4) hinge support:-

Beam and support are connected
by a hinge.
Beam can rotate about the hinge.

Reactions may be vertical, horizontal
or inclined.

¥

" Pin Support

\

Roller m——" Fixed

Simple
(frictionless
Pinned surface)

Support Reactions

Explain various types of beams:




In engineering, beams are of several types:

1. Simply supported

Beam —
A beam supported on the ends
which are free to rotate and FIG.1 SIMPLY SUPPORTED BEAM
have no moment resistance.
2.Fixed beam - abeam = Py
supported on both ends and
restrained from rotation. Fied Doam
Effective Span
Clear Span

FIG. 2 FIXED BEAM

3) Cantilever :- it has one end fixed and
other end free.

Fixed
end




4) Over hanging :— A simple beam extending
beyond its support on one end.

5) Continuous Beam-

A beam extending over
more than two supports.

Figure P-829



8) Propped cantilever

Beam H,

VA

~SaM,

Span

Fig.4.7 Propped cantilever beam,

Prop, V,,



Structural load :

Structural loads are forces, deformations, or accelerations applied to a structure or its components.

Types of loads
» Dead load

= Loadsthat are relatively constant over time.
= Also known as permanent or static loads.

= Live load

= Dynamic or impose or moving loads,
temporary of short duration.

« Considerations: impact, momentum,
vibration, slosh dynamic of fluid.

- Environmental loads

These are loads that act as a result of weather,

topography and other natural phenomena. These are:

* Seismic load
* Snow, rain and ice load
Wind loads

Snow load — ¥
Livelead

Water load -,

pavy

b d

Thermal loads (temperature changes leading to thermal expansion)
Lateral pressure of soil, groundwater or bulk materials

Seismic Load:

Buildings undergoes dynamic motion
during earthquake.

Building is subjected to inertia forces
that act in opposite direction to the
acceleration of earthquake
excitations.

These inertia forces, called seismic
loads, are usually dealt with by
assuming forces external to the
building.




Wind Load: /,E

Wind load has the ability to bring a building to i Pl
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Variation of wind velocity with height

Types of Loads acting on Beams
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1) Point load(concentrated load)- w1l and w2
are point loads.

=>»the load concentrated at one pointis called
point load.

=>» Unit of point load is n or kn.
=>»eg. 20 kn,100kn,60n,etc
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2) Uniformly Distributed

Load(U.D.L)- Load uniformly
distributed on certain length of
beam is called uniformly
distributed load.

=>it is written as u.d.|

=>unit of u.d.l is kn/m or n/m.

(i) U.D.L

3) Uniformly Varying Load (U.V.L)-

this type of load is gradually increase Or
decrease on the length of the beam. it is also called triangular
load.

(i) UNIFORMLY VARYING LOAD

Definition of Shear Force & Bending Moment:




Shear Force:-

It is the algebraic sum of the vertical forces acting to the
left or right of a cut section along the span of the beam

#Unit of S.F is N or kN
Bending Moment:-

It is the algebraic sum of the moment of the forces to the
left or to the right of the section taken about the section

»Unit of B.M is N.m or kN.m

SF is to be calculated on both (left and right)
sides of the point that you are interested in to
finally get your shear force diagram .

Left side : force directed up is positive & down
is negative

Right side : force directed up is negative and
down is positive .

What I prefer for SF is imagining a moment
created by the force ... if clockwise take
positive value of force and vice versa.

BM

Here the value on left as well as right is same
..so depending on saving the complexity of
calculations you can prefer any side for BM
diagram.

Force going up is positive
Going down is negative .

If there is a moment acting ...add according to
basic moment conventions. (CW negative &
CCW Positive )

POINT OF CONTRAFLEXURE:




In BM diagram, The point at which BM change its
sign from positive to negative or negative to positive is
called point of contraflexure.

[t is a point where the beam tends to bend in opposite
direction, It is the point at which curvature of beam
changes.



_

Loading Shear Force Design Shear
reinforcement
Loading Bending Moment Design flexure
reinforcement
Compression in top fibres Tension in top fibres
Tension in bottom fibres Compression in bottom fibres
Sagging Bending Hogging Bending

Chchane Ares Chwbabe

Postitive Bending Moment Negitive Bending Moment
Sagging Moment Hogging Moment
(@) (b)




13.8. Cantilever with a Point Load at its Free End

Consider a *cantilever AB of length [ and carrying a point load W at its free end B as shown in
Fig. 13.2 (a). We know that shear force at any section X, at a distance x from the free end, is equal to
the total unbalanced vertical force. i.e.,

F . =-W ..(Minus sign due to right downward)

* Tt is a beam fixed at one end and free at the other.



and bending moment at this section,
M =-W.x ..(Minus sign due to hogging)

(a)

(b)
!
uf
1

() T

Wi @ Wx

Fig. 13.2. Cantilever with a point load
Thus from the equation of shear force, we see that the shear force is constant and is equal to - W
at all sections between B and A. And from the bending moment equation, we see that the bending
moment is zero at B (where x = 0) and increases by a straight line law to— WI; . at (where x=1). Now
draw the shear force and bending moment diagrams as shown in Fig. 13.2 (b) and 13.2 (¢) respectively.
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ExampLe 13.1. Draw shear force and bending moment diagrams for a cantilever beam of
span 1.5 m carrying point loads as shown in Fig. 13.3 (a).

SoLumion. Given: Span (/)=1.5m Pointload at B (W,)= 1.5 kN and point load at C (W,)
=2kN.

Shear force diagram
The shear force diagram is shown in Fig. 13.3 (b) and the values are tabulated here:
Fy = =W ==15kN
Fo==(154W)=~(15+2)=-35kN
F, = -35kN

Bending moment diagram
The bending moment diagram is shown in Fig. 13.3 (c) and the values are tabulated here:
M, =0
M, = -[1.5x05]=-0.75kN-m
M, = -[(15x15)+2x1)]=-425kN-m



1.5kN

2kN

(a)
(¢)

0.75

425

Fig. 13.3



13.9. Cantilever with a Uniformly Distributed Load

Consider a cantilever AB of length / and carrying a uniformly distributed load of w per unit
length, over the entire length of the cantilever as shown in Fig. 13.4 (a).
We know that shear force at any section X, at a distance x from B,
F, = -w.x ... (Minus sign due to right downwards)
Thus we see that shear force is zero at B (where x = 0) and increases by a straight line law to - w/

at A as shown in Fig. 13.4 (b). )
w /unit length X f— x —

(@) B
1
7 ! : -
/ ' '
' ‘ I
| ' )
(h) T ! |
wi :
g ;
| : ;
| X : ! B
(c) \ -

Fig. 13.4. Cantilever with a uniformly distributed load



We also know that bending moment at X,

M =-wx, % E -%— .(Minus sign due to hogging)
Thus we also see that the bending moment is zero at B (where x = () and increases in the form of

b
wl

2

ExampeLe 13.2. A cantilever beam AB, 2 m long carries a uniformly distributed load of 1.5
KN/ over a length of 1.6 m from the free end. Draw shear force and bending moment diagrams
Jor the beam.

SowuTion. Given : span (/) = 2 m : Uniformly distributed load (w) = 1.5 kN/m and length of the

cantilever CB carrying load (a) = 1.6 m.
Shear force diagram
The shear force diagram is shown in Fig. 13.5 (/) and the values are tabulated here:

a parabolic curve to-—— at B (where x = 1) as shown in Fig. 13.4 (¢).

F, =0
Fp = —w.a=—15%x16=—24kN
F, = —24KkN

Bending moment diagram
The bending moment diagram is shown in Fig. 13.5 (¢) and the values are tabulated here:

My, = O
A _u-za‘ _ l.5><;l-6) — _ 1.92 KN-m
M, = —[(1 5%1.6) (0.4 + %)] =— 2.88 kKN-m

1.5 kN/m
| N 1.6 m |

(a)

(€23

Fig. 13.5
Nore. The bending moment at A is the moment of the load between C and B (equal to 1.5 x 1.6 = 2.4 kN) about

A. The distance between the centre of the load and A is 0.4 + % =12 m.



ExamPLE 13.3. A cantilever beam of 1.5 m span is loaded as shown in Fig. 13.6 (a). Draw
the shear force and bending moment diagrams.

Sowumion. Given : Span (/) = 1.5 m ; Point load at B (W) = 2 kN ; Uniformly distributed load
(w) = 1 kN/m and length of the cantilever AC carrying the load (a) = 1 m.

Shear force diagram
1 kN/m 2 kN

(a)

(5)
(e)
Fig. 13.6
The shear force diagram is shown in Fig. 13.6 (/) and the values are tabulated here:
Fp = —W=-2KkN
FC = —2kN
F, = —[2+(1 x1)]=-3kN

Bending moment diagram
The bending moment diagram is shown in Fig. 13.6 (¢) and the values are tabulated here:
My, =0
- [2x0.5]=~-1KkN-m

2
)
I

<
1

_[(2>< 1.5) + (1% |)><%] =—3.5kN-m



A cantilever beam 2 m long carries a point load of 1.8 kN at its free end. Draw shear force and
bending moment diagrams for the cantilever. ~ [Ans. F, =~ 18kN; M, =-3.6KkN-m]

A cantilever beam 1.5 m long carries point loads of 1 kN, 2 kN and 3 kN at 0.5 m, 1.0 m and
1.5 m from the fixed end respectively. Draw the shear force and bending moment diagrams for
the beam.
[Ans. F,  =-6kN: M, =~7kN-m]

A cantilever beam of 1.4 m length carries a uniformly distributed load of 1.5 kKN/m over its
entire length. Draw S.F. and B.M. diagrams for the cantilever.

[Ans. F,, ==21kN; M, =-147kN-m]
Acantilever AB 1.8 m long carries a point load of 2.5 kN at its free end and a uniformly distributed
load of 1 kN/m from A to B. Draw the shear force the bending moment diagrams for the beam,

[Ans. F, =-43KN: M =-6.12kN-m]
A cantilever 1.5 m long is loaded with a uniformly distributed load of 2 kN/m and a point load
of 3 kN as shown in Fig. 13.11

13.11. Simply Supported Beam with a Point Load at its Mid-point

Consider a *simply supported beam AB of span / and carrying a point load W at its mid-point C
as shown in Fig. 13.12 (a). Since the load is at the mid-point of the beam, therefore the reaction at the

support A,

(<)

R, = Ry=05W

-

A
o
Fig. 13.12. Simply supported beam with a point load

Thus we see that the shear force at any section between A and C (i.e., up to the point just before
the load W) is constant and is equal to the unbalanced vertical force, i.e., + 0.5 W. Shear force at any
section between C and B (i.e., just after the load W) is also constant and is equal to the unbalanced
vertical force, ie, — (0.S W as shown in Fig. 13 .12 (h)

We also see that the bending moment at A and £ is zero. It increases by a straight line law and is

maximum

at centre of beam, where shear force changes sign as shown in Fig. 13.12 (o).

* It is beam supported or resting freely on the walls or columns on both ends.

Therefore bending moment at C,

X % - WTI «.(Plus sign due to sagging)

o=

M. =

Norte, If the point load does not act at the mid-point of the beam, then the two reactions are obtained and the
diagrams are drawn as usual.




.« A simply supported beam AB of span 2.5 m is carryving two point loads as
shown in Fig. 13.13.

2 kN 4 kN
[ & D
A B
| Im | - 1 m 1
25m 1
Fig. 13.13

Draw the shear force and bending moment diagrams for the beam.
Socumion. Given : Span (/) = 2.5 m ; Point load at C (W)) = 2 kN and point load at £ (W,) =4 kN.

2 kN 4 kN
o * *D
B
L = ; $ 3.2 kN
2.8 kN i Im i : Im
:

28 3.2
) : i g
4 (& D
Fig. 13.14
First of all let us find out the reactions R, and R,. Taking moments about A and equating the
same,
Ryx25 = 2x1)+(@Ax1.5)=8
R, = 8/2.5=3.2KkN

and R, = (2+4)—-32=28kN

Shear force diagram
The shear force diagram is shown in Fig. 13.14 (/) and the values are tabulated here:

F, = +R,=28kN

Fo = +28-2=08kN
F, = 08—-4=-32KkN
Fyg = —3.2KkN

Bending moment diagram
The bending moment diagram is shown in Fig. 13.14 (c) and the values are tabulated here:

M, =0
M, = 28x1=28kN-m
My = 32x1=32kN-m
My =0

NorE, The value of M, may also be found and from the reaction R, i..,

My=Q28x15)-(2x05) = 42-10=32kN-m



13.12. Simply Supported Beam with a Uniformly Distributed Load

Consider a simply supported beam AB of length / and carrying a uniformly distributed load of w
per unit length as shown in Fig. 13.15. Since the load is uniformly distributed over the entire length of
the beam, therefore the reactions at the supports A,

/— w / unit length

(a)

|
!
1
[

-

: wi? 4
/“/, - =
() A* 7= B

Fig. 13.15. Simply supported beam with a uniformly distributed load

wi
R, = Rg= o = .S wi
We know that shear force at any section X at a distance x from A,
F, = R, —wx=05wl—wx

We see that the shear force at A is equal to R, = 0.5 w/, where x = 0 and decreases uniformly by
a straight line law, to zero at the mid-point of the beam : beyond which it continues to decrease
uniformly to — 0.5 wl at B i.e., Ry as shown in Fig. 13.15 (b). We also know that bending moment at
any section at a distance x from A,
wx’ ) wx”

X

M, = Rpex—=g==g® g

x



We also see that the bending moment is zero at A and B (where x = 0 and x = /) and increases in
the form of a parabolic curve at C, i.e., mid-point of the beam where shear force changes sign as
shown in Fig. 13.15 (¢). Thus bending moment at C,

M = ﬂ(i)_‘_"(i)zzﬁ_ﬁ:ﬁ
e=aw 2 4 § 3

EXAMPLE 13.7. A simply supported beam 6 m long is carrving a uniformly distributed load
of 5 kN/m over a length of 3 m from the right end. Draw the S.F. and B.M. diagrams for the beam
and also calculate the maximum B.M. on the section.

3m m 1 11.25 kN
¥ H
> 3.75 I @ A )
. 2 '
A : Cre x - I
: =)
H 11.25
: : 1
T — . RS
I @ e
() g B
c A
Fig. 13.16

Sowumion. Given @ Span (/) = 6 m ; Uniformly distributed load (w) = 5 kN/m and length of the
beam CB carrying load (@) = 3 m.
First of all, let us find out the reactions R, and R,. Taking moments about A and equating the same.
Ryx6 = (5x3)x45=67.5

Ry, = 3 —n2skN

and R, = (5x3)—11.25=3.75kN
Shear force diagram
The shear force diagram is shown in Fig. 13.16 () and the values are tabulated here:

F, = +R,=+3.75kN
F. = +3.75kN
Fg = +3.75-(5%3)=—11.25kN

Bending moment diagram
The bending moment is shown in Fig. 13.16 (¢) and the values are tabulated here:

M, =0
M. = 375%x3=11.25kN
My, =0

We know that the maximum bending moment will occur at M, where the shear force changes
sign. Let x be the distance between C and M. From the geometry of the figure between C and B, we
find that

X e 2% 11.25x=11.25-3.75 x
375 = 11.25 or 1.25x=11.25-3.75x
15x = 11.25 or  x=1125/15=075m
M, = 375x(3+075)-5x 275 = 1266 kN-m

2



ExampLe 13.8. A simply supported beam 5 m long is loaded with a uniformly distributed
load of 10 kN/m over a length of 2 m as shown in Fig. 13.17.

10 kN/m

2m lo 2m

5m

Fig. 13.17

Draw shear force and bending moment diagrams for the beam indicating the value of maximum
bending moment.

Sowumion. Given: Span (/) =5 m; Uniformly distributed load (w) = 10 kN/m and length of the
beam CD carrying load (a) =2 m.

First of all, let us find out the reactions R, and R,. Taking moments about A and equating the

same,
Ryx5 = (10x2)x2=40
R, = 40/5=8kN
and R, = (10x2)-8=12KkN

Shear force diagram
The shear force diagram is shown in Fig. 13.18 (b) and the values are tabulated here:
F, = +R, =+ 12kN

F(. = + 12kN
Fp = +12=-(10x2)=~8kN
Fy, = —8kN

10 kKN/m

@ 12 kN 1m | 2m - 2m { ] kN
' H
H H
H :
H
12 (O -
) ! . <L P B
A Padti . : 18
. 1 ()
: : v 4
- : . :
A 19.2 . :
: 16 H
1
() a B

Fig. 13.18
Bending moment diagram
The bending moment diagram is shown in Fig. 13,18 () and the values are tabulated here:
M, =0
M, = 12x1=12KkN-m
M, = 8x2=16KkN-m
We know that maximum bending moment will occur at M, where the shear force changes sign.
Let x be the distance between C and M. From the geometry of the figure between C and D, we find
that

X S

iz = 8 or Sx=24—-12x
20x = 24 or x=24/20= 1.2 m
M, = 120 +1.2)-10x 1.2x 122 = 192 kN-m




Exampee 13.9. A simply supported beam of 4 m span is carrying loads as shown in

Fig. 13.19.
4kN
2KN/
o 1.5 M —— e —
A B
( D
“ im »
Fig. 13.19

Draw shear force and bending moment diagrams for the beam.



Sowumion. Given : Span (/) =4 m :; Point load at C (W) =4 kN and uniformly distributed load
between C and D (w) = 2 kN/m.
First of all, let us find out the reactions R, and R, Taking moments about A and equating the
same,
Rgx4 = 4%x15)+2x1)x2=10

4 kN
ol

®

:
. 1
t H :
' 1
3.5 ) :
@) i { 2y v D B
4, 0.5 t
; ) 2.5
5.25
: 3.75
.

@ A

w R e ——

B
Fig. 13.20
R, = 10/4 =25 kN
and R, = 4+(2x1)-25=35kN

Shear force diagram
The shear force diagram is shown in Fig. 13.20 (/) and the values are tabulated here:
F, = +R,=+35kN
Fro = +35-4=-05kN
Fp, = -05-(2x1)=-25kN
Fg = —25kN
Bending moment diagram
The bending moment diagram is shown in Fig. 13.20 (¢) and the values are tabulated here:

M, =0
M, = 3.5%1.5=5.25KkN-m
M, = 25x1.5=3.75kN-m
Mg =0

We know that the maximum bending moment will occur at C, where the shear force changes sign,
i.e., at C as shown in the figure.



ExampLE 13.70. A simply supported beam AB, 6 m long is loaded as shown in Fig. 13.21.

2 kN/m 5 kN
b . 1.5 m—-«f

6m

Fig. 13.21

Construct the shear force and bending moment diagrams for the beam and find the position and
value of maximum bending moment.

Sowrurion. Given : Span (/) = 6 m ; Point load at £ (W) =5 kN : Uniformly distributed load
between A and C (w)) = 4 KN/m and uniformly distributed load between D and B = 2 kN/m.

First of all, let us find out the reactions R, and R,. Taking moments about A and equating the
same,

R,x6 = (4x15x075)+(2x3x45)+(5%x45)=54
R, 54/6 = 9 kN
and R, Ax15)+(2x3)+5-9=8kN

2 kN/m 5 kN
" 1.5 m—-=]
A
lB
(@) r——l 5 m—=| j——-— 3 m ————
S kN 6m 9 kN
, : : :
| \ ' ] ¢
' .
8 :2 2] T X le— '
») } © : VE B
A c! D! M
: ; 3 o |!I
' ' ' ' 9
: ' ' ' '
: : P |
' ) N —_—
¢ ' ' - . '
: : ' ' ' :
' .
E ] 10.5 II..S 111.25 :
' | ' ' ! '
' > ' ' '
' ' : : :
E E CHR :
(c) A ) ' ' ' : ‘B
| &4 D M

)

Fig. 13.22



Shear force diagram

The shear force diagram is shown in Fig. 13.22 (b) and the values are tabulated here:

Bending moment diagram

+R,=+8kN
8-(4x1.5=2kN

= 2kN

2-(2x15)-5=-6kN
~6-(2x15)=-9kN

The bending moment diagram is shown in Fig. 13.22 (c¢) and the values are tabulated here:

My

0
(8x1.5)-(4x15x0.75)=7.5KkN-m
(8x3)—(4x1.5x225)=105kN-m
9%x1.5)-(2x1.5x0.75)=11.25kN-m
0

We know that maximum bending moment will occur at M, where the shear force changes sign.
Let x be the distance between £ and M. From the geometry of the figure between D and E, we find that

X

1
32
M,y

1.5-x
2

1.5 or x=153=05m
9(15+05)-2x2x1)=(5x0.5)=11.5kN-m

or 2x=15-x



left hand support. Draw the shear force and bending moment diagrams for the beam.
[Ans. M, =5 KkN-m]
2. A simply supported beam of span 4.5 m carries a uniformly distributed load of 3.6 KN/m over a
length of 2 m from the left end A. Draw the shear force and bending moment diagrams for the
beam. |[Ans. M, =436 kN-mat 1.56 m from A
3. Asimply supported beam ABCD is of 5 m span, such that AB=2m, BC= 1 mand CD =2 m.
Itis loaded with 5 KN/m over AB and 2 kKN/m over CD. Draw shear force and bending moment
diagrams for the beam. [Ans. M_ =774 kN-mat 1.76 m from A]

4. Draw shear force and bending moment diagrams for a simply supported beam, loaded as shown
in Fig. 13.28.

0.5 kKN/m 1.5 kN/m 0.5 kKN/m
G )
A B
A

Im e 2m e 2m
Sm
Fig. 13.28
Find the position and value of the maximum bending moment that will occur in the beam.
[Ans. 3.47 kKN-m at 1.3 m from C]

5. A simply supported beam AB, 6 m long is loaded as shown in Fig. 13.29.

2 kN 5kN
2 kN/m 1.5m
: D E —
A B
£ A
1.5 m—> e 3m
6m
Fig. 13.29

Draw the shear force and bending moment diagrams for the beam.
[Ans. M = 11.75 kKN-m at 0.56 m from E]

0.25m —sfe Im ofe— 0,25 m—|

Fig. 13.11

Draw the shear force and bending moment diagrams for the cantilever.
[Ans. F, ==55kN: M, ==594 kN-m]



CHAPTER -3

3.Bending stress in beams.



. INTRODUCTION

When some external load acts on a beam. the shear force and bending moments are set up
at all sections of the beam. Due to the shear force and bending moment. the beam undergoes
certain deformation. The material of the beam will offer resistance or stresses against these
deformations. These stresses with certain assumptions can be calculated. The stresses introduced
by bending moment are known as bending stresses. In this chapter. the theory of pure bending.
expression for bending stresses. bending stress in symmetrical and unsymmetrical sections,
strength of a beam and composite beams will be discussed.

E.g.. Consider a piece of rubber, most conveniently of rectangular cross-section, is bent
between one's fingers it is readily apparent that one surface of the rubber is stretched. i.e. put into

tension, and the opposite surface is compressed.

SIMPLE BENDING

A theory which deals with finding stresses at a section due to pure moment is called
bending theory. If we now consider a beam initially unstressed and subjected to a constant B.M.
along its length. it will bend to a radius R as shown in Fig. b. As a result of this bending the top
fibres of the beam will be subjected to tension and the bottom to compression. Somewhere
between the two surfaces, there are points at which the stress is zero. The locus of all such points
is termed the neutral axis (N.A). The radius of curvature R is then measured to this axis. For
symmetrical sections the N.A. is the axis of symmetry, but whatever the section the N.A. will

always pass through the centre of area or centroid.



(o)

Beam subjected to pure bending (a) before, and (b) after, the moment
M has been applied.

In simple bending the plane of transverse loads and the centroidal plane coincide. The theory of
simple bending was developed by Galelio, Bernoulli and St. Venant, Sometimes this theory is
called Bernoulli's theory of simple bending.

- ASSUMPTIONS IN SIMPLE BENDING
The following assumptions are made in the theory of simple bending:

1
2

D W s W

-3

The beam is initially straight and unstressed,

The material of the beam is perfectly homogeneous and isotropic, i.e. of the same density
and elastic properties throughout.

The elastic limit is nowhere exceeded,

Young's modulus for the material is the same in tension and compression.

Plane cross-sections remain plane before and after bending.

Every cross-section of the beam is symmetrical about the plane of bending, 1.¢. about an
axis perpendicular to the N.A.

There is no resultant force perpendicular to any cross-section.

The radius of curvature is large compared to depth of beam,

+ DERIVATION OF BENDING EQUATION

Consider a length of beam under the action of a bending moment M as shown in Fig. 6.2a. N-N is
the onginal length considered of the beam, The neutral surface is a plane through X-X. In the side

view NA indicates the neutral axis. O is the centre of curvature on bending (Fig. 6.2b).



A A I 2 N Bl

(a)

Fig. 6.2
Let R = radius of curvature of the neutral surface

& = angle subtended by the beam length at centre O
o= longitudinal stress

A filament of original length NN at a distance v from the neutral axis will be elongated to a
length AB

The strainin 48 = 22NN
NN
O _(R+y)0—-RO vy
E Ré R
o FE
—_— —
v R

o= y—eocy

i)
Thus swess is proportional to the distance from the neutral axis NA. This suggests that for the
sake of weight reduction and economy, it is always advisable to make the cross-section of beams
such that most of the material is concentrated at the greatest distance from the neutral axis. Thus
there is universal adoption of the I-section for steel beams. Now let A be an element of cross-

sectional area of atransverse plane at a distance v from the neutral axis NA (Fig. 6.2).

For pure bending, Net normal force on the cross-section = ()
jor-dA=0
E E
—y-dA=00or—|y-dA=0
JRy-aa=oux ]y
y-dA=0



This indicates the condition that the neutral axis passes through the centroid of the section. Also,

bending moment = moment of the normal forces about neutral axis
E Era
M= j(a-dA)y-Iﬁy-M-y-;Iy dA
B

Or (i)
Where / =I v'dA and is known as the moment of inertia or second moment of area of the

section. From (i) and (ii),

pure bending equation

Where,
M = Bending Moment at a section (N-mm).

I = Moment of Inertia of the cross section of the beam about Neutral axis (mm®*),

o = Bending stress in a fibre located at distance y from neutral axis (N/mm”). This stress could be
compressive stress or tensile stress depending on the location of the fibre.

v = Distance of the fibre under consideration from neutral axis (mm),

E = Young's Modulus of the material of the beam (N/mm?),

R = Radius of curvature of the bent beam (mm).



PROBLEMS:

ExampLE 14.1. A steel wire of 5 mm diameter is bent into a circular shape of 5 m radius.
Determine the maximum stress induced in the wire. Take E = 200 GPa.

SowuTtion. Given : Diameter of steel wire (d) =5 mm : ) D fa—
Radius of circular shape (R)=5m=5x 10°mmand modulus ~ T~ o~ . T
of elasticity (E) = 200 GPa = 200 x 10° N/mm’. 4

We know that distance between the neutral axis of the S'mm e <\
wire and its extreme fibre, \

d.--5 - e
it Wi S FAg. 14.3

and maximum bending stress induced in the wire,

200x10° ”
~=W x 25 =100 N/mm = 100 MPa Ans.
x

ExampLE 14.2. A copper wire of 2 mm diameter is required to be wound around a drum.
Find the minimum radius of the drum, if the stress in the wire &> not (v exceed 80 MPua. Tuke
modulus of elasticity for the copper as 100 GPa.

SorLumion. Given : Diameter of wire (d) = 2 mm : 80 MPay,

Maximum bending stress G, ..., = 80 MPa = 80 N/mm’ S
and modulus of elasticity (E) = 100 GPa = 100 x 10° |
N/mm?”. 2 mm +

We know that distance between the neutral axis of |

X
‘-

E
cb {max) R

the wire and its extreme fibre R e e
2
\=§=lmm Fg. 144
Minimum radius of the drum
R = Y ><E=L><100><103 '_-&=£
Gb(m, 80 v R

=125x10°mm=125m  Ans.
ExampLE 14.3. A metallic rod of 10 mm diameter is bent into a circular form of radius 6 m.
If the maximum bending stress developed in the rod is 125 MPa, find the value of Young s modulus
for the rod material.
SowuTion. Given : Diameter of rod (d)= lQmm :Radius (R)=6 m=6x 10° mm and maximum
bending stress G, ..., = 125 MPa = 125 N/mm".
We know that distance between the neutral axis of the rod and its extreme fibre,

-\‘ = —=5

2
Value of Young's modulus for the rod material,
R o,
E = —‘l‘-"‘-f-‘-lxR=-%5- x (6 x 10*) N/mm’ ( —\ﬁ=%)

-\.
150 x 10° N/mm° = 150 GPa  Ans.




CHAPTER - 4

4.Slope and deflection of beams by double integration method

Slope of a Beam: Slope of a beam is the angle between deflected beam to the actual beam at
the same point.

Deflection of Beam: Deflection is defined as the vertical displacement of a point on a loaded

beam. There are many methods to find out the slope and deflection at a section in a loaded beam.

The maximum deflection occurs where slope is zero. The position of the maximum deflection is
found out by equating the slope equation zero. Then the value of x is substituted in the deflection
equation to calculate the maximum deflection

Double Integration Method: This is most suitable when concentrated or udl over entire

length is acting on the beam.The double integration method is a powerful tool in solving deflection and
slope of a beam at any point because we will be able to get the equation of the elastic curve.



Elastic curve

dv
L V'
ac

Integrating one time :

i:—fﬂf

Integrating again :

ET

M = Bending moment

beam

| = Moment of inertia of the beam section

y/v = Deflection of the beam

E = Modulus of elasticity of beam material.



Equation of the Elastic Curve

y * Thus,
o ¥ d’y
x) = 3
yl )]L‘Q(ff"‘_.’- 1 2 ~dz_\~
X 1 p d‘, 2 3/2 de
l+(—')
%=hn8 dx
1_d6__ de
L “(ﬁ)’  Substituting and integrating,
p
2 2 1 dz\-'
d(an) _d’y _dland)de . 46 (| (&))de R P
= de . 4o dr=(l O)Z [l dx] ]dx El P El dx’z M(x)
d3y
40_ E'- d'\v
e EIG:EIZ=J‘M(x)dr+C,
a

Ely= IdeM(x)dx+ Cix+GC,




* Constants are determined from boundary
conditions

El y = [dx| M(x)dx+C x+C,

* Three cases for statically determinate beams,
- Simply supported beam
ya = (), AY:; =0

- Overhanging beam
ya=0, yg=0

y - Cantilever beam
| ya=0, 6,=0

P
A —X
» e LJ 3 * More complicated loadings require multiple
0

integrals and application of requirement for
continuity of displacement and slope.



The following relationships exist between loading, shearing force (S.F.), bending moment
(B.M.), slope and deflection of a beam:

deflection = y  (or 9)

. dy
slope—ror()—dx
dzy
bending moment = M = EI T
; d3y
shearing force = Q = EI e

d‘
loading = w = EI T
In order that the above results should agree mathematically the sign convention illustrated in
Fig. 5.4 must be adopted.
Using the above formulae the following standard values for maximum slopes and deflections
of simply supported beams are obtained. (These assume that the beam is uniform, ie. EI is
constant throughout the beam.)

MAXIMUM SLOPE AND DEFLECTION OF SIMPLY SUPPORTED BEAMS

Loading condition Maximum slope Deflection (y) Max. deflection
{ Ymax)
Cantilever with concentrated wi? W wiL3
—_— —[2L* -3L%x +x*] —
load W at end 2EI 6E] 3El
Cantilever with u.d.l. across wil? w wilt
— - [3L* = 4L3x + x*] ——
the complete span 6E1 24E1 8EI
Simply supported bamwith WL Wx O we
ply suppo wLt WX 311 -axty wL?
concentrated load W at the centre 16E1 48EI 48E]
Simply supported beam with wL* wx SwiL*
SRR - —[L3=2Lx*+x*]
ud.l. across complete span 24E1 24E1 384E1

Simply supported beam with concentrated
load W offset from centre (distance a from W2 Wa [ [3—g? ]a;z

h 0.062——- P 3
one end b from the other) El 3EIL 3




19.2. Curvature of the Bending Beam

Consider a beam AB subjected to a bending moment. As a result of loading. let the beam deflect
from ABC to ADB into a circular arc as shown in Fig. 19.1.

Let ! = Length of the beam AB. /'__TE_—‘\
M — Bending moment, 5 ; k
R = Radius of curvature of the bent up beam, 5 g |
I = Moment of inertia of the beam section. ’ "
E = Modulus of elasticity of beam material, : 4% &
v = Deflection of the beam (i.e.. CD) and Y Bk ’
i = Slope of the beam (i.e angle which the ¢ Ol : SR |
tangent at A makes with AB). AN I 2 8
Fram the geometry of a circle, we know that L o
ACx CB = ECxCD D

L _L | . L _..l
or %X]E = (2ZR-Yv)Xy ' 2 C 2
2 Fig. 19.1. Curvature of the beam_
‘T = 2Ry -y = 2Ry
...(Neglecting _\'2)
)
or vy = ﬁ R ()
We have already discussed in Art. 14.6 that for a loaded beam,
M _ E EI
T TR e R-N
Now substituting this value of R in equation (i},
_— P El
< Ei ~ 8 Kl
S x—
M

From the geometry of the figure. we find that the slope of the beam i at A or Bis also equal to
angle AOC.

. . o AE b
ot sint = 5 =355
Since the angle iis very small. therefore. sin / may be taken equal to i (in radians).

2 4 ; g
Iom o radians (73]
Again substituting the value of Rin equation (i),

1 : -—l __\ll radian (ur)

- —= = S are
2R 5 FI  2FE]
M

* As per Indian Standard Specifications, this limit is Span/325.



Nores: 1.

2.

The above equations for deflection (v) and slope (/) have been derived from the bending moment
only ie., the effect of shear force has been neglected. This is due to the reason that the effect of shear
force is extremely small as compared to the effect of bending moment.

In actual practice the beams bend into an arc of a circle only in a few cases. A little consideration will
show that a beam will bend to an arc of a circle only if (/) the beam is of uniform section and (if) the
beam is subjected to a constant moment throughout its length or the beam is of uniform strength.

19.3. Relation between Slope, Deflection and Radius of Curvature

Consider a small portion PQ of a beam, bent into an arc as shown in Fig. 19.2.

Let

ds = Length of the beam PQ,

R = Radius of the arc, into which the beam has been bent,

C = Centre of the arc,

W = Angle, which the tangent at P makes with x-x axis and
Y+ d¥ = Angle which the tangent at Q makes with x-x axis.

From the geometry of the figure, we find that

and

ZPCQ = d¥
ds = R.d¥

.. (Considering ds = dv)

(@] X
Fig. 19.2. Beam bent into an arc.

W 0
R~ dx '
We know that if x and y be the co-ordinates of point P, then
.dy
an¥ = =
Since W is a very small angle, therefore taking tan ¥ = ¥,
av _ d’y ( % ﬂ)
dx dx’ TR v



We also know that

T =—£ orM:Elx%
‘dz\ ;
y it 511
M = EIx - s of =
i (Subsmuung value of R)

Nore. The above equation is also based only on the bending moment. The effect of shear force, being very small
as compared to the bending moment, is neglected.

19.4. Methods for Slope and Deflection at a Section

Though there are many methods to find out the slope and deflection at a section in a loaded
beam, yet the following two methods are important from the subject point of view:
1. Double integration method.
2. Macaulay’s method.

It will be interesting to know that the first method is suitable for a single load, whereas the second
method is suitable for several loads.

19.5. Double Integration Method for Slope and Deflection
We have already discussed in Art. 19.3 that the bending moment at a point,

2
Ma B
dx”
Integrating the above equation,
dy [
El— = M A
e . (1)
and integrating the above equation once again,
El.y = ]'M .. (i)

It is thus obvious that after first integration the original differential equation, we get the value of
slope at any point. On further integrating, we get the value of deflection at any point.
Nore. While integrating twice the original differential equation, we will get two constants C, and C,. The values
of these constants may be found out by using the end conditions.




Simply Supported beam with a point load problem:

ExampLE 19.1. A simply supported beam of span 3 m is subjected to a central load of 10 kN.
Find the maximum slope and deflection of the beam. Take [ = 12 x 1 0° mm” and E = 200 GPa.

SoLuTion. Given: Span (/) =3 m = 3 x 10° mm ; Central load (W) = 10 kN = 10 x 10° N :
Moment of inertia (/) = 12 x 10° mm® and modulus of elasticity (E) = 200 GPa =200 x 10° N/mm”.

Maximum slope of the beam

We know that maximum slope of the beam,

Wi (10x10%) x(3 x10%)

= =0.0023 rad Ans.
16EI 16 x (200 x10*) x (12 x 10%)

A

Maximum deflection of the beam
We also know that maximum deflection of the beam,

wi _ (10x10%) x (3x10°)
Yo T 4BEl T 48 x 200 x10°) x (12 X 10°)
ExampLE 19.2. A wooden beam 140 mm wide and 240 mm deep has a span of 4 m. Determine

the load, that can be placed at its centre to cause the beam a deflection of 10 mm. Take E as
6 GPa.

Sorution. Given: Width (b) = 140 mm ; Depth (d) =240 mm : Span (/) =4 m=4 x 10° mm :
Central deflection (y.) = 10 mm and modulus of elasticity (E) =6 GPa = 6 X 10° N/mm™.

Let W = Magnitude of the load,

We know that moment of inertia of the beam section,

=23 mm Ans.

bd® 140 x (240)°
12 12
and deflection of the beam at its centre (y,),

I = =161.3%10°* mm*

Wik W x (4 x10°)

10 = 28E1 48 x (6 x10%) x (161.3 x 10%)
10 -

W= —————==725%x10N= 725 kN Ans.

1.38 %107



Simply Supported beam with a udl problem:

EXAMPL_E 19.6. A simply supported beam of span 4 m is carrying a uniformly distributed
load of 2 kN/m over the entire span. Find the maximum slope and deflection of the beam. Take EI
O b
for the beam as 80 x 10° N-mm”,
Sovurion. Given: Span (/) =4 m =4 x 10" mm ; Uniformly distributed load (w) = 2 kN/m :
2 N/mm and flexural rigidity (E) = 80 x 10" N-mm’,

Maximum slope of the beam

We know that maximum slope of the beam,

wl _ 2x(4x10%)’

= = =0.067 rad Ans.
24El 34 x(80x10")

AT

Maximum deflection of the beam

We also know that maximum deflection of the beam,

_ swit _5x2x(@x10%)
IB4EL 384 % (80 x10°)

=833 mm Ans.




