		LESSON PLAN FOR WINTER 2024	
DISCIPLINE : CIVIL ENGINEERING	Semester : 3 rd sem (sec. B)	Name of the Teaching faculty: DEBASHIS BEHERA	
Subject :- Structural Mechanics	No.of Days/ week class allotted : 05 Days	Semester from date: 01/07/2024 to 08/11/2024 No. of Weeks :19 Topics to be covered:-	
Week	Class Day	Topics	Remarks
8th WEEK	1st	1. Review Of Basic Concepts (4) 1.1 Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram	
	2nd	1.2 Review of CG and MI of different sections	
	3rd	1.2 Review of CG and MI of different sections	
	2nd 3rd	 2. Simple And Complex Stress, Strain (15) 2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants. 2.1 Simple Stresses and Strains Introduction to stresses and 	
9th WEEK	510	strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.	

	4th	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship	
	1st	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight	
10th WEEK	2nd	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight	
	3rd	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight.	
	1st	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses	

11th WEEK	2nd	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses	
	3rd	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses	
	4th	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses	
	2nd	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses	
12th WEEK	3rd	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses	
	4th	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses	
	1st	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses	
13th WEEK	2nd	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses	
		3. Stresses In Beams and Shafts (10P)	

		3.1 Stresses in beams due to bending: Bending stress in beams – Theory of simple bending – Assumptions – Moment of resistance – Equation for Flexure– Flexural stress distribution – Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus	
	1st	3.1 Stresses in beams due to bending: Bending stress in beams – Theory of simple bending – Assumptions – Moment of resistance – Equation for Flexure– Flexural stress distribution – Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus	
14th WEEK	3rd	3.2 Shear stresses in beams: Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis	
	4th	3.2 Shear stresses in beams: Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis	
15th WEEK	1st	PUJA VACATION 3.2 Shear stresses in beams: Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis	
	2nd	3.4 Combined bending and direct stresses: Combination of stresses, Combined direct and bending stresses, Maximum and Minimum stresses in Sections, Conditions for no tension, Limit of eccentricity, Middle third/fourth rule, Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining wall	
16th WEEK	3rd	3.4 Combined bending and direct stresses: Combination of stresses, Combined direct and bending stresses, Maximum and Minimum stresses in Sections, Conditions for no tension, Limit of eccentricity, Middle third/fourth rule, Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining wall	
	4th	3.4 Combined bending and direct stresses: Combination of stresses, Combined direct and bending stresses, Maximum and Minimum stresses in Sections, Conditions for no tension, Limit of eccentricity, Middle third/fourth rule, Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining wall	
	1st	3.4 Combined bending and direct stresses: Combination of stresses, Combined direct and bending stresses, Maximum and Minimum stresses in Sections, Conditions for no tension, Limit of eccentricity, Middle third/fourth rule, Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining wall	
		4. Columns and Struts (04 P)	

17th WEEK	2nd	4.1 Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent length / Effective length, Slenderness ratio, Axially loaded short and long column, Euler's theory of long columns, Critical load for Columns with different end conditions	
	3rd	4.1 Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent length / Effective length, Slenderness ratio, Axially loaded short and long column, Euler's theory of long columns, Critical load for Columns with different end conditions	
	4th	4.1 Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent length / Effective length, Slenderness ratio, Axially loaded short and long column, Euler's theory of long columns, Critical load for Columns with different end conditions	
	1st	 5. Shear Force and Bending Moment (12 P) 5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support, Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium. 5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M 	
	2nd	5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support, Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium. 5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M	
18th WEEK			

	3RD	5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support, Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium. 5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M	
	4TH	5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support, Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium. 5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M	
	1st	5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	
19th WEEK	2nd	5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	
	Зrd	5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	

5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply	
supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	
5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum	
3M, Point of contra flexure, Relation between intensity of load, S.F and B.M.	
5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	
5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	
5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	
5. Slope and Deflection (10 PERIODS)	
6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection.	
6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection.	
6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection.	

	6.1 Introduction: Shape and nature of elastic curve (deflection	
	curve); Relationship between slope, deflection and curvature (No	
	derivation), Importance of slope and deflection.	
	6.1 Introduction: Shape and nature of elastic curve (deflection	
	curve); Relationship between slope, deflection and curvature (No	
	derivation), Importance of slope and deflection.	
	6.2 Slope and deflection of cantilever and simply supported beams	
	under concentrated and uniformly distributed load (by Double	
	Integration method, Macaulay's method).	
	PUJA VACATION	
	6.2 Slope and deflection of cantilever and simply supported beams	
	under concentrated and uniformly distributed load (by Double	
	Integration method, Macaulay's method).	
	6.2 Slope and deflection of cantilever and simply supported beams	
	under concentrated and uniformly distributed load (by Double	
	Integration method, Macaulay's method).	
	integration method, Macadiay's methody.	
	6.2 Slope and deflection of cantilever and simply supported beams	
	under concentrated and uniformly distributed load (by Double	
	Integration method, Macaulay's method).	
EXTRA CLASSES		
REQUIRED	6.2 Slope and deflection of cantilever and simply supported beams	
NEQUINED	under concentrated and uniformly distributed load (by Double	
	Integration method, Macaulay's method).	
	7. Indeterminate Beams (10P)	
	7.1 Indeterminacy in beams, Principle of consistent	
	deformation/compatibility, Analysis of propped cantilever, fixed	
	and two span continuous beams by principle of superposition, SF	
	and BM diagrams (point load and udl covering full span)	
	and bivi diagrams (point load and ddi covering run sparr)	
	7.1 Indeterminacy in beams, Principle of consistent	
	deformation/compatibility, Analysis of propped cantilever, fixed	
	and two span continuous beams by principle of superposition, SF	
	and BM diagrams (point load and udl covering full span)	
	7.1 Indeterminacy in beams, Principle of consistent	
	deformation/compatibility, Analysis of propped cantilever, fixed	
	and two span continuous beams by principle of superposition, SF	
	and BM diagrams (point load and udl covering full span)	
	7.1 Indeterminacy in beams, Principle of consistent	
	deformation/compatibility, Analysis of propped cantilever, fixed	
	and two span continuous beams by principle of superposition, SF	
	and BM diagrams (point load and udl covering full span)	

7.1 Indeterminacy in beams, Principle of consistent	
deformation/compatibility, Analysis of propped cantilever, fixed	
and two span continuous beams by principle of superposition, SF	
and BM diagrams (point load and udl covering full span)	
7.1 Indeterminacy in beams, Principle of consistent	
deformation/compatibility, Analysis of propped cantilever, fixed	
and two span continuous beams by principle of superposition, SF	
and BM diagrams (point load and udl covering full span)	
7.1 Indeterminacy in beams, Principle of consistent	
deformation/compatibility, Analysis of propped cantilever, fixed	
and two span continuous beams by principle of superposition, SF	
and BM diagrams (point load and udl covering full span)	
7.1 Indeterminacy in beams, Principle of consistent	
deformation/compatibility, Analysis of propped cantilever, fixed	
and two span continuous beams by principle of superposition, SF	
and BM diagrams (point load and udl covering full span)	
7.1 Indeterminant in boston. Driverinte of	-1
7.1 Indeterminacy in beams, Principle of consistent	
deformation/compatibility, Analysis of propped cantilever, fixed	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF	
deformation/compatibility, Analysis of propped cantilever, fixed	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span)	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P)	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, degree of indeterminacy, stable and	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, advantages of trusses	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints,	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints,	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints,	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints,	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	
deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span) 8. Trusses (10P) 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section) 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	

0 Q.

SIGNATURE OF THE FACULTY