	LE	SSON PLAN FOR WINTER 2024	
DISCIPLINE:-	SEMESTER:-	NAME OF THE TEACHING FACULTY:- R. BHANU	
CIVIL ENGG.	3RD SEM SEC A	NAME OF THE TEACHING TAGGETT. IN BIJAN	•
SUBJECT:-	NO. OF	Semester from date: 01/07/2024 to 08/11/2024	
STRUCTURAL	DAYS/PER	No. of Weeks :19	
MECHANICS(WEEK CLASS		
TH-1)	ALLOTED:- 5T	Topics to be covered:-	
WEEK	CLASS DAY	THEORY TOPICS	Remarks
		1.0 Review Of Basic Concepts:(4P)	
OTHINEEK	2nd	1.1 Basic Principle of Mechanics: Force, Moment, support	
8TH WEEK	3rd	1.1 Basic Principle of Mechanics: Force, Moment, support	
	4th	1.2Review of CG and MI of different sections	
		2.0 :Simple And Complex Stress, Strain(15P)	
	2nd	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.	
9TH WEEK	3rd	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.	

•		_
	4th	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.
	1st	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.
10TH WEEK	2nd	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.

	3rd	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.	
	4th	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight.	
11th WEEK	1st	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight.	
	2nd	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight.	
	3rd	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight.	

I			1
		2.3 Complex stress and strain Principal stresses and strains:	
	_	Occurrence of normal and tangential stresses, Concept of Principal	
	4th	stress and Principal Planes, major and minor principal stresses and	
		their orientations, Mohr's Circle and its application to solve	
		problems of complex stresses	
	2nd	2.3 Complex stress and strain Principal stresses and strains:	
		Occurrence of normal and tangential stresses, Concept of Principal	
		stress and Principal Planes, major and minor principal stresses and	
		their orientations, Mohr's Circle and its application to solve	
		problems of complex stresses	
		3-Stresses In Beams and Shafts(10P)	
		3.1 Stresses in beams due to bending: Bending stress in beams –	
		Theory of simple bending – Assumptions – Moment of resistance –	
12th WEEK		Equation for Flexure– Flexural stress distribution – Curvature of	
TZUI WEEK		beam – Position of N.A. and Centroidal Axis – Flexural rigidity –	
		Significance of Section modulus	
	3rd		
		3.1 Stresses in beams due to bending: Bending stress in beams –	
		Theory of simple bending – Assumptions – Moment of resistance –	
		Equation for Flexure– Flexural stress distribution – Curvature of	
	4th	beam – Position of N.A. and Centroidal Axis – Flexural rigidity –	
		Significance of Section modulus	
		3.1 Stresses in beams due to bending: Bending stress in beams –	
		Theory of simple bending – Assumptions – Moment of resistance –	
		Equation for Flexure– Flexural stress distribution – Curvature of	
		beam – Position of N.A. and Centroidal Axis – Flexural rigidity –	
		Significance of Section modulus	
	1st		
		3.2 Shear stresses in beams: Shear stress distribution in beams of	
		rectangular, circular and standard sections symmetrical about	
		vertical axis.	
	2nd		
13th WEEK		3.3 Stresses in shafts due to torsion: Concept of torsion, basic	
		assumptions of pure torsion, torsion of solid and hollow circular	
		sections, polar moment of inertia, torsional shearing stresses, angle	
		of twist, torsional rigidity, equation of torsion	
	3rd		
		3.4 Combined bending and direct stresses: Combination of stresses,	
		Combined direct and bending stresses, Maximum and Minimum	
		stresses in Sections, Conditions for no tension, Limit of eccentricity,	
	4th	Middle third/fourth rule, Core or Kern for square, rectangular and	
		circular sections, chimneys, dams and retaining walls	
			1

	ı		
		3.4 Combined bending and direct stresses: Combination of stresses,	
		Combined direct and bending stresses, Maximum and Minimum	
		stresses in Sections, Conditions for no tension, Limit of eccentricity,	
		·	
		Middle third/fourth rule, Core or Kern for square, rectangular and	
		circular sections, chimneys, dams and retaining walls	
	1st		
		3.4 Combined bending and direct stresses: Combination of stresses,	
		Combined direct and bending stresses, Maximum and Minimum	
		stresses in Sections, Conditions for no tension, Limit of eccentricity,	
14th WEEK		·	
		Middle third/fourth rule, Core or Kern for square, rectangular and	
		circular sections, chimneys, dams and retaining walls	
	2nd		
		4.Columns and Struts(4P)	
		4.1 Columns and Struts, Definition, Short and Long columns, End	
	4th	conditions, Equivalent length / Effective length, Slenderness ratio,	
		Axially loaded short and long column, Euler's theory of long	
		columns, Critical load for Columns with different end conditions	
45.1 14.55.4			
15th WEEK		PUJA VACATION	
		4.1 Columns and Struts, Definition, Short and Long columns, End	
	1st	conditions, Equivalent length / Effective length, Slenderness ratio,	
	130	Axially loaded short and long column, Euler's theory of long	
		columns, Critical load for Columns with different end conditions	
		4.1 Columns and Struts, Definition, Short and Long columns, End	
16th Week	2nd	conditions, Equivalent length / Effective length, Slenderness ratio,	
TOTH WCCK	2.10	Axially loaded short and long column, Euler's theory of long	
		columns, Critical load for Columns with different end conditions	
		4.1 Columns and Struts, Definition, Short and Long columns, End	
		conditions, Equivalent length / Effective length, Slenderness ratio,	
	4th	Axially loaded short and long column, Euler's theory of long	
	1	columns, Critical load for Columns with different end conditions	
		columns, critical load for Columns with different end conditions	
		5.Shear Force and Bending Moment(12P)	
		, , ,	
		E 1 Types of leads and heares Types of Leads: Concentrated /cm\	
		5.1 Types of loads and beams: Types of Loads: Concentrated (or)	
		Point load, Uniformly Distributed load (UDL), Types of Supports:	
		Simple support, Roller support, Hinged support, Fixed support,	
		Types of Reactions: Vertical reaction, Horizontal reaction, Moment	
		reaction, Types of Beams based on support conditions: Calculation	
	4.1		
	1st	of support reactions using equations of static equilibrium.	
		5.1 Types of loads and beams: Types of Loads: Concentrated (or)	
		Point load, Uniformly Distributed load (UDL), Types of Supports:	
		Simple support, Roller support, Hinged support, Fixed support,	
		Types of Reactions: Vertical reaction, Horizontal reaction, Moment	
		reaction, Types of Beams based on support conditions: Calculation	
17th WEEK	2nd	of support reactions using equations of static equilibrium.	
	L	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

I			
		5.1 Types of loads and beams: Types of Loads: Concentrated (or)	
		Point load, Uniformly Distributed load (UDL), Types of Supports:	
		Simple support, Roller support, Hinged support, Fixed support,	
		Types of Reactions: Vertical reaction, Horizontal reaction, Moment	
	24	reaction, Types of Beams based on support conditions: Calculation	
	3rd	of support reactions using equations of static equilibrium.	
		5.2 Shear force and bending moment in beams: Shear Force and	
		Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of	
		general cases of determinate beams with concentrated loads and	
		udl only, S.F and B.M diagrams for Cantilevers, Simply supported	
		beams and Over hanging beams, Position of maximum BM, Point of	
	4th	contra flexure, Relation between intensity of load, S.F and B.M.	
		5.2 Shear force and bending moment in beams: Shear Force and	
		Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of	
		general cases of determinate beams with concentrated loads and	
		udl only, S.F and B.M diagrams for Cantilevers, Simply supported	
		beams and Over hanging beams, Position of maximum BM, Point of	
	1st	contra flexure, Relation between intensity of load, S.F and B.M.	
		5.2 Shear force and bending moment in beams: Shear Force and	
		Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of	
18th WEEK		general cases of determinate beams with concentrated loads and	
		udl only, S.F and B.M diagrams for Cantilevers, Simply supported	
		beams and Over hanging beams, Position of maximum BM, Point of	
	2nd	contra flexure, Relation between intensity of load, S.F and B.M.	
		5.2 Shear force and bending moment in beams: Shear Force and	
		Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of	
		general cases of determinate beams with concentrated loads and	
		-	
		udl only, S.F and B.M diagrams for Cantilevers, Simply supported	
	3rd	beams and Over hanging beams, Position of maximum BM, Point of	
	Siu	contra flexure, Relation between intensity of load, S.F and B.M.	
		5.2 Shear force and bending moment in beams: Shear Force and	
		Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of	
		general cases of determinate beams with concentrated loads and	
		udl only, S.F and B.M diagrams for Cantilevers, Simply supported	
		beams and Over hanging beams, Position of maximum BM, Point of	
	1st	contra flexure, Relation between intensity of load, S.F and B.M.	
1045-14/554		6.Slope and Deflection (10P)	
19th WEEK		curve); Relationship between slope, deflection and curvature (No	
	2nd	derivation), Importance of slope and deflection.	
		curve); Relationship between slope, deflection and curvature (No	
	3rd	derivation), Importance of slope and deflection.	
		6.1 Introduction: Shape and nature of elastic curve (deflection	
		curve); Relationship between slope, deflection and curvature (No	
	4th	derivation), Importance of slope and deflection.	

	I	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).	
EXTRA CLASSES	ı	7. Indeterminate Beams 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of	
		8.Trusses 8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree	
		8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	

R. Bhann

SIGNATURE OF THE FACULTY