ACADEMIC LESSON PLAN OF WINTER 2024

Discipline:	Semester:	Name of the Teaching Faculty: Amit Kumar Bisoyi
ELECTRICAL	5 [™] Sem	
	Sec A	
Subject: ENERGY	No. of	Semester From: 1 st July 2024 to 08 th Nov 2024
CONVERSION-II	days/per	No. of Weeks: 19 weeks
1 st	week class	
	allotted:	
	4p/week	
	1.1	Unit-1:ALTERNATOR
	and	1.1 Types of alternator and their constructional features
	2 nd	1.2 Basic working principle of alternator and establish the relation between
	3 rd	speed and frequency
	3	1.3 Explain terminology in armature winding, and derive expressions for winding factors (Pitch factor, Distribution factor).
	4 th	
	4 1 st	1.4 Explain harmonics, its causes and impact on winding factor.
2 nd		1.5 Derive E.M.F equation. (Solve numerical problems (contd.)
	2 nd 3 rd	1.5 Derive E.M.F equation. (Solve numerical problems
		1.6 Explain Armature reaction and its effect on emf at different pf of load (contd.)
	4 th 1 st	1.6 Explain Armature reaction and its effect on emf at different pf of load.
	2 nd	1.7 Draw the vector diagram of loaded alternator. (Solve numerical problems)1.8 State and explain testing of alternator (open circuit and short circuit
	Z	
3 rd	3 rd	methods) (Solve numerical problems).(contd.)
3.3	3'*	1.8 State and explain testing of alternator (open circuit and short circuit
	4 th	methods) (Solve numerical problems).
	4	1.9 Determination of voltage regulation of Alternator by direct loading and
	a st	synchronous impedance method
	1 st	1.10 Explain parallel operation of alternator using synchro-scope, dark and
	and	bright lamp method
4 th	2 nd	1.11 Explain distribution of load by parallel connected alternators
4	3 rd	Unit-2:SYNCHRONOUS MOTOR
		2.1 Explain constructional feature of Synchronous Motor.
	4 th	2.2 Explain principles of operation, concept of load angle.
	4 1 st	2.3 Explain effect of varying load with constant excitation(cont)
	2 nd	2.3 Explain effect of varying load with constant excitation
5 th	2 rd	2.4 Explain effect of varying excitation with constant load.
2	4 th	2.5 Derive torque, power developed(cont)2.5 Derive torque, power developed.
	4	2.6 Explain power angle characteristics of cylindrical rotor motor.
	1 st	2.7 Explain effect of excitation on Armature current and power factor.
	T	
	2 nd	2.8 Explain Hunting & function of Damper Bars.
cth	2 rd	2.9 Describe method of starting of Synchronous motor.(cont)
6 th	3.3	2.9 Describe method of starting of Synchronous motor.
	ath	2.10 State application of synchronous motor
	4 th	Unit-3: THREE PHASE INDUCTION MOTOR
		3. 1 Explain and derive production of rotating magnetic field.
	1st	3. 2 Explain constructional feature of Squirrel cage and Slip ring induction motor.
.1.	2 nd	3. 3 Explain principles of operation of 3-phase Induction motor.
7 th	3 rd	3. 4 Explain slip speed, slip and slip relation with rotor quantities
	4 th	3. 5 Derive Torque during starting and running and conditions for maximum
		torque. (solve numerical problems) (contd.)
8 th	1 st	3. 5 Derive Torque during starting and running and conditions for maximum
		torque. (solve numerical problems)
	2 nd	3. 6 Derive Torque-slip characteristics
	3 rd	3. 7 Derive relation between full load torque and starting torque etc. (solve
		numerical problems).
	4 th	3. 8 Determine the relations between Rotor Copper loss, Rotor output and
		Gross Torque, and relationship of slip with rotor copper loss. (solve

		numerical problems)
	1 st	3. 9 Explain and state Methods of starting and different types of starters
	2 nd	3. 10 Explain speed control by Voltage Control, Rotor resistance control, pole
9 th		changing, frequency control methods.
9	3 rd	3. 11 Describe plugging applicable to three phase induction motor
	4 th	3. 12 Describe different types of motor enclosures
	1 st	3. 13 Explain principle of Induction Generator and state its applications
	2 nd	Unit-4:SINGLE PHASE INDUCTION MOTOR.
10 th	2	
	ard	4.1 Explain Rotating – field theory of 1-phase induction motor.
	3 rd	4.2 Explain Ferrari's principle.
	4 th	4.3 Explain Working principle, Torque speed characteristics, performance
		characteristics and application offollowing single phase motors
	4 st	4.3.1 Split phase motor.
11 th	1 st	4.3.2 Capacitor Start motor.
	2 nd	4.3.3 Capacitor start, capacitor run motor
	3 rd	4.3.4 Permanent capacitor type motor
	4 th	4.3.5 Shaded pole motor
	1 st	4.4 Explain the method to change the direction of rotation of above motors
	2 nd	Unit-5:COMMUTATOR MOTORS
		5.1 Explain construction, working principle, running characteristic and
12 th		application of singlephase series motor (contd.)
	3 rd	5.1 Explain construction, working principle, running characteristic and
	- 44	application of singlephase series motor.
	4 th	5.2 Explain construction, working principle and application of Universal motors. (contd.)
	1 st	5.2 Explain construction, working principle and application of Universal motors.
	2 nd	5.3 Explain working principle of Repulsion start Motor, Repulsion start
		Induction run motor, Repulsion Induction motor.(cont)
13 th	3 rd	5.3 Explain working principle of Repulsion start Motor, Repulsion start
		Induction run motor, Repulsion Induction motor.
	4 th	Unit-6:SPECIAL ELECTRICAL MACHINE
		6.1 Principle of Stepper motor.
	1 st	6.2 Classification of Stepper motor.
		6.3 Principle of variable reluctant stepper motor.
14 th	2 nd	6.4 Principle of Permanent magnet stepper motor.
	3 rd	6.5 Principle of hybrid stepper motor.
	4 th	6.6 Applications of Stepper motor.
	1 st	Unit-7: THREE PHASE TRANSFORMERS
		7.1 Explain Grouping of winding, Advantages
15 th	2 nd	7.2 Explain parallel operation of the three phase transformers.
	3 rd	7.3 Explain tap changer (On/Off load tap changing
	4 th	7.4 State maintenance of Transformers
	1 st	REVISION CLASS
	2 nd	REVISION CLASS
16 th	3 rd	REVISION CLASS
	ath	
	4 th	REVISION CLASS
	1 st	REVISION CLASS
	-	
	2 nd	REVISION CLASS
17 th		
	3 rd	REVISION CLASS
	4 th	REVISION CLASS
	4	
18 th	1 st	REVISION CLASS
	2 nd	REVISION CLASS
18 ^m		
18 ^m	3 rd	REVISION CLASS

	4 th	REVISION CLASS
19 th	1 st	REVISION CLASS
	2 nd	REVISION CLASS
	3 rd	REVISION CLASS
	4 th	REVISION CLASS

Anuit Kumar Prisoyi

Signature of Teaching Faculty