ACADEMIC LESSON PLAN FOR SUMMER 2024

Discipline	Semester: - 6th	Name of the Teaching Faculty: -
Flootricol Enga		Rakesh kumar Pattanayak & Biswanita Sahu
Electrical Engg.	(SEC-A, GR-1)	
Subject: -	No of Days/per	Semester From: 16 th January 2024 to 26 th April 2024
ELECTRICAL	Week Class	
WORKSHOP	Allotted: -	
PR-01	6p/week	
Week	Class Day	Theory/ Practical Topics
1 st	1 st	1. Identification of single core (SC), twin core (TC), three cores (3c), four cores
		(4c);copper and aluminium PVC, VIR & Weather proof (WP) wire and prepare Britanni T joint and Married joint.(Theory)
	2^{nd}	1. Identification of single core (SC), twin core (TC), three cores (3c), four cores (4c);
		copper and aluminium PVC, VIR & Weather proof (WP) wire and prepare Britannia T
		joint and Married joint.(Practical)
2^{nd}	1 st	1. Identification of single core (SC), twin core (TC), three cores (3c), four cores (4c);
2	-	copper and aluminium PVC, VIR & Weather proof (WP) wire and prepare Britannia T
		joint and Married joint.(Practical) (contd.)
	2 nd	
	2	1. Identification of single core (SC), twin core (TC), three cores (3c), four cores (4c);
		copper and aluminium PVC, VIR & Weather proof (WP) wire and prepare Britannia T
e rd	_ st	joint and Married joint.(Practical) (contd.)
3 rd	1^{st}	2. Cutting copper and aluminium cable and crimping lug to them from 4 mm ² to
		25mm ² cross section(Theory)
	2^{nd}	2. Cutting copper and aluminium cable and crimping lug to them from 4 mm ² to
		25mm ² cross section. (Practical)
	1^{st}	3. Connection and testing of fluorescent tube light, high pressure M.V. lamp, sodium
4^{th}		vapor lamp, M.H lamp, CFL and latest model lamps - measure inductance, Lux/ lumens
		(intensity of illumination) in each case prepare lux table.(Theory)
	2^{nd}	3. Connection and testing of fluorescent tube light, high pressure M.V. lamp, sodium
		vapor lamp, M.H lamp, CFL and latest model lamps – measure inductance, Lux/ lumens
		(intensity of illumination) in each case prepare lux table(practical) (contd.)
5 th	1 st	3. Connection and testing of fluorescent tube light, high pressure M.V. lamp, sodium
5	1	
		vapor lamp, M.H lamp, CFL and latest model lamps – measure inductance, Lux/ lumens
	2 nd	(intensity of illumination) in each case prepare lux table(practical) (contd.)
	Z	3. Connection and testing of fluorescent tube light, high pressure M.V. lamp, sodium
		vapor lamp, M.H lamp, CFL and latest model lamps – measure inductance, Lux/ lumens
th	. at	(intensity of illumination) in each case prepare lux table(practical) (contd.)
6^{th}	1^{st}	4. Study battery charger and make charging of lead acid battery (record charging voltage
	. nd	current and specific gravity). (Theory)
	2^{nd}	4. Study battery charger and make charging of lead acid battery (record charging voltage
		current and specific gravity). (Practical)
7^{th}	1^{st}	5. Erection of residential building wiring by CTS and conduit wiring system using main
		two points and test installation by test lamp method and a meggar. (Theory)
	2^{nd}	5. Erection of residential building wiring by CTS and conduit wiring system using main
		two points and test installation by test lamp method and a meggar. (Practical)
8 th	1^{st}	5. Erection of residential building wiring by CTS and conduit wiring system using main
		twopoints and test installation by test lamp method and a meggar. (Practical)(Contd.)
	2^{nd}	5. Erection of residential building wiring by CTS and conduit wiring system using main
		twopoints and test installation by test lamp method and a meggar. (Practical)
9 th	1 st	5. Erection of residential building wiring by CTS and conduit wiring system using main
,	•	twopoints and test installation by test lamp method and a meggar. (Practical) (Contd.)
	2 nd	6. Fault finding & repairing of Fan – prepare an inventory list of parts. (Theory)
th		
10 th	1 st	6. Fault finding & repairing of Fan – prepare an inventory list of parts. (practical)
	2^{nd}	6. Fault finding & repairing of Fan – prepare an inventory list of parts. (practical)(contd
11^{th}	1 st	7. Find out fault of D.C. generator, repair and test it to run. (Theory)
11	-	1. 7. FINI YAN TAUH VI 17.C. 2010/AUVI. DAIAH AINI UMI UMI UTUH. CEINAI VI

	2^{nd}	7. Find out fault of D.C. generator, repair and test it to run. (practical)
12 th	1^{st}	8. Find out fault of D.C. motor starters and A.C motor starter – prepare an inventory list of parts used in different starters. (Theory)
	2^{nd}	8. Find out fault of D.C. motor starters and A.C motor starter – prepare an inventory list of parts used in different starters. (Practical)
13 th	1^{st}	9. Dismantle, over haul and assemble a single-phase induction motor. Test and run it. – prepare an inventory list. (Theory)
	2 nd	9. Dismantle, over haul and assemble a single-phase induction motor. Test and run it. – prepare an inventory list. (Practical)
14th	1^{st}	10. Dismantle over haul and assemble a three-phase squirrel cage and phase wound motor. Test and run them. (Theory)
	2^{nd}	10. Dismantle over haul and assemble a three-phase squirrel cage and phase wound motor. Test and run them. (Practical)
15 th	1 st	11. Overhaul a single phase / 3 phase variac. (Theory)
	2 nd	11. Overhaul a single phase / 3 phase variac. (Practical)

Rakesh Kouman Pattanayak

Signature of Teaching Faculty

ACADEMIC LESSON PLAN FOR SUMMER 2024

Discipline	Semester: - 6th	Name of the Teaching Faculty: -
Flootman Free		Rakesh kumar Pattanayak &Biswanita Sahu
Electrical Engg.	(SEC-A, GR-2)	
Subject: -	No of Days/per	Semester From: 16 th January 2024 to 26 th April 2024
ELECTRICAL	Week Class	
WORKSHOP	Allotted: -	
PR-01	6p/week	
Week	Class Day	Theory/ Practical Topics
1^{st}	1 st	1. Identification of single core (SC), twin core (TC), three cores (3c), four cores
		(4c);copper and aluminium PVC, VIR & Weather proof (WP) wire and prepare Britannia
		T joint and Married joint.(Theory)
	2^{nd}	1. Identification of single core (SC), twin core (TC), three cores (3c), four cores (4c);
		copper and aluminium PVC, VIR & Weather proof (WP) wire and prepare Britannia T
		joint and Married joint.(Practical)
2^{nd}	1 st	1. Identification of single core (SC), twin core (TC), three cores (3c), four cores (4c);
		copper and aluminium PVC, VIR & Weather proof (WP) wire and prepare Britannia T
		joint and Married joint.(Practical) (contd.)
	2 nd	1. Identification of single core (SC), twin core (TC), three cores (3c), four cores (4c);
	_	copper and aluminium PVC, VIR & Weather proof (WP) wire and prepare Britannia T
		joint and Married joint.(Practical) (contd.)
$3^{\rm rd}$	1 st	2. Cutting copper and aluminium cable and crimping lug to them from 4mm ² to
5	1	$25 \text{ mm}^2 \text{ cross section}$. (Theory)
	2 nd	2. Cutting copper and aluminium cable and crimping lug to them from 4mm ² to
	2	25mm ² cross section. (Practical)
	1 st	
4^{th}	1	3. Connection and testing of fluorescent tube light, high pressure M.V. lamp, sodium
4		vapor lamp, M.H lamp, CFL and latest model lamps – measure inductance, Lux/ lumens
	and	(intensity of illumination) in each case prepare lux table.(Theory)
	2^{nd}	3. Connection and testing of fluorescent tube light, high pressure M.V. lamp, sodium
		vapor lamp, M.H lamp, CFL and latest model lamps - measure inductance, Lux/ lumens
th	. et	(intensity of illumination) in each case prepare lux table(practical) (contd.)
5^{th}	1 st	3. Connection and testing of fluorescent tube light, high pressure M.V. lamp, sodium
		vapor lamp, M.H lamp, CFL and latest model lamps - measure inductance, Lux/ lumens
		(intensity of illumination) in each case prepare lux table(practical) (contd.)
	2^{nd}	3. Connection and testing of fluorescent tube light, high pressure M.V. lamp, sodium
		vapor lamp, M.H lamp, CFL and latest model lamps - measure inductance, Lux/ lumens
		(intensity of illumination) in each case prepare lux table(practical) (contd.)
6^{th}	1 st	4. Study battery charger and make charging of lead acid battery (record charging voltage
		current and specific gravity). (Theory)
	2 nd	4. Study battery charger and make charging of lead acid battery (record charging voltage
		current and specific gravity). (Practical)
7^{th}	1 st	5. Erection of residential building wiring by CTS and conduit wiring system using main
		two points and test installation by test lamp method and a meggar. (Theory)
	2 nd	5. Erection of residential building wiring by CTS and conduit wiring system using main
		two points and test installation by test lamp method and a meggar. (Practical)
8 th	1 st	5. Erection of residential building wiring by CTS and conduit wiring system using main
U U	-	twopoints and test installation by test lamp method and a meggar. (Practical)(Contd.)
	2 nd	5. Erection of residential building wiring by CTS and conduit wiring system using main
	2	twopoints and test installation by test lamp method and a meggar. (Practical)
9 th	1 st	5. Erection of residential building wiring by CTS and conduit wiring system using main
9 ^{ui}	1	
	2 nd	twopoints and test installation by test lamp method and a meggar. (Practical) (Contd.)
	2	6. Fault finding & repairing of Fan – prepare an inventory list of parts. (Theory)
10 th	1 st	6. Fault finding & repairing of Fan – prepare an inventory list of parts. (practical)
	2 nd	6. Fault finding & repairing of Fan – prepare an inventory list of parts. (practical)(contd

11 th	1 st	7. Find out fault of D.C. generator, repair and test it to run. (Theory)
	2 nd	7. Find out fault of D.C. generator, repair and test it to run. (practical)
12 th	1 st	8. Find out fault of D.C. motor starters and A.C motor starter – prepare an inventory list of parts used in different starters. (Theory)
	2 nd	8. Find out fault of D.C. motor starters and A.C motor starter – prepare an inventory list of parts used in different starters. (Practical)
13 th	1 st	9. Dismantle, over haul and assemble a single-phase induction motor. Test and run it. – prepare an inventory list. (Theory)
	2 nd	9. Dismantle, over haul and assemble a single-phase induction motor. Test and run it. – prepare an inventory list. (Practical)
14th	1 st	10. Dismantle over haul and assemble a three-phase squirrel cage and phase wound motor. Test and run them. (Theory)
	2 nd	10. Dismantle over haul and assemble a three-phase squirrel cage and phase wound motor. Test and run them. (Practical)
15 th (Extra class)	1 st	11. Overhaul a single phase / 3 phase variac. (Theory)
	2 nd	11. Overhaul a single phase / 3 phase variac. (Practical)

Rakesh Korman Pattanayak

Signature of Teaching Faculty