LESSON PLAN (SUMMER-2024)

LESSON PLAN (SUMMER-2024)			
Discipline:	Semester:6th	Name of the Teaching Faculty: SOMA DASH,LECTURER E&TC, GP	
ETC		BHUBANESWAR	
Subject:	No of Days /per		
Digital	week class	Semester From date: 16.01.2024 To date: 26.04.2024	
Signal	allotted: 4	No of Weeks:14	
Processing	anotted. T		
Week	Class Day	Theory / Practical Topics	
		1. Introduction of Signals, Systems & Signal processing(10)	
1st		1.1 Basics of Signals, Systems & Signal processing-basic element of a digital	
	1st	signal processing system -	
	130	Compare the advantages of digital signal processing over analog signal	
	2nd		
	ZIIU	processing. 1.3 Classify signals - Multi-channel & Multi-dimensional signals - Continuous	
	J ~ 4	1.2 Classify signals - Multi channel & Multi-dimensional signals-Continuous	
	3rd	time verses Discrete -times Signal	
	4th	Continuous valued verses Discrete -valued signals.	
		1.3 Concept of frequency in continuous time & discrete time signals	
	4.	Continuous-time sinusoidal signals-Discrete-time sinusoidal signals-	
	1st	Harmonically related complex exponential.	
2nd		1.4 Analog to Digital & Digital to Analog conversion & explain the following.	
	2nd	a. Sampling of Analog signal,	
	3rd	b. The sampling theorem.	
		c. Quantization of continuous amplitude signals, d. Coding of quantized	
	4th	sample.	
3rd	1st	e. Digital to analog conversion.	
	2nd	f. Analysis of digital systems signals vs. discrete time signals systems.	
		2. DISCRETE TIME SIGNALS & SYSTEMS (14)	
		2.1 Concept of Discrete time signals. 2.1.1 Elementary Discrete time signals.	
	3rd	2.1.2 Classification Discrete time signal.	
	4th	2.1.3 Simple manipulation of discrete time signal.	
4th	1st	2.2 Discrete time system. 2.2.1 Input-output of system.	
	2nd	2.2.2 Block diagram of discrete- time systems	
	3rd	2.2.3 Classify discrete time system.	
	4th	2.2.4 Inter connection of discrete -time system.	
5th		2.3 Discrete time time-invariant system. 2.3.1 Different techniques for the	
	1st	Analysis of linear system.	
	2nd	2.3.2 Resolution of a discrete time signal in to impulse.	
		2.2.2 December of LTI contains to substance the street of the street of the	
	3rd	2.3.3 Response of LTI system to arbitrary inputs using convolution sum.	
	4th	2.3.4 Convolution & interconnection of LTI system - properties.	
6th		2.3.5 Study systems with finite duration and infinite duration impulse	
	1st	response.	
		2.4 Discrete time system described by difference equation. 2.4.1 Recursive	
	2nd	& non-recursive discrete time system.	
		2.4.2 Determine the impulse response of linear time invariant recursive	
	3rd	system.	
	4th	2.4.3 Correlation of Discrete Time signals	
	701	2. 113 CO.T. Classical Of Pisorcia Tittle Signals	

		3. THE Z-TRANSFORM & ITS APPLICATION TO THE ANALYSIS OF LTI
7th		SYSTEM. (14)
	1st	3.1 Z-transform & its application to LTI system.
	2nd	3.1.1 Direct Z-transform.
	3rd	3.1.2 Inverse Z-transform.
	4th	3.2 Various properties of Z-transform.
8th	1st	Continue
	2nd	3.3 Rational Z-transform.
	3rd	3.3.1 Poles & zeros.
	4th	3.3.2 Pole location time domain behaviour for casual signals.
9th	1st	3.3.3 System function of a linear time invariant system.
	2nd	3.4 Discuss inverse Z-transform.
	3rd	3.4.1 Inverse Z-transform by partial fraction expansion.
	4th	Continue
	1st	3.4.2 Inverse Z-transform by contour Integration
	2nd	Continue
10th		4. DISCUSS FOURIER TRANSFORM: ITS APPLICATIONS PROPERTIES(12)
	3rd	4.1 Concept of discrete Fourier transform.
	4th	4.2 Frequency domain sampling and
	1st	reconstruction of discrete time signals.
11th	2nd	4.3 Discrete Time Fourier transformation(DTFT)
	3rd	Continue
	4th	4.4 Discrete Fourier transformation (DFT).
	1st	Continue
12th	2nd	4.5 Compute DFT as a linear transformation.
	3rd	4.6 Relate DFT to other transforms.
	4th	4.7 Property of the DFT.
	1st	4.8 Multiplication of two DFT &
	2nd	circular convolution
13th		5. FAST FOURIER TRANSFORM ALGORITHM & DIGITAL FILTERS(10)
	3rd	5.1 Compute DFT & FFT algorithm.
	4th	Continue
	1st	5.2 Direct computation of DFT.
1./1+b	2nd	5.3 Divide and Conquer Approach to computation of DFT
14th	3rd	5.4 Radix-2 algorithm. (Small Problems)
	4th	5.5 Application of FFT algorithms
15 th (Extra)	1st	5.6 Introduction to digital filters.
	2nd	(FIR Filters)& General considerations
	3rd	5.7 Introduction to DSP architecture,
	4th	familiarization of different types of processor

Soma DashSignature of the Faculty