ACADEMIC LESSON PLAN OF SUMMER 2024

Discipline	Semester: - 4th	Name of the Teaching Faculty: Amit kumar Bisoyi
Electronics & communication Engg. (TH1)		
Subject: ELECTRICAL MACHINE	No. of days/per week class allotted : 4p/week	Semester From: 16 th January 2024 to 26 th April 2024 No. of weeks:15 weeks
Week	Classes/week	Theory Topics
1 st	1 st	ELECTRICAL MATERIAL 1.1 Properties & uses of different conducting material. (cont)
	2 nd	1.2 Properties & use of various insulating materials used electrical engineering.
	3 rd	1.3 Various magnetic materials & their uses.
	4 th	DC GENERATOR 2.1 Construction, Principle & application of DC Generator. (cont)
2 nd	1 st	2.1 Construction, Principle & application of DC Generator
	2 nd	2.2 Classify DC generator including voltage equation.
	3 rd	2.3 Derive EMF equation & simple problems. (cont)
	4 th	2.3 Derive EMF equation & simple problems.
3 rd	1 st	2.4 Parallel operation of DC generators. (cont)
	2 nd	2.4 Parallel operation of DC generators.
	3 rd	DC MOTOR 3.1 Principle of working of a DC motor. (cont)
	4 th	3.1 Principle of working of a DC motor.
4 th	1 st	3.2 Concept of development of torque & back EMF in DC motor including simple problems. (cont)
	2 nd	3.2 Concept of development of torque & back EMF in DC motor including simple problems.
	3 rd	3.3 Derive equation relating to back EMF, Current, Speed and Torque equation
	4 th	3.4 Classify DC motors & explain characteristics, application.
5 th	1 st	3.5 Three point & four point stator/static of DC motor by solid State converter. (cont)
	2 nd	3.5 Three point & four point stator/static of DC motor by solid State converter.
	3 rd	3.6 Speed of DC motor by field control and armature control method. (cont)
	4 th	3.6 Speed of DC motor by field control and armature control

		method.
6 th	1 st	3.7 Power stages of DC motor & derive Efficiency of a DC motor.
	2 nd	(cont)
	3 rd	3.7 Power stages of DC motor & derive Efficiency of a DC motor.
	3	AC CIRCUITS 4.1 Mathematical representation of phasors, significant of operator "J" (cont)
	4 th	4.1 Mathematical representation of phasors, significant of operator "J"
7 th	1 st	4.2 Addition, Subtraction, Multiplication and Division of phasor quantities. (cont)
	2 nd	4.2 Addition, Subtraction, Multiplication and Division of phasor quantities.
	3 rd	4.3 AC series circuits containing resistance, capacitances, Conception of active, Reactive and apparent power and Q-factor of series circuits & solve related problems. (cont)
	4 th	4.3 AC series circuits containing resistance, capacitances, Conception of active, Reactive and apparent power and Q-factor of series circuits & solve related problems.
8 th	1 st	4.4 Find the relation of AC Parallel circuits containing Resistances, Inductance and Capacitances Q-factor of parallel circuits. (cont)
	2 nd	4.4 Find the relation of AC Parallel circuits containing Resistances, Inductance and Capacitances Q-factor of parallel circuits.
	3 rd	TRANSFORMER 5.1 Ideal transformer. (cont)
	4 th	5.1 Ideal transformer.
$9^{ m th}$	1 st	5.2 Construction & working principle of transformer
	2 nd	5.3 Derive of EMF equation of transformer, voltage transformation ratio.
	3 rd	5.4 Discuss Flux, Current, EMF components of transformer and their phasor diagram under no load Condition.
	4 th	5.5 Phasor representation of transformer flux, current EMF primary and secondary Voltages under loadedcondition.
$10^{ m th}$	1 st	5.6 Types of losses in Single Phase (1-ø) Transformer. (cont)
	2 nd	5.6 Types of losses in Single Phase (1-ø) Transformer.
	3 rd	5.7 Open circuit & short-circuit test (simple problems) (cont)
	4 th	5.7 Open circuit & short-circuit test (simple problems)
	1 st	5.8 Parallel operation of Transformer.
	2 nd	5.9 Auto Transformer (cont)
	3 rd	5.9 Auto Transformer
	4 th	INDUCTION MOTOR 6.1 Construction feature, types of three-phase induction
	*	motor. (cont)
12 th	1 st	6.1 Construction feature, types of three-phase induction

		motor.
	2 nd	
	_	6.2 Principle of development of rotating magnetic field in the stator.
	3 rd	6.3 Establish relationship between synchronous speed, actual speed and slip of induction motor. (cont)
	4 th	6.3 Establish relationship between synchronous speed, actual speed and slip of induction motor.
13 th	1 st	6.4 Establish relation between torque, rotor current and power factor. (cont)
	2 nd	6.4 Establish relation between torque, rotor current and power factor.
	3 rd	6.5 Explain starting of an induction motor by using DOL and Star-Delta stator. State industrial use of induction motor. (cont)
	4 th	6.5 Explain starting of an induction motor by using DOL and Star-Delta stator. State industrial use of induction motor.
14th	1 st	SINGLE PHASE INDUCTION MOTOR
		7.1 Construction features and principle of operation of capacitor type and shaded pole type of single-phase induction motor. (cont)
	2 nd	7.1 Construction features and principle of operation of capacitor type and shaded pole type of single-phase induction motor. (cont)
	3 rd	7.1 Construction features and principle of operation of capacitor type and shaded pole type of single-phase induction motor.
	4 th	7.2 Explain construction & operation of AC series motor. (cont)
15 th	1 st	7.2 Explain construction & operation of AC series motor.
	2 nd	7.3 Concept of alternator & its application.
	3 rd	7.3 Concept of alternator & its application. (cont)
	_	

Anuit Kumar Prisagi

Signature of Teaching Faculty