Deparment: Civil Engineering	Semester : 5TH No.of Days/ week class allotted : 04/week	Name of the Teaching faculty: NITYANANDA BEHERA	
Subject :- Th 2		Semester from date: 15/09/2022 to 22/12/2022 No. of Week	eks :15
STRUCTURAL DESIGN-			
Week	Class Day	Topics	Remarks
		1. Introduction:	
1 st Week:		1.1 Common steel structures, Advantages & disadvantages of steel	
(15 th Sept-	2 nd	structures.	
17th Sept)		1.2 Types of steel, properties of structural steel.	
	3 rd	1.3 Rolled steel sections, special considerations in steel design.	
	1 st	1.4 Loads and load combinations	
		1.5 Structural analysis and design philosophy.	
2 nd Week: (19 th Sept -	2 nd	1.6 Brief review of Principles of Limit State design.	
	3 rd	2 Structural Steel Fasteners and Connections.	
24 th Sept)		2.1 Bolted Connections	
		2.1.1 Classification of bolts, advantages and disadvantages of bolted	
		connections.	
	1st	2.1.2 Different terminology, spacing and edge distance of bolt holes.	
		2.1.2 Different terminology, spacing and edge distance of bolt holes.	
3rd week:(26th Sept- 01 Oct)	2 nd	2.1.4 Types of action of fasteners, assumptions and principles of	
		design.	
	3 rd	2.1.5 Strength of plates in a joint, strength of bearing type bolts (shear	
		capacity& bearing capacity), reduction factors, and shear capacity of	
		HSFG bolts.	
4th week	vacation		
til week	1st	2.1.5 Strength of plates in a joint, strength of bearing type bolts (shear	
		capacity& bearing capacity), reduction factors, and shear capacity of	
5 th Week: (10 th Oct- 15 th Oct)		HSFG bolts.	
	2nd	2.1.6 Analysis & design of Joints using bearing type and HSFG bolts	
		(except eccentric load and prying forces)	
	3rd	2.1.7 Efficiency of a joint.	
6 th Week: (17 th Oct-	1st	2.2 Welded Connections:	
		2.2.1 Advantages and Disadvantages of welded connection	
		2.2.2 Types of welded joints and specifications for welding	

22 nd Oct)	2nd	2.2.3 Design stresses in welds	
	3rd	2.2.4 Strength of welded joints.	
	2nd	3 Design of Steel tension Members	
7 th Week:		3.1 Common shapes of tension members.	
(25 th Oct-	3rd	3.2 Maximum values of effective slenderness ratio.	
	1st	3.2 Maximum values of effective slenderness ratio.	
8 th Week:	2nd	3.4 Analysis and Design of tension members.(Considering strength	
(31st oct-		only and concept of block shear failure.)	
5th Nov)	3rd	3.4 Analysis and Design of tension members.(Considering strength	
		only and concept of block shear failure.)	
	1st	3.4 Analysis and Design of tension members.(Considering strength	
		only and concept of block shear failure.)	
9 th Week:		3.4 Analysis and Design of tension members.(Considering strength	
(7 th Nov -12 th	2nd	only and concept of block shear failure.)	
Nov)		3.4 Analysis and Design of tension members.(Considering strength	
	3rd	only and concept of block shear failure.)	
		4 Design of Steel Compression members.	
	1st	4.1 Common shapes of compression members.	
10 th Week:		4.2 Buckling class of cross sections, slenderness ratio	
(14 th Nov -19 th	2nd	4.2 Buckling class of cross sections, slenderness ratio	
Nov)	3rd	4.3 Design compressive stress and strength of compression members.	
	1st	4.3 Design compressive stress and strength of compression members.	
11 th Week: (21st Nov -	2nd	4.3 Design compressive stress and strength of compression members.	
26 th Nov)	3rd	4.4 Analysis and Design of compression members (axial load only).	
12 th Week:	1st	4.4 Analysis and Design of compression members (axial load only).	
(28 th Nov -3 rd)	2nd	5 Design of Steel beams:	
Dec		5.1 Common cross sections and their classification.	
	3rd	5.1 Common cross sections and their classification.	
	1st	5.2 Deflection limits, web buckling and web crippling.	
13 th Week: (5 th Dec -10 th	2nd	5.3 Design of laterally supported beams against bending and shear.	

Dec)	3rd	5.3 Design of laterally supported beams against bending and shear.	
14 th Week:	1st	5.3 Design of laterally supported beams against bending and shear.	
(12 th Dec-	2nd	6 Design of Tubular Steel Structures:	
17th Dec)		6.1 Round Tubular Sections, Permissible Stresses	
	3rd	6.2 Tubular Compression & Tension Members	
15 th Week: (19 th Dec-	1st	6.3 Joints in tubular Trussess	
		7 Design of Masonry Structures:	
		7.1 Design considerations for Masonry walls & Columns, Load Bearing	
		& Non-Load Bearing walls, Permissible stresses, Slenderness Ratio,	
		Effective Length, Height & Thickness.	
		7.1 Design considerations for Masonry walls & Columns, Load Bearing	
		& Non-Load Bearing walls, Permissible stresses, Slenderness Ratio,	
		Effective Length, Height & Thickness.	
FY	(TRA CLASSES	7.1 Design considerations for Masonry walls & Columns, Load Bearing	
L/		& Non-Load Bearing walls, Permissible stresses, Slenderness Ratio,	
		Effective Length, Height & Thickness.	
		7.1 Design considerations for Masonry walls & Columns, Load Bearing	
		& Non-Load Bearing walls, Permissible stresses, Slenderness Ratio,	
		Effective Length, Height & Thickness.	
		7.1 Design considerations for Masonry walls & Columns, Load Bearing	
		& Non-Load Bearing walls, Permissible stresses, Slenderness Ratio,	
		Effective Length, Height & Thickness.	

Nityanarda Dehera. Signature of Faculty