ACADEMIC LESSON PLAN OF WINTER 2023

Discipline: Semester:		Name of the Teaching Faculty: Amit Kumar Bisoyi		
ELECTRICAL	5 TH Sem	Name of the reaching ractity. Affile Ramar bisoyi		
	Sec A			
Subject: ENERGY	No. of	Semester From: 1st Aug 2023 to 30th Nov 2023		
CONVERSION-II	days/per	No. of Weeks: 17 weeks		
	week class	IVO. OF WEEKS. 17 WEEKS		
	allotted:			
	4p/week			
	1 st	Unit-1:ALTERNATOR		
		1.1 Types of alternator and their constructional features		
	2 nd	1.2 Basic working principle of alternator and establish the relation between		
1 st		speed and frequency		
	3 rd	1.3 Explain terminology in armature winding, and derive expressions for		
		winding factors (Pitch factor, Distribution factor).		
	4 th	1.4 Explain harmonics, its causes and impact on winding factor.		
	1 st	1.5 Derive E.M.F equation. (Solve numerical problems (contd.)		
	2 nd	1.5 Derive E.M.F equation. (Solve numerical problems		
2 nd	3 rd	1.6 Explain Armature reaction and its effect on emf at different pf of load (contd.)		
	4 th	1.6 Explain Armature reaction and its effect on emf at different pf of load.		
	1 st	1.7 Draw the vector diagram of loaded alternator. (Solve numerical problems)		
	2 nd	1.8 State and explain testing of alternator (open circuit and short circuit		
		methods) (Solve numerical problems).(contd.)		
3 rd	3 rd	1.8 State and explain testing of alternator (open circuit and short circuit		
		methods) (Solve numerical problems).		
	4 th	1.9 Determination of voltage regulation of Alternator by direct loading and		
		synchronous impedance method		
	1 st	1.10 Explain parallel operation of alternator using synchro-scope, dark and		
		bright lamp method		
	2 nd	1.11 Explain distribution of load by parallel connected alternators		
4 th	3 rd	Unit-2:SYNCHRONOUS MOTOR		
		2.1 Explain constructional feature of Synchronous Motor.		
		2.2 Explain principles of operation, concept of load angle.		
	4 th	2.3 Explain effect of varying load with constant excitation(cont)		
	1 st	2.3 Explain effect of varying load with constant excitation		
	2 nd	2.4 Explain effect of varying excitation with constant load.		
5 th	3 rd	2.5 Derive torque, power developed(cont)		
	4 th	2.5 Derive torque, power developed.		
		2.6 Explain power angle characteristics of cylindrical rotor motor.		
6 th	1 st	2.7 Explain effect of excitation on Armature current and power factor.		
		2.8 Explain Hunting & function of Damper Bars.		
	2 nd	2.9 Describe method of starting of Synchronous motor.(cont)		
	3 rd	2.9 Describe method of starting of Synchronous motor.		
		2.10 State application of synchronous motor		
	4 th	Unit-3: THREE PHASE INDUCTION MOTOR		
		3. 1 Explain and derive production of rotating magnetic field.		
	1st	3. 2 Explain constructional feature of Squirrel cage and Slip ring induction motor.		
	2 nd	3. 3 Explain principles of operation of 3-phase Induction motor.		
7 th	3 rd	3. 4 Explain slip speed, slip and slip relation with rotor quantities		
	4 th	3. 5 Derive Torque during starting and running and conditions for maximum		
		torque. (solve numerical problems) (contd.)		
	1 st	3. 5 Derive Torque during starting and running and conditions for maximum		
		torque. (solve numerical problems)		
	2 nd	3. 6 Derive Torque-slip characteristics		
8 th	3 rd	3. 7 Derive relation between full load torque and starting torque etc. (solve		
		numerical problems).		
	4 th	3. 8 Determine the relations between Rotor Copper loss, Rotor output and		
		Gross Torque, and relationship of slip with rotor copper loss. (solve		
<u> </u>	1	The strategy and strategy of the strategy copper took (boxes)		

		numerical problems)			
	1 st	3. 9 Explain and state Methods of starting and different types of starters			
	2 nd	3. 10 Explain speed control by Voltage Control, Rotor resistance control, pole			
9 th		changing, frequency control methods.			
	3 rd	3. 11 Describe plugging applicable to three phase induction motor			
	4 th	3. 12 Describe different types of motor enclosures			
	1 st	3. 13 Explain principle of Induction Generator and state its applications			
	2 nd	Unit-4:SINGLE PHASE INDUCTION MOTOR.			
	_	4.1 Explain Rotating – field theory of 1-phase induction motor.			
10 th	3 rd	4.2 Explain Ferrari's principle.			
10	4 th	4.3 Explain Working principle, Torque speed characteristics, performance			
	-	characteristics and application offollowing single phase motors			
		4.3.1 Split phase motor.			
	1 st	4.3.2 Capacitor Start motor.			
	2 nd	4.3.3 Capacitor start, capacitor run motor			
11 th	3 rd	4.3.4 Permanent capacitor type motor			
	4 th				
		4.3.5 Shaded pole motor			
	1 st	4.4 Explain the method to change the direction of rotation of above motors			
	2 nd	Unit-5:COMMUTATOR MOTORS			
12 th		5.1 Explain construction, working principle, running characteristic and			
12	3 rd	application of singlephase series motor (contd.)			
	3	5.1 Explain construction, working principle, running characteristic and			
	4 th	application of singlephase series motor.			
	1 st	5.2 Explain construction, working principle and application of Universal motors. (contd.)			
		5.2 Explain construction, working principle and application of Universal motors.			
	2 nd	5.3 Explain working principle of Repulsion start Motor, Repulsion start			
a a th	e rd	Induction run motor, Repulsion Induction motor.(cont)			
13 th	3 rd	5.3 Explain working principle of Repulsion start Motor, Repulsion start			
		Induction run motor, Repulsion Induction motor.			
	4 th	Unit-6:SPECIAL ELECTRICAL MACHINE			
		6.1 Principle of Stepper motor.			
	1 st	6.2 Classification of Stepper motor.			
		6.3 Principle of variable reluctant stepper motor.			
14 th	2 nd	6.4 Principle of Permanent magnet stepper motor.			
	3 rd	6.5 Principle of hybrid stepper motor.			
	4 th	6.6 Applications of Stepper motor.			
	1 st	Unit-7: THREE PHASE TRANSFORMERS			
		7.1 Explain Grouping of winding, Advantages			
15 th	2 nd	7.2 Explain parallel operation of the three phase transformers.			
	3 rd	7.3 Explain tap changer (On/Off load tap changing			
	4 th	7.4 State maintenance of Transformers			
	1 st	REVISION CLASS			
	2 nd	REVISION CLASS			
1 Cth					
16 th	3 rd	REVISION CLASS			
	4 th	REVISION CLASS			
	7	REVISION CEASS			
17 th	1 st	REVISION CLASS			
	2 nd	REVISION CLASS			
	3 rd	REVISION CLASS			
	-1				
	4 th	REVISION CLASS			