LESSON PLAN (Winter-2023)

LESSON PLAN (Winter-2023)		
Discipline: IT	Semester: 3rd	Name of the Teaching Faculty: P.BHAWANI
Subject: DIGITAL	No of Days /per	Semester From date: 01.08.2023 To 30.11.2023
ELECTRONICS(PR-3)	week class	No of Weeks:15
	allotted:4	Practical Topics
Week	Class Day	Familiarization of Digital Trainer Kit, logic Pulser Logic Probe & Digital ICs IE 7400,
1 st	1st	7402 & 7404 (draw their pin diagram and features)
		Familiarization of Digital ICs IE 7408, 7432 & 7486 (draw their pin diagram and
	2nd	features)
		- C 3-18-13
2nd	1st	Verify truth tables of AND, OR, NOT, NOR gates & simplifications of Boolean gates
	2nd	Verify truth tables of NAND, XOR, XNOR gates & simplifications of Boolean gates
3rd	1st	Implement various gates by using universal properties of NOR gates verify and truth
		table tabulate data.
	2nd	Implement various gates by using universal properties of NAND gates verify and
		truth table tabulate data.
4th	1st	Construct & verify operation of Half adder using logic gates.
	2nd	Construct & verify operation of Full adder using logic gates.
5th	1st	Construct & verify operation of Half subtractor using logic gates.
	2nd	Construct & verify operation of Full subtractor using logic gates.
6th	1st	Design &Implement a 4-bit Binary to Gray code converter.
	2nd	Design &Implement a 4-bit Binary to Gray code converter.
7th	1st	Design & Implement a Single bit/ two bit digital comparator circuit
	2nd	Design Multiplexer (4:1)
8th	1st	Design De-multiplexer (1:4)
	2nd	Study the operation of S-R flip flop
9th	1st	Study the operation of J-K flip flop
	2nd	Study the operation of D flip flop
10th	1st	Study the operation of T flip flop
	2nd	Realize a 4-bit asynchronous UP/Down counter with a control for up/down counting.
11th	1st	Realize a 4-bit asynchronous UP/Down counter with a control for up/down counting.
	2nd	Study shift registers.
12th	1st	Verify the operation 8-bit D /A and A/ D conversion & test its performance
	2nd	Verify the operation 8-bit D /A and A/ D conversion & test its performance
13th	1st	Study display devices LED, LCD, 7-segment displays.
	2nd	Mini Project : To collect data like pin configurations, display devices, Operational
		characteristics, applications and critical factors etc. on all digital ICs studied in theory
		and compile a project report throughout and submit at the end of the semester. To
		assemble and tests circuits using above digital ICs with test points e.g. Digital Clock /
		Frequency Counter / Running Glow Light upto 999/Solar cell & Opto coupler
		applications.
14th	1st	Continue.
	2nd	Continue.
15th	1st	Digital Works 3.04/ higher version is a graphical design tool that enables you to
		construct digital logic circuits and to analyse their behaviour through real time
		simulation. Its intuitive, easy to use interface makes it the ideal choice for learning or
		teaching digital electronics.
	2nd	Continue.

Signature of the Faculty