ACADEMIC LESSON PLAN OF SUMMER 2023

Discipline	Semester: -4 th	Name of the Teaching Faculty: -
ELECTRICAL	(Sec A,Grp 2)	Sunita Oram and Biswanita Sahu
ENGG.		
Subject: -	No of Days/per	Semester From: - 14 th Feb 2023 to 23 rd May 2023
Electrical	Week Class	
Machine Lab-I	Allotted:	No. of weeks:14 weeks
	2p/week	
	2p/week	
Week	Class Day	Practical Topics
1 st	1 st	1. Identification of different terminals of a DC machine by test lamp
		method and multi-meter method & to measure insulation
		resistance by megger.(contd.)
	2^{nd}	1. Identification of different terminals of a DC machine by test lamp
		method and multi-meter method & to measure insulation
and	1 st	resistance by megger.
2 nd	1	2. Dimensional and material study of various parts of a DC
	and	machine.(contd.)
	2^{nd}	2. Dimensional and material study of various parts of a DC machine.
3 rd	1^{st}	3.Plot OCC of a DC shunt generator at constant speed and
		determine critical resistance from the graph.(contd.)
	2^{nd}	3.Plot OCC of a DC shunt generator at constant speed and
		determine critical resistance from the graph.
	1^{st}	4.Plot External Characteristics of a DC shunt generator at constant
4 th		speed.
	2^{nd}	5. Study of Three point starter, connect and run a DC shunt motor &
		measure the no load current.(contd.)
5 th	1 st	5. Study of Three point starter, connect and run a DC shunt motor &
		measure the no load current.
	2^{nd}	6. Study of Four point starter, connect and run a DC compound
		motor & measure no load current.
6 th	1^{st}	6. Study of Four point starter, connect and run a DC compound
		motor & measure no load current.
	2^{nd}	7. Control the speed of a DC shunt motor by field flux control
	_	method. (Contd.)
7 th	1^{st}	7. Control the speed of a DC shunt motor by field flux control
		method.
	2^{nd}	8.Control the speed of a DC shunt motor by armature voltage
	_	control method. (Contd.)
8 th	1 st	8.Control the speed of a DC shunt motor by armature voltage
	Ĩ	
		control method. (Contd.)

	2^{nd}	8. Determine the armature current vs. speed characteristic of a DC
		motor(Contd.)
9 th	1 st	9. Determine the efficiency of a DC machine by brake test method.
		(Contd.)
	2^{nd}	9. Determine the efficiency of a DC machine by brake test method.
10 th	1 st	10. Identification of terminals, determination of voltage
		transformation ratio of a Single Phase Transformer(Contd.)
	2 nd	10. Identification of terminals, determination of voltage
		transformation ratio of a Single Phase Transformer
11 th	1 st	10. Identification of terminals, determination of voltage
		transformation ratio of a Single Phase Transformer
	2^{nd}	11. Perform OC Test of a Single Phase Transformer.(Contd.)
12 th	1 st	11. Perform SC test of a Single Phase Transformer.
	2 nd	12. Determine the voltage regulation of a Single Phase Transformer
		at different loads. (Contd.)
13 th	1 st	12. Determine the voltage regulation of a Single Phase Transformer
		at different loads.
	2^{nd}	12. Determine the voltage regulation of a Single Phase Transformer
		at different loads.
14th	1 st	Revision Class
	2 nd	Revision Class
	_	

Signature of Teaching Faculty