ACADEMIC LESSON PLAN OF SUMMER 2023

Discipline:	Semester:	Name of the Teaching Faculty: AMIT KUMAR BISOYI
ELECTRICAL	4 th Sem (Sec A)	
Subject:	No. of days/per	Semester From: 14 th February 2023 to 23 rd May 2023
ENERGY	week class	,
	allotted:4p/week	
TH. 1	Tutorial:1p/week	
Week	Class Day	Theory Topics
VVEEK		1.D.C GENERATOR:
		1.1 Operating principle of generator
		1.2 Constructional features of DC machine
1 st		1.2.1 Yoke, Pole & field winding, Armature, Commutator
	3 rd	1.2.2 Armature winding, back pitch, Front pitch, Resultant pitch and commutator- pitch.
	4 th	1.2.2 Simple Lan and wave winding Dummy sails
	4	1.2.3 Simple Lap and wave winding, Dummy coils
	5 th	Tutorial
	-	
	1	1.3 Different types of D.C. machines (Shunt, Series and Compound)(contd)
	2 nd	1.3 Different types of D.C. machines (Shunt, Series and Compound)
	2	1.5 Different types of D.C. Machines (Shunt, Series and Compound)
2 nd	3 rd	1.4 Derivation of EMF equation of DC generators. (Solve problems) (contd)
	3	2.4 Derivation of Ethir equation of De generators. (Solve problems) (contain)
	4 th	1.4 Derivation of EMF equation of DC generators. (Solve problems)
	5 th	Tutorial
	1 st	1.5 Losses and efficiency of DC generator. Condition for maximum efficiency and numerical
		problems(contd)
		1.5 Losses and efficiency of DC generator. Condition for maximum efficiency and numerical
- rd		problems.
3 rd	d	1.6. Armature reaction in D.C. machine (contd)
	3	1.0. Armature reaction in D.C. machine (conta)
	4 th	1.6. Armature reaction in D.C. machine
	5 th	Tutorial
	1 st	1.7. Commutation and methods of improving commutation
	2 nd	1.7 Commutation and methods of improving commutation (contd)
4 th	rd	
4		1.8 Characteristics of D.C. Generators
		1.9. Application of different types of D.C. Generators.
		1.10. Concept of critical resistance and critical speed of DC shunt generator
		1.11. Conditions of Build-up of emf of DC generator.
[5 th	Tutorial
	1 st	1.12. Parallel operation of D.C. Generators.
		1.13. Uses of D.C generators.
		2.D. C. MOTORS
th.	_	2.1 Basic working principle of DC motor.
5 th		2.2 Significance of back emf in D.C. Motor
	J	2.2 Jighin carice of back eith in D.C. MOLOI
	4 th	2.3 Voltage equation of D.C. Motor and condition for maximum power output (simple
	<u>-</u>	Problems)(contd)
	14	Tutorial
		2.3 Voltage equation of D.C. Motor and condition for maximum power output(simple problems)
	1	2.3 Voltage equation of D.C. Motor and condition for maximum power output(simple problems)
6 th	2 nd	2.4. Derive torque equation (solve problems)(contd)
р	-	
	3 rd	2.4. Derive torque equation (solve problems)
	4 th	2.5. Characteristics of shunt, series and compound motors and their application.

	5 th	Tutorial
	1 st	2.6. Starting method of shunt, series and compound motors.
7 th -	2 nd	2.7. Speed control of D.C shunt motors by Flux control method. Armature voltage Control method.
	3 rd	Solve problems(contd) 2.7. Speed control of D.C shunt motors by Flux control method. Armature voltage Control method.
	4 th	Solve problems 2.8. Speed control of D.C. series motors by Field Flux control method, Tapped field method and
-	5 th	series-parallel method
	1 st	Tutorial 2.9. Determination of efficiency of D.C. Machine by Brake test method (solve numerical problems)
	_	
8 th	2 nd	2.10. Determination of efficiency of D.C. Machine by Swinburne's Test method (solve numerical problems)
8	3 rd	2.11. Losses, efficiency and power stages of D.C. motor (solve numerical problems) (contd)
-	4 th	2.11. Losses, efficiency and power stages of D.C. motor (solve numerical problems) 2.12. Uses of D.C. motors
	5 th	Tutorial
	1 st	3. SINGLE PHASE TRANSFORMER
		3.1 Working principle of transformer
+h	2 nd	3.2 Constructional feature of Transformer.
9 th	3 rd	3.2.1 Arrangement of core & winding in different types of transformer.
	4 th	3.2.2 Brief ideas about transformer accessories such as conservator, tank, breather, and explosion vent etc.
	5 th	Tutorial
	1 st	3.2.3 Explain types of cooling methods
		3.3 State the procedures for Care and maintenance
41.	2 nd	3.4 EMF equation of transformer.
10 th	3 rd	3.5 Ideal transformer voltage transformation ratio
-	4 th	3.6 Operation of Transformer at no load, on load with phasor diagrams.(contd)
ŀ	5 th	Tutorial
	1 st	3.6 Operation of Transformer at no load, on load with phasor diagrams.
-	2 nd	3.7 Equivalent Resistance, Leakage Reactance and Impedance of transformer.
11 th	3 rd	3.8 To draw phasor diagram of transformer on load, with winding Resistance and Magnetic leakage with using UPF, leading pf and lagging pf load.(contd)
-	4 th	3.8 To draw phasor diagram of transformer on load, with winding Resistance and Magnetic leakage
		with using UPF, leading pf and lagging pf load.
	5 th	Tutorial
	1 st	3.9 To explain Equivalent circuit and solve numerical problems
-	2 nd	3.10 Approximate & exact voltage drop calculation of a Transformer 3.11 Regulation of transformer.
12 th	3 rd	3.12 Different types of losses in a Transformer. Explain Open circuit and Short Circuit test. (Solve
-	4 th	numerical problems)(contd) 3.12 Different types of losses in a Transformer. Explain Open circuit and Short Circuit test.(Solve
	4	numerical problems)
-	5 th	Tutorial
	1 st	3.13 Explain Efficiency, efficiency at different loads and power factors, condition for maximum efficiency (solve problems) (contd)
13 th	2 nd	3.13 Explain Efficiency, efficiency at different loads and power factors, condition for maximum
	3 rd	efficiency (solve problems) 3.14 Explain All Day Efficiency (solve problems)
-	4 th	2.15 Determination of lead corresponding to Marriagues officions.
	4	3.15 Determination of load corresponding to Maximum efficiency.

	5 th	Tutorial
	1 st	3.16 Parallel operation of single phase transformer.
	2 nd	4. AUTO TRANSFORMER
		4.1. Constructional features of Auto transformer.
14 th		4.2. Working principle of single phase Auto Transformer
	3 rd	4.3. Comparison of Auto transformer with an two winding transformer (saving of Copper).
		4.4. Uses of Auto transformer
	4 th	4.5. Explain Tap changer with transformer (on load and off load condition)
	5 th	Tutorial
	1 st	5.INSTRUMENT TRANSFORMERS
		5.1 Explain Current Transformer and Potential Transformer
15 th	2 nd	5.1 Explain Current Transformer and Potential Transformer(contd)
(Extra class)	3 rd	5.2 Define Ratio error, Phase angle error, Burden.
	4 th	5.3 Uses of C.T. and P.T
	5 th	Tutorial

Signature of Teaching Faculty

ACADEMIC LESSON PLAN OF SUMMER 2023

r		ACADEMIC LESSON PLAN OF SUMMER 2023
Discipline:	Semester:	Name of the Teaching Faculty: AMIT KUMAR BISOYI
ELECTRICAL	4 th Sem (Sec B)	
Subject:	No. of days/per	Semester From: 14 th February 2023 to 23 rd May 2023
ENERGY	week class	No. of weeks:15 weeks
CONVERSION-I	allotted:4p/week	TOTAL OF WEEKSTED WEEKS
TH.1	Tutorial:1p/week	
	·	Theory Tonies
Week	Class Day 1 st	Theory Topics
	_	1.D.C GENERATOR:
		1.1 Operating principle of generator
		1.2 Constructional features of DC machine
1 st		1.2.1 Yoke, Pole & field winding, Armature, Commutator
	3 rd	1.2.2 Armature winding, back pitch, Front pitch, Resultant pitch and commutator- pitch.
	4 th	1.2.3 Simple Lap and wave winding, Dummy coils
	5 th	Tutorial
	1 st	1.3 Different types of D.C. machines (Shunt, Series and Compound) (contd)
	2 nd	1.3 Different types of D.C. machines (Shunt, Series and Compound)
2 nd		
		1.4 Derivation of EMF equation of DC generators. (Solve problems) (contd)
	4 th	1.4 Derivation of EMF equation of DC generators. (Solve problems)
	5 th	Tutorial
	1 st	1.5 Losses and efficiency of DC generator. Condition for maximum efficiency and numerical problems(contd)
		1.5 Losses and efficiency of DC generator. Condition for maximum efficiency and numerical
_ rd		problems.
3 rd		1.6. Armature reaction in D.C. machine (contd)
	4 th	1.6. Armature reaction in D.C. machine
	5 th	Tutorial
		1.7. Commutation and methods of improving commutation
	_	2.7. Commutation and methods of improving commutation
	2 nd	1.7 Commutation and methods of improving commutation (contd)
4 th	3 rd	1.8 Characteristics of D.C. Generators
	_	1.9. Application of different types of D.C. Generators.
		1.10. Concept of critical resistance and critical speed of DC shunt generator
		1.11. Conditions of Build-up of emf of DC generator.
	5 th	Tutorial
	1 st	
	1	1.12. Parallel operation of D.C. Generators. 1.13. Uses of D.C generators.
	2 nd	2.D. C. MOTORS
		2.1 Basic working principle of DC motor.
5 th		2.2 Significance of back emf in D.C. Motor
		3
	4 th	2.3 Voltage equation of D.C. Motor and condition for maximum power output (simple Problems)
		(contd)
	5 th	Tutorial
6 th	1 st	2.3 Voltage equation of D.C. Motor and condition for maximum power Output(simple problems)
U	2 nd	2.4. Derive torque equation (solve problems)(contd)

	3 rd	2.4. Derive torque equation (solve problems)
	4 th	2.5. Characteristics of shunt, series and compound motors and their application.
	5 th	Tutorial
	1 st	2.6. Starting method of shunt, series and compound motors.
	2 nd	2.7. Speed control of D.C shunt motors by Flux control method. Armature voltage Control method.
7 th	3 rd	Solve problems(contd) 2.7. Speed control of D.C shunt motors by Flux control method. Armature voltage Control method.
,		Solve problems
	4 th	2.8. Speed control of D.C. series motors by Field Flux control method, Tapped field method and series-parallel method
	5 th	Tutorial
	1 st	2.9. Determination of efficiency of D.C. Machine by Brake test method (solve numerical problems)
+h	2 nd	2.10. Determination of efficiency of D.C. Machine by Swinburne's Test method (solve numerical problems)
8 th	3 rd	2.11. Losses, efficiency and power stages of D.C. motor (solve numerical problems) (contd)
	4 th	2.11. Losses, efficiency and power stages of D.C. motor (solve numerical problems) 2.12. Uses of D.C. motors
	5 th	Tutorial
	1 st	3. SINGLE PHASE TRANSFORMER
		3.1 Working principle of transformer
	2 nd	3.2 Constructional feature of Transformer.
9 th	3 rd	3.2.1 Arrangement of core & winding in different types of transformer.
	4 th	3.2.2 Brief ideas about transformer accessories such as conservator, tank, breather, and explosion
	4	·
	5 th	vent etc. Tutorial
	1 st	
	1"	3.2.3 Explain types of cooling methods
	nd	3.3 State the procedures for Care and maintenance
10 th	2 nd	3.4 EMF equation of transformer.
	3 rd	3.5 Ideal transformer voltage transformation ratio
	4 th	3.6 Operation of Transformer at no load, on load with phasor diagrams.(contd)
	5 th	Tutorial
	1 st	3.6 Operation of Transformer at no load, on load with phasor diagrams.
-	2 nd	3.7 Equivalent Resistance, Leakage Reactance and Impedance of transformer.
11 th	3 rd	3.8 To draw phasor diagram of transformer on load, with winding Resistance and Magnetic leakage
	3	with using UPF, leading pf and lagging pf load.(contd)
	4 th	3.8 To draw phasor diagram of transformer on load, with winding Resistance and Magnetic leakage
	4	with using UPF, leading pf and lagging pf load.
	5 th	Tutorial
	1 st	3.9 To explain Equivalent circuit and solve numerical problems
	2 nd	
	2	3.10 Approximate & exact voltage drop calculation of a Transformer3.11 Regulation of transformer.
12 th	3 rd	3.12 Different types of losses in a Transformer. Explain Open circuit and Short Circuit test. (Solve
	a th	numerical problems)(contd)
	4 th	3.12 Different types of losses in a Transformer. Explain Open circuit and Short Circuit test.(Solve
	+h	numerical problems)
ļ_	5 th	Tutorial
_		
13 th	1 st	3.13 Explain Efficiency, efficiency at different loads and power factors, condition for maximum efficiency (solve problems) (contd)
13 th		

	3 rd	3.14 Explain All Day Efficiency (solve problems)
-	4 th	3.15 Determination of load corresponding to Maximum efficiency.
-	5 th	Tutorial
	1 st	3.16 Parallel operation of single phase transformer.
-	2 nd	4. AUTO TRANSFORMER
		4.1. Constructional features of Auto transformer.
14 th		4.2. Working principle of single phase Auto Transformer
	3 rd	4.3. Comparison of Auto transformer with an two winding transformer (saving of Copper).
		4.4. Uses of Auto transformer
	4 th	4.5. Explain Tap changer with transformer (on load and off load condition)
-	5 th	Tutorial
	1 st	5.INSTRUMENT TRANSFORMERS
		5.1 Explain Current Transformer and Potential Transformer
	2 nd	5.1 Explain Current Transformer and Potential Transformer(contd)
15 th (Extra class)	3 rd	5.2 Define Ratio error, Phase angle error, Burden.
	4 th	5.3 Uses of C.T. and P.T
-	5 th	Tutorial

Signature of Teaching Faculty