LESSON PLAN (SUMMER-2023)			
Discipline:ETC	Semester:6th	Name of the Teaching Faculty: SATYABRATA SAHOO	
Subject:Contr ol System	No of Days /per week class allotted:4	Semester From date: 14.02.2023 To date: 23.05.2023 No of Weeks:14	
Week	Class Day	Theory / Practical Topics	
1st	1 ct	1.Fundamental of Control System(5)	
	1st	1.1 Classification of Control system	
	2nd	1.2 Open loop system & Closed loop system and its comparison	
	3rd	1.3 Effects of Feed back	
	4th	1.4 Standard test Signals(Step, Ramp, Parabolic, Impulse Functions)	
	1st	1.5 Servomechanism 1.6 Regulators (Regulating systems)	
	2nd	2.Transfer Functions(8)	
2nd		2.1 Transfer Function of a system & Impulse response	
2110	3rd	2.2 Properties, Advantages & Disadvantages of Transfer Function	
	4th	2.3 Poles & Zeroes of transfer Function,	
		2.4 Representation of poles & Zero on the s-plane	
	1st	2.5 Simple problems of transfer function of network	
3rd	2nd	2.5 Continue	
	3rd	2.5 Continue	
	4th	2.5 Continue	
	1st	2.5 Continue	
		3.Control system Components & mathematical modelling of	
4th	2nd	physical System(5)	
		3.1 Components of Control System	
	3rd	3.2 Potentiometer, Synchros	
	4th	3.2 continue, 3.3 DC motors, AC Servomotors	
	1st	AC Servomotors 3.4 Modelling of Electrical Systems(R, L, C, Analogous	
		systems)	
5th	2nd	3.4 continue	
	3rd	4.Block Diagram & Signal Flow Graphs(SFG)(8)	
		4.1 Definition of Basic Elements of a Block Diagram	
	4th	4.2 Canonical Form of Closed loop System	
6th	1st	4.3 Rules for Block diagram Reduction,	
	2nd	continue	
	3rd	4.6 Basic Definition in SFG & properties	
	4th	4.7 Mason's Gain formula, 4.8 Steps for solving Signal flow Graph	
7th	1st	4.9 Simple problems in Signal flow graph for network	
	2nd	continue	
	3rd	5.Time Domain Analysis of Control Systems(8)	
		5.1 Definition of Time, Stability, steady-state response, accuracy,	
		transient accuracy, In-sensitivity and robustness.	
	4th	5.2 System Time Response	
8th	1st	5.3 Analysis of Steady State Error	
	2nd	5.4 Types of Input & Steady state Error(Step ,Ramp, Parabolic)	
	3rd	5.5 Parameters of first order system & second-order systems	
	4th	continue	

9th	1st	5.6 Derivation of time response Specification (Delay time, Rise time,
		Peak time,Setting time,Peak over shoot)
	2nd	continue
	3rd	6.FeedbackCharacteristics of Control Systems(6)
		6.1 Effect of parameter variation in Open loop System & Closed loop
		Systems
	4th	6.2 Introduction to Basic control Action& Basic modes of feedback
		control: proportional, integral and derivative
10th	1st	continue
	2nd	6.3 Effect of feedback on overall gain, Stability
	3rd	6.4 Realisation of Controllers(P, PI, PD, PID) with OPAMP
	4th	continue
	1st	7.Stability concept& Root locus Method(8)
		7.1 Effect of location of poles on stability
11th	2nd	7.2 RouthHurwitz stability criterion.
	3rd	7.3 Steps for Root locus method
	4th	7.4 Root locus method of design(Simple problem)
	1st	continue
4211	2nd	continue
12th	3rd	continue
	4th	continue
	1st	8.Frequency-response analysis&Bode Plot(7)
		8.1 Frequencyresponse, Relationship between time & frequency
13th		response
	2nd	8.2 Methods of Frequency response, 8.3 Polar plots & steps for polar
		plot
	3rd	8.4 Bodes plot & steps for Bode plots
	4th	continue
14th	1st	8.5 Stability in frequency domain, Gain Margin& Phase margin
	2nd	8.6 Nyquist plots. Nyquiststability criterion.
	3rd	8.7 Simple problems as above
	4th	9.State variable Analysis(5)
		9.1 Concepts of state, state variable, state model,
15th (EXTRA)	1st	continue
	2nd	9.2 state modelsfor linear continuous time functions(Simple)
	3rd	continue
	4th	continue

Signature of the Faculty