ACADEMIC LESSON PLAN OF SUMMER 2023

D: ::		MIC LESSON PLAN OF SUMMER 2023
Discipline	Semester: -	Name of the Teaching Faculty: Ananya Shubhadarsinee
	401	Lipipushpa Behera
Electronics		
&Tele		
communication		
Engg.		
	No. of	Semester From: 14 th Feb 2023 to 23 rd May 2023
	days/per week	No. of weeks:15 weeks
Subject:	class allotted:	
ELECTRICAL	4p/week	
MACHINE	CI D	mi m :
Week 1 st	Class Day	Theory Topics
I	I	ELECTRICAL MATERIAL
		1.1 Properties & uses of different conducting material. (cont)
	2 nd	1.2 Properties & use of various insulating materials used electrical
		engineering.
	3 rd	1.3 Various magnetic materials & their uses.
	4 th	DC GENERATOR
		2.1 Construction, Principle & application of DC Generator. (cont)
2 nd	1 st	2.1 Construction, Principle & application of DC Generator
	2 nd	2.2 Classify DC generator including voltage equation.
	3 rd	2.3 Derive EMF equation & simple problems. (cont)
	4 th	2.3 Derive EMF equation & simple problems.
3 rd	1 st	2.4 Parallel operation of DC generators. (cont)
	2 nd	2.4 Parallel operation of DC generators.
	3 rd	DC MOTOR
		3.1 Principle of working of a DC motor. (cont)
	4 th	3.1 Principle of working of a DC motor.
4 th	1 st	3.2 Concept of development of torque & back EMF in DC motor
		including simple problems. (cont)
	2 nd	3.2 Concept of development of torque & back EMF in DC motor
		including simple problems.
	3 rd	3.3 Derive equation relating to back EMF, Current, Speed and Torque
		equation
	4 th	3.4 Classify DC motors & explain characteristics, application.
5 th	1 st	
3	1	3.5 Three point & four point stator/static of DC motor by solid State
	2 nd	converter. (cont)
	2"	3.5 Three point & four point stator/static of DC motor by solid State
	and	converter.
	3 rd	3.6 Speed of DC motor by field control and armature control method.
		(cont)
	4 th	3.6 Speed of DC motor by field control and armature control method.
6 th	1 st	3.7 Power stages of DC motor & derive Efficiency of a DC motor. (cont)

	$2^{\rm nd}$	3.7 Power stages of DC motor & derive Efficiency of a DC motor.
	3 rd	AC CIRCUITS
		4.1 Mathematical representation of phasors, significant of operator "J"
		(cont)
	4 th	4.1 Mathematical representation of phasors, significant of operator "J"
7 th	1 st	4.2 Addition, Subtraction, Multiplication and Division of phasor
		quantities. (cont)
	$2^{\rm nd}$	4.2 Addition, Subtraction, Multiplication and Division of phasor
		quantities.
	$3^{\rm rd}$	4.3 AC series circuits containing resistance, capacitances, Conception of
		active, Reactive and apparent power and Q-factor of series circuits &
		solve related problems. (cont)
	4 th	4.3 AC series circuits containing resistance, capacitances, Conception of
		active, Reactive and apparent power and Q-factor of series circuits &
		solve related problems.
$8^{ ext{th}}$	1 st	4.4 Find the relation of AC Parallel circuits containing Resistances,
	- nd	Inductance and Capacitances Q-factor of parallel circuits. (cont)
	$2^{\rm nd}$	4.4 Find the relation of AC Parallel circuits containing Resistances,
	3 rd	Inductance and Capacitances Q-factor of parallel circuits.
	3	TRANSFORMER 5.1 Ideal transformer. (cont)
	4 th	5.1 Ideal transformer.
9 th	1 st	
9	$\frac{1}{2^{\text{nd}}}$	5.2 Construction & working principle of transformer
		5.3 Derive of EMF equation of transformer, voltage transformation ratio.
	3 rd	5.4 Discuss Flux, Current, EMF components of transformer and their
	4 th	phasor diagram under no load Condition.
	4	5.5 Phasor representation of transformer flux, current EMF primary and
1 Oth	1 st	secondary Voltages under loadedcondition.
$10^{\rm th}$	_	5.6 Types of losses in Single Phase (1-ø) Transformer. (cont)
	2 nd	5.6 Types of losses in Single Phase (1-ø) Transformer.
	3 rd	5.7 Open circuit & short-circuit test (simple problems) (cont)
	4 th	5.7 Open circuit & short-circuit test (simple problems)
11 th	1 st	5.8 Parallel operation of Transformer. (cont)
	2 nd	5.8 Parallel operation of Transformer.
	3 rd	5.9 Auto Transformer (cont)
	4 th	5.9 Auto Transformer
12 th	1 st	INDUCTION MOTOR
		6.1 Construction feature, types of three-phase induction motor. (cont)
	2 nd	6.1 Construction feature, types of three-phase induction motor.
	3 rd	6.2 Principle of development of rotating magnetic field in the stator.
	4 th	6.3 Establish relationship between synchronous speed, actual speed and
		slip of induction motor. (cont)
13 th	1 st	6.3 Establish relationship between synchronous speed, actual speed and

		slip of induction motor.
	2 nd	6.4 Establish relation between torque, rotor current and power factor.
		(cont)
	3 rd	6.4 Establish relation between torque, rotor current and power factor.
	4 th	6.5 Explain starting of an induction motor by using DOL and Star-Delta
		stator. State industrial use of induction motor. (cont)
14th	1 st	6.5 Explain starting of an induction motor by using DOL and Star-Delta
		stator. State industrial use of induction motor.
	2 nd	SINGLE PHASE INDUCTION MOTOR
		7.1 Construction features and principle of operation of capacitor type and
		shaded pole type of single-phase induction motor. (cont)
	3 rd	7.1 Construction features and principle of operation of capacitor type and
		shaded pole type of single-phase induction motor. (cont)
	4 th	7.1 Construction features and principle of operation of capacitor type and
		shaded pole type of single-phase induction motor.
15 th	1 st	7.2 Explain construction & operation of AC series motor. (cont)
(Extra Classes)	2 nd	7.2 Explain construction & operation of AC series motor.
	3 rd	7.3 Concept of alternator & its application. (cont)
	4 th	7.3 Concept of alternator & its application.

Signature of Teaching Faculty