| LESSON PLAN FOR SUMMER 2022 | | | | | | |-----------------------------|-----------|---------------|--|--|--| | DISCIPLINE:- | DATE | SEMESTER:-4TH | NAME OF THE TEACHING FACULTY:-SIMADRI KUMAR | | | | CIVIL ENGG. | 7.112 | SEM SEC B | BAL(PTGF) | | | | SUBJECT:- | | | SEMESTER - 4TH Sem SEC A FROM DATE-10/03/2022 | | | | STRUCTURAL | | WEEK CLASS | TO DATE- 10/06/2022 NO. OF WEEKS-14WEEKS | | | | | | ALLOTED:- 5T | 10 DATE- 10/00/2022 NO. OF WEEK3-14WEEK3 | | | | DESIGN-I ,TH.1 | | | | | | | WEEK | | CLASS DAY | THEORY TOPICS | | | | | | | 1. WORKING STRESS METHOD (WSM)(5P) | | | | | 3/10/2022 | 3rd | 1.1 Objectives of design and detailing. State the different methods of design of concrete structures | | | | | 3/11/2022 | 4th | 1.2 Introduction to reinforced concrete, R.C. sections their | | | | 1st WEEK | | | behavior, grades of concrete and steel. Permissible stresses, | | | | | | | assumption in W.S.M. | | | | | 3/12/2022 | 5th | 1.3 Flexural design and analysis of single reinforced sections from | | | | | | | first principles | | | | | 3/14/2022 | 1st | 1.4 Concept of under reinforced, over reinforced and balanced | | | | | | 131 | sections | | | | | 3/15/2022 | 2nd | 1.5 Advantages and disadvantages of WSM, reasons for its | | | | 2nd WEEK | 3/13/2022 | Ziiu | obsolescence | | | | | | | 2. Philosophy Of Limit State Method (LSM) (3P) | | | | | 3/17/2022 | 3rd | 2.1 Definition, Advantages of LSM over WSM, IS code suggestions | | | | | 3/17/2022 | | regarding design philosophy. | | | | | 3/21/2022 | 1st | 2.2 Types of limit states, partial safety factors for materials | | | | | | | strength, characteristic strength, characteristic load, design load, | | | | | | | loading on structure as per I.S. 875 | | | | | 3/22/2022 | 2nd | | | | | | | | 2.3 Study of I.S specification regarding spacing of reinforcement in | | | | | | | slab, cover to reinforcement in slab, beam column & footing, | | | | | | | minimum reinforcement in slab, beam & column, lapping, | | | | | | | anchorage, effective span for beam & slab. | | | | 3rd WEEK | | | 3. Analysis and Design of Single and Double Reinforced Sections | | | | | | | (LSM) (15P) | | | | | 3/24/2022 | 2 3rd | 3.1 Limit state of collapse (flexure), Assumptions, Stress-Strain | | | | | | | relationship for concrete and steel | | | | | 3/25/2022 | 4th | 3.1 Neutral axis, stress block diagram and strain diagram for singly | | | | | | | reinforced section. 3.2 Concept of under- reinforced, over-reinforced and limiting | | | | | 3/26/2022 | 5th | section, neutral axis co-efficient, limiting value of moment of | | | | | | | resistance and limiting percentage of steel required for limiting | | | | | | | singly R.C. section | | | | 4th WEEK | 3/28/2022 | 1st | Jangry N.C. Section | | | | | | | 3.3 Analysis and design: determination of design constants, | | | | | | | moment of resistance and area of steel for rectangular sections | | | | | 3/29/2022 | 2nd | Problem practice | | | | | | | | | | | | 3/31/2022 | 3rd
5+b | Problem practice | | | | | 4/2/2022 | 5th | Problem practice | | | | | 4/4/2022 | 1st | Problem practice | | | | | 4/5/2022 | 2nd | Problem practice | | | | | | | 3.4 Necessity of doubly reinforced section, design of doubly | |--------------|-------------|-----|--| | 5th WEEK | 4/7/2022 | 3rd | reinforced rectangular section | | | 4/8/2022 | 4th | Problem practice | | | 4/9/2022 | 5th | Problem practice | | | 4/11/2022 | 1st | Problem practice | | 6th WEEK | 4/12/2022 | 2nd | Problem practice | | 00.1.01.2.1. | 4/16/2022 | 5th | Problem practice | | | 1, 20, 2022 | | 4. Shear, Bond and Development Length (LSM) (4P) | | 7th WEEK | 4/18/2022 | 1st | 4.1 Nominal shear stress in R.C. section, design shear strength of concrete, maximum shear stress, design of shear reinforcement, minimum shear reinforcement, forms of shear reinforcement. | | | 4/19/2022 | 2nd | 4.2 Bond and types of bond, bond stress, check for bond stress,
development length in tension and compression, anchorage value
for hooks 900 bend and 450 bend standards lapping of bars, check
for development length. | | | 4/21/2022 | 3rd | 4.3 Numerical problems on deciding whether shear reinforcement is required or not, check for adequacy of the section in shear. Design of shear reinforcement; Minimum shear reinforcement in beams (Explain through examples only). | | | 4/22/2022 | 4th | Problem practice | | | | | 5. Analysis and Design of T-Beam (LSM) (15P) | | | 4/23/2022 | 5th | 5.1 General features, advantages | | | 4/25/2022 | 1st | Effective width of flange as per IS: 456-2000 code provisions. | | | 4/26/2022 | 2nd | 5.2 Analysis of singly reinforced T-Beam, strain diagram & stress diagram . | | 8th WEEK | 4/28/2022 | 3rd | Depth of neutral axis, moment of resistance of T-beam section with neutral axis lying within the flange. | | Stn WEEK | 4/29/2022 | 4th | 5.3 Simple numerical problems on deciding effective flange width. (Problems only on finding moment of resistance of T-beam section when N.A. lies within or up to the bottom of flange shall be asked in written examination) | | | 4/30/2022 | 5th | Problem practice | | | 5/2/2022 | 1st | Problem practice | | 9th WEEK | 5/5/2022 | 3rd | Problem practice | | JUI WEEK | 5/6/2022 | 4th | Problem practice | | | 5/7/2022 | 5th | Problem practice | | | 5/9/2022 | 1st | Problem practice | | | 5/10/2022 | 2nd | Problem practice | | | 5/12/2022 | 3rd | Problem practice | | 10th WEEK | 5/13/2022 | 4th | Problem practice | | | | | 6. Analysis and Design of Slab and Stair case (LSM) (15P) | | | 5/14/2022 | 5th | 6.1 Design of simply supported one-way slabs for flexure check for deflection control and shear. | | | 5/17/2022 | 2nd | Problem practice | | | 5/19/2022 | 3rd | Problem practice | | I | | | Top i t iii ii ii ii ii ii | |---------------------------|-------------|-----|---| | 11th WEEK | _ | 4th | 6.2 Design of one-way cantilever slabs and cantilevers chajjas for | | | 5/20/2022 | | flexure check for deflection control and check for development | | | - /2 / /222 | | length and shear. | | | 5/21/2022 | 5th | Problem practice | | 12th WEEK | 5/23/2022 | 1st | Problem practice | | | 5/24/2022 | 2nd | 6.3 Design of two-way simply supported slabs for flexure with | | | | | corner free to lift. | | | 5/26/2022 | 3rd | Problem practice | | | 5/27/2022 | 4th | Problem practice | | | 5/28/2022 | 5th | 6.4 Design of dog-legged staircase | | | 5/31/2022 | 2nd | Problem practice | | | 6/2/2022 | 3rd | Problem practice | | 13th WEEK | 6/3/2022 | 4th | 6.5 Detailing of reinforcement in stairs spanning longitudinally. | | | 6/4/2022 | 5th | Problem practice | | | 6/6/2022 | 1st | Problem practice | | | | | 7.Design of Axially loaded columns and Footings (LSM) (18P) | | | 6/7/2022 | 2nd | 7.1 Assumptions in limit state of collapse- compression. | | | 6/9/2022 | 3rd | 7.2 Definition and classification of columns, effective length of | | 14th week | | | column. | | | 6/10/2022 | | | | | | 4th | Specification for minimum reinforcement; cover, maximum | | | | | reinforcement, number of bars in rectangular, square and circular | | | | | sections, diameter and spacing of lateral ties. | | | | | 7.3 Analysis and design of axially loaded short square columns with | | | | | lateral ties only | | | | | Problem practice | | EXTRA CLASSES
REQUIRED | | | Problem practice | | | | | 7.3 Analysis and design of axially loaded short rectangular columns | | | | | with lateral ties only | | | | | Problem practice | | | | | Problem practice | | | | | 7.4 Types of footing | | | | | Design of isolated square column footing of uniform thickness for | | | | | flexure and shear. | | | | | Problem practice | | | | | Problem practice | | | | | Froblem practice | | | | | Problem practice |