ACADEMIC CURRICULUM PLAN

LESSON PLAN 2021 (WINTER) classes from 1/10/2021

Discipline: Information Technology	Semester :3 rd	Name of the Teaching faculty: Swetalina Das	Remark
Subject: Data structure	No.of Days/per week class allotted : 04	Semester from date: 1/10/2021 to 8/1/2022 No. of weeks: 15	
Week	Class Day	Theory / Practical Topics	
1st	1 st	Concepts on Data, information. Data types Primitive and non-primitive data types. Definition of data structure, Difference between data structure and storage structure	
2 nd	1 st	Difference between Abstract Data Type (ADT) and simple data type, operation on ADT, Algorithms and their complexities, Difference between Abstract Data Type (ADT) and simple data type, operation on ADT, Algorithms and their complexities	
	2 nd	String, Definition, Basic terminology, character set, empty string, initial, terminal string ,Storage structure of string, Fixed length structure, Variable length structure, Linked structure with examples,	
	3 rd 4 th	Character data type, Variables and Constants with Examples, String Operations concatenation, length,	
3 RD		index, substring, Examples of each operation. Puja Vacation	
4 th	1 st	Addressing the k th location in one dimension array, Multidimensional array, representation of two-dimensional arrays in memory and their addressing in row major and column major, Pointers and Pointer Arrays, Concepts of Sparse matrices and its representation.	
	2 nd	Definition of STACK, Stack LIFO/FILO scheduling, Basic concepts of Queue, Examples to illustrate their working principle, Array representation of stack, PUSH and POP operations write Algorithms for inserting and deleting element in a stack.	
	J' [~]		

	5 th	1 st	Definition of Queue and its representation,	
			insert and delete operation circular queue	
			with Examples,	
		2 nd	Priority queue, One way List Representation	
			and Array representation of priority queue.	
		3 rd	Introduction to linked list. Basic Concepts.	
		-	Advantages of Linked list in comparison to	
			other data structure	
		⊿ th	Representation of linked list in memory	
		•	Explain with diagram	
	6 th	1 st	Definition of traversing operation Algorithm	
	0	1	for Traversing a linked list	
		2 nd	Concept on coarching Algorithm for	
		2	Concept on searching, Algorithm for	
			system of the algorithm	
		2 rd		
		3	concept of Memory Anocation and Garbage	
			collection, basics of availability list, insertion	
			list Cuitable discusses	
		A th	list, Suitable diagram	
		4"	Concept of Overflow and underflow	
			concepts in Availability list, Algorithm for	
			inserting an element at the beginning of the	
	⊐th	4 st	list and at the End, Suitable diagram	<u> </u>
	/"	15	Algorithm for deletion of an element from a	
			linked list. Suitable diagram to show the	
		Ond	deletion operation.	
		2110	Header linked list, Grounded header and	
			Circular header linked list, Suitable diagram	
			to show it. Operations on header linked list	
			Traversing, Search (Basic concepts)	
		3 ^{ra}	Nonlinear data structure, graph, tree, files,	
			TREE Basic terminology, Root node, leaf	
			node,	
		4 th	Definition of Binary tree, Basic features of	
			binary tree, degree, level, height,	
			predecessor, successor, representation of	
			algebraic expression by binary tree.	
	8 th	1 st	Representation of binary tree in memory.	
			Linked representation and Sequential	
			representation (diagram)	
		2 nd	Tree traversal, Types of traversals In order,	
			Pre order, & post order traversal, Examples	
			of tree traversal,	
		3 rd	Recursive algorithms for Preorder, Inorder	
			and Postorder traversal	
		4 th	Binary Search tree, Difference between	
			binary tree and binary search tree,	
	9 th	1 st	creation of a binary search tree , searching an	
			element in a binary search tree	
		2 nd	Insertion and deletion in binary search tree.,	
			Give examples for both operations	
		3 rd	Definition of Graph, Graph Terminology,	
			Vertices and Edges, representation of graph	
			and Multi graph	
		4 th	Multiple edges, Degree. Path. Loop. Cvcle	
			Connected graph	
	10 th	1 st	Directed Graph, different terminology of	
	-			

		graph, out degree, in degree of a node,	
		path, simple path and cycle, strongly	
		connected graph, suitable example	
	2 nd	Definition of adjacency matrix, draw a graph	
		to create a adjacency matrix,	
			I
1 1 th	1 st	Definition of Conting and Contains Flow	
	1	beinition of Sorting and Searching Flow	
		evamples of corting	
	Ond	Algorithm for Bubble cort, example to	
	2	demonstrate the technique	
	2rd	Algorithm for Quick cost, every la to	
	3	Algorithm for Quick sort, example to	
	⊿ th	Concents on Marsing, evenuels for two week	
	4	concepts on Merging, example for two-way	
1 Oth	4 st	merging, Algorithm for merge sort.	
12"	1	Suitable examples of all sorting techniques,	
	and	Complexities of different sorting techniques	
	2.12	of equation of Searching. Suitable techniques	
		of searching, Examples to demonstrate	
	Ord	Searching	
	3.3	Algorithm for Linear search, example to	
		demonstrate the technique with its	
	⊿ th	Algorithm for Dinomy coords, evenue to	
	4	Algorithm for Binary search, example to	
		complexities.	
13TH	1 st	Definition of File , Records, fields, Files	
		Types, master, transaction, report, input,	
		output	
	2 nd	File organisation - Sequential, indexed	
		sequential,	
	3 rd	Random /Relative file organisation, storing	
		techniques	
	4 th	Accessing techniques, Sequential and Direct	
		Access, Advantages and disadvantages of	
		access technique	
14 th	1 st	Definition of Hashing, Hash Table, Hashing	
		functions ,	
	2 nd	Division method, Mid square method,	
		Folding, Digital analysis, length dependent	
	3 rd	Definition of Collision, Why collision occurs,	
		Collision Resolution Techniques,	
	4 th	Open Addressing, Linear Probing and	
		Chaining	
15TH	IST	REVISION/TEST	
	2 ND	REVISION/TEST	
	3 RD	REVISION/TEST	
	4 TH	REVISION/TEST	