ACADEMIC LESSON PLAN OF SUMMER 2021

		ACADEMIC LESSON PLAN OF SUMMER 2021
Discipline	Semester: 3 rd	Name of the Teaching Faculty: -
Electrical	Sec-B	Rojalin Choudhury & Amita Basti
Subject: -	No of Days/per	Semester From: -1 st Oct 2021 To 8 th Jan 2022
Circuit	Week Class	No of Weeks: -15 weeks
Theory Lab	Allotted: 2p/week	
Week	Class Day	Practical Topics
1 st	1 st	Tractical ropies
I.	1	Measurement of equivalent resistance in series and parallel circuit
	2 nd	1. Measurement of equivalent resistance in series and parallel circuit
2 nd	1 st	
		2. Measurement of power and power factor using series R-L-C Load.
	2 nd	2. Measurement of power and power factor using series R-L-C Load.
3 rd	1 st	3. Verification of KCL and KVL
	2 nd	3. Verification of KCL and KVL
4 th	1 st	4. Verification of Super position theorem
	2 nd	4. Verification of Super position theorem
5 th	1 st	5. Verification of Thevenin's Theorem
	2 nd	5. Verification of Thevenin's Theorem
6 th	1 st	6. Verification of Norton's Theorem
	2 nd	6. Verification of Norton's Theorem
7 th	1 st	7. Verification of Maximum power transfer Theorem
	2 nd	7. Verification of Maximum power transfer Theorem
8 th	1 st	8. Determine resonant frequency of series R-L-C circuit.
	2 nd	8. Determine resonant frequency of series R-L-C circuit.
9 th	1 st	9. Study of Low pass filter & determination of cut-off frequency
	2 nd	9. Study of Low pass filter & determination of cut-off frequency
10 th	1 st	10. Study of High pass filter & determination of cut-off frequency
<u> </u>	I	1 - 0

	2 nd	10. Study of High pass filter & determination of cut-off frequency
11 th	1 st	11. Analyze the charging and discharging of an R-C & R-L circuit with oscilloscope and Compute the time constant from the tabulated data and determine the rise time graphically.
	2 nd	11. Analyze the charging and discharging of an R-C & R-L circuit with oscilloscope and Compute the time constant from the tabulated data and determine the rise time graphically.
12 th	1 st	
	2 nd	12. Construct the following circuits using P-Spice/MATLAB software and compare the measurements and waveforms. i. Superposition theorem
13 th	1 st	12. Construct the following circuits using P-Spice/MATLAB software and compare the measurements and waveforms. ii. Series Resonant Circuit
	2 nd	12. Construct the following circuits using P-Spice/MATLAB software and compare the measurements and waveforms. ii. Series Resonant Circuit
14th	1 st	12. Construct the following circuits using P-Spice/MATLAB software and compare the measurements and waveforms iii. Transient Response in R-L-C series circuit
	2 nd	12. Construct the following circuits using P-Spice/MATLAB software and compare the measurements and waveforms iii. Transient Response in R-L-C series circuit
15 th	1 st	12. Construct the following circuits using P-Spice/MATLAB software and compare the measurements and waveforms iii. Transient Response in R-L-C series circuit
	2 nd	12. Construct the following circuits using P-Spice/MATLAB software and compare the measurements and waveforms iii. Transient Response in R-L-C series circuit

