ACADEMIC LESSON PLAN OF WINTER 2021

Discipline:	Semester:	Name of the Teaching Faculty: Sigma Ray
ELECTRONICS	3 rd sem	
Subject: Circuit	No. of days/per	Semester From: 1 st Oct 2021 to 8 th Jan 2022
Theory	week class	No. of weeks:14 weeks
	allotted:4p/week	
Week	Class Day	Theory Topics
	1 st	1.1 Circuit elements (Resistance, Inductance, Capacitance), Scope of network analysis &
		synthesize.
1 st	2 nd	1.2 Voltage Division & Current Division, Energy Sources (Conti)
	3 rd	1.2 Voltage Division & Current Division, Energy Sources
	4 th	1.3 Electric charge, electric current, Electrical energy, Electrical potential, R-L-C parameters,
		Active& Passive Elements.
2 nd	1 st	1.4 Energy Sources, Current and voltage sources and their transformation & mutual
		inductance
	2 nd	1.5 Star – Delta transformation
	3 rd	2.1 Nodal & Mesh Analysis of Electrical Circuits (Conti)
	4 th	2.1 Nodal & Mesh Analysis of Electrical Circuits with simple problem.
	1 st	2.2.1 Thevenin's Theorem Statement, Explanation (Conti)
3 rd	2 nd	2.2.1 Thevenin's Theorem problem solved
	3 rd	2.2.2 Norton's Theorem Statement, Explanation (Conti)
	4 th	2.2.2 Norton's Theorem problems solved
	1 st	2.2.3 Maximum Power transfer Theorem Statement, Explanation and simple problems
4 th	2 nd	2.2.4 Superposition Theorem Statement, Explanation (Conti)
5 th	3 rd	2.2.4 Superposition Theorem with simple problems
	4 th	2.2.5 Millman Theorem Statement, Explanation with problems
	1 st	2.2.6 Reciprocity Theorem -Statement, Explanation & simple problems
	2 nd	2.3 Solve numerical problems of above.
	3 rd	3.1 Definition of frequency, Cycle, Time period, Amplitude, Average value, RMS value,
		Instantaneous power & Form factor, Apparent power, Reactive power, power Triangle of
		AC Wave.(Conti)
	4 th	3.1 Definition of frequency, Cycle, Time period, Amplitude, Average value, RMS value,
		Instantaneous power & Form factor, Apparent power, Reactive power, power Triangle of
		AC Wave. (Conti)
	1 st	3.1 Definition of frequency, Cycle, Time period, Amplitude, Average value, RMS value,
		Instantaneous power & Form factor, Apparent power, Reactive power, power Triangle of
6 th		AC Wave.
	2 nd	3.2 Phasor representation of alternating quantities
	3 rd	3.3 Single phase Ac circuits-Behaviors of A.C. through pure Resistor, Inductor & Capacitor.
		(Conti)
	4 th	3.3 Single phase Ac circuits-Behaviors of A.C. through pure Resistor, Inductor & Capacitor.
	1 st	3.4 DC Transients-Behaviors of R-L, R-C, R-L-C series circuit & draw the phasor diagram and
	- 24	voltage triangle. (Conti)
7 th	2 nd	3.4 DC Transients-Behaviors of R-L, R-C, R-L-C series circuit & draw the phasor diagram and
		voltage triangle
	3 ^{ru}	3.5 Define Time Constant of the above Circuit
	4 th	3.6 Solve numerical simple problems of above Circuit. (Conti)
8 th	1 st	3.6 Solve numerical simple problems of above Circuit.
	2 nd	4.1 Introduction to resonance circuits & Resonance tuned circuit (Conti)

	3 rd	4.1 Introduction to resonance circuits & Resonance tuned circuit.
	4 th	4.2 Series& Parallel resonance
9 th	1 st	4.3 Expression for series resonance, Condition for Resonance, Frequency of Resonance,
		Impedance, Current, Voltage, power, Q Factor and Power Factor of Resonance, Bandwidth
		in term of Q. (Conti)
	2 nd	4.3 Expression for series resonance, Condition for Resonance, Frequency of Resonance,
		Impedance, Current, Voltage, power, Q Factor and Power Factor of Resonance, Bandwidth
		in term of Q. (Conti)
	3 rd	4.3 Expression for series resonance, Condition for Resonance, Frequency of Resonance,
		Impedance, Current, Voltage, power, Q Factor and Power Factor of Resonance, Bandwidth
		in term of Q.
	4 th	4.4 Parallel Resonance (RL, RC&RLC)& derive the expression (Conti)
	1 st	4.4 Parallel Resonance (RL, RC&RLC)& derive the expressions
	2 nd	4.5 Comparisons of Series & Parallel resonance& applications (Conti)
10 th	3 rd	4.5 Comparisons of Series & Parallel resonance& applications
		4.6 simple problems of above Circuit
	4 th	5.1 Laplace Transformation, Analysis and derive the equations for circuit parameters of
	· · · ·	Step response of R-L, R-C &R-L-C (Conti)
	1 st	5.1 Laplace Transformation, Analysis and derive the equations for circuit parameters of
		Step response of R-L, R-C &R-L-C
11 th	2 nd	5.2 Analysis and derive the equations for circuit parameters of Impulse response of R-L, RC,
	- rd	R-L-C (Conti)
	3''	5.2 Analysis and derive the equations for circuit parameters of Impulse response of R-L, RC,
	ath	R-L-C
	4 th	Problems solve for Laplace transformation (Conti)
12 th	1 st	Problems solve for Laplace transformation
	2 nd	6.1 Network elements, ports in Network (One port, two port)
	3 rd	6.2 Network Configurations (T & pie).
	4"	6.3 Open circuit (Z-Parameter)& Short Circuit(Y-Parameter) Parameters- Calculate open &
	a st	short Circuit Parameters for Simple Circuits & its conversion (Conti)
13 th	1 st	6.4 h- parameter (hybrid parameter) Representation
	2 nd	6.5 Define T-Network & pie – Network
	314	Problems solve for above two port network configuration
	4 th	7.1 Ideal & Practical filters and its applications, cut off frequency, passband and stop band.
	131	7.2 Classify filters- low pass, high pass, band pass, band stop filters & study their
14 th	and	Characteristics. (Conti)
_ ·	2""	7.3 Butterworth Filter Design
	3''	/.4 Attenuation and Gain, Bel , Decibel & neper and their relations.
	4 th	7.5 Attenuators& its applications. Classification-T- Type & PI – Type attenuators

Signature of Teaching Faculty