LESSON PLAN OF STRUCTURAL MECHANICS 3RD SEM SEC B				
DISCIPLINE : CIVIL	Semester : 3 rd sem	Name of the Teaching faculty: Simadri kumar bal		
ENGINEERING				
LINGINELIKING	(sec. B) No.of			
Subject :-		Semester from date: 15/09/2022 to 22/12/2022		
Structural	Days/	No. of Weeks :15		
Mechanics	week	Topics to be covered:-		
Wiechanics	class	Topics to be covered		
Week	Class Day	Topics	Remarks	
		1. Review of Basic Concepts (4P)		
	1st	1.1 Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G &		
1st Week (15 th	130	MI, Free body diagram		
Sept- 17 th Sept)	2nd	1.2 Review of CG and MI of different sections		
	3rd	Simple numerical problems about C.G		
	1st	Simple numerical problems about M.I.		
		2. Simple and Complex Stress, Strain.(15P)		
		2. 1 Simple Stresses and Strains		
		Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity,		
	2nd	Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue,		
2nd Week (19 Sept - 24 Sept)		Tenacity, Durability -		
	3rd	- Types of stresses - Tensile, Compressive and Shear stresses - Types of strains - Tensile, Compressive and Shear strains		
	4th	Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear - Elongation and		
		Contraction - Longitudinal and Lateral strains - Poisson's Ratio		
	5th	Volumetric strain –computation of stress, strain, Poisson's ratio, change in dimensions and volume etc-		
		Hooke's law		
3rd Week (26 Sept - 1 st Oct)	1st	Derivation of relationship between the elastic constants		
	2nd	Derivation of relationship between the elastic constants		
	3rd	Simple Numerical problems		
		2.2 Application of simple stress and strain in engineering field:		
	4th	Behaviour of ductile and brittle materials under direct loads – Stress Strain curve of a ductile material -		
		Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress.		

3rd Week (26 Sept -	r.h	Percentage elongation - Percentage reduction in area - Significance of percentage elongation and	
1 st Oct)	5th	reduction in area of cross section	
4th Week		Puja vaccation	
	1st	Deformation of prismatic bars due to uniaxial load and Deformation of prismatic bars due to its self	
	130	weight .	
	2nd	Simple numerical problem	
5th Week (10 th		2.3 Complex stress and strain	
Oct - 15 Oct)	3rd	Principal stresses and strains: Occurrence of normal and tangential stresses - Concept of Principal stress	
		and Principal Planes – major and minor principal stresses and their orientations.	
	4th	Simple numerical problems	
	5th	Simple numerical problems	
		2.3 Complex stress and strain	
	1st	Principal stresses and strains: Occurrence of normal and tangential stresses - Concept of Principal stress	
	131	and Principal Planes – major and minor principal stresses and their orientations, Mohr's Circle - Simple	
		numerical problems	
		3.0 STRESSES IN BEAMS (10P)	
6th Week (17 th	2nd	3.1 Stresses in beams due to bending: Bending stress in beams – Theory of simple bending –	
Oct - 22 Oct)		Assumptions - Moment of resistance	
	3rd	Equation for Flexure– Flexural stress distribution – Curvature of beam Position of N.A. and Centroidal	
	Siu	Axis – Flexural rigidity – Significance of Section modulus	
	4th	Simple numerical problems	
	5th	3.2 Shear stresses in beams : Shear stress distribution in beams of rectangular, circular and standard	
		sections symmetrical about vertical axis.	
	1st	Simple Numerical Problems	
		3.3 Stresses in shafts due to torsion: Concept of torsion, basic assumptions of pure torsion, torsion of	
7th \\\ a a / 25 th	2nd	solid and hollow circular sections, polar moment of inertia, torsional shearing stresses, angle of twist,	
7th Week (25 th Oct - 29 Oct)		torsional rigidity, equation of torsion	
	3rd	Simple numerical problems	
	A.L.	3.4 Combined bending and direct stresses: Combination of stresses –Combined direct and bending	
	4th	stresses – Maximum and Minimum stresses in Sections	
<u> </u>	5th	Simple Problems – Conditions for no tension – Limit of eccentricity	
Sth Week (31st Oct -		Middle third/fourth rule – Core or Kern for square, rectangular and circular sections, chimneys,dams and	
5th Nov)	1st	retaining walls	

Oth Wash / 24 t Oth		4.0 COLUMNS AND STRUTS:(4P)	
	2 1	4.1 Columns and Struts – Definition – Short and Long columns – End conditions – Equivalent length /	
	2nd	Effective length	
8th Week (31st Oct -	24	Slenderness ratio – Axially loaded short and long column – Euler's theory of long columns (No derivation)	
5th Nov)	3rd	– Critical load for Columns with different end conditions – Expressions only	
	4th	Simple numerical problem	
	5th	Simple numerical problem	
		5.0 SHEAR FORCE AND BENDING MOMENT (12)	
		5.1 Types of loads and beams: Types of Loads- Concentrated (or) Point load, Uniformly Distributed load	
	2nd	(UDL), Types of Supports- Simple support, Roller support, Hinged support, Fixed support.	
9th Week (7th Nov -	3rd	Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction- Types of Beams based on	
12th Nov)	514	support conditions- –Support reactions calculation using static equilibrium equations.	
		5.2 Shear force and bending moment in beams	
	4th	Shear Force and Bending Moment – Signs Convention for S.F. and B.M – S.F and B.M of general cases of	
	701	determinate beams – S.F and B.M diagrams for Cantilevers	
	5th	S.F and B.M diagrams for Simply supported beams	
	1st	Over hanging beams – Position of maximum BM - Point of contra flexure	
10th Week (14th	2nd	Relation between intensity of load , S.F and B.M.	
Nov - 19th Nov)	3rd	Simple numerical problem	
100 - 15(11 100)	4th	Simple numerical problem	
	5th	Simple numerical problem	
	1st	Simple numerical problem	
	2nd	Simple numerical problem	
	3rd	Simple numerical problem	
11th Week (21th		6.0 SLOPE AND DEFLECTION (10p)	
Nov - 26th Nov)	4th	6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection.	
	5th	6.2 Slope and deflection of cantilever beams under concentrated and uniformly distributed load (by	
		Double Integration method, Macaulay's method).	
12th Week (28th Nov - 3rd Dec)		6.2 Slope and deflection of simply supported beams under concentrated and uniformly distributed load	
	1st	(by Double Integration method, Macaulay's method).	
	2nd	Simple numerical problem	

		Slope and deflection of propped cantilever from principle of superposition.	
	3rd	Typical simple cases only:	
		• under u.d.l (Covering Full Span),	
12th Week (28th		Slope and deflection of propped cantilever from principle of superposition.	
Nov - 3rd Dec)	4th	Typical simple cases only:	
	4111	• Point Load (At mid span or end)	
-	5th	Simple numerical problem	
	1st	Simple numerical problem	
-	2nd	Simple numerical problem	
-	3rd	Simple numerical problem	
13th Week (5th Dec	314	7.Indeterminate Beams (10P)	
- 10th Dec)	4th	7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility,	
-	7(11	Analysis of propped cantilever beams carrying point loads by principle of superposition, draw SF and BM	
	5th	diagrams	
	1st	Simple numerical problem	
-		Analysis of propped cantilever beams carrying udl covering full span by principle of superposition, draw	
	2nd	SF and BM diagrams	
14th Week (12th	3rd	Simple numerical problem	
Dec - 17th Dec)	314	Analysis of fixed beams carrying point loads by principle of superposition, draw SF and BM diagrams	
	4th	Third year year ying point loads by principle of superposition, and birt diagrams	
-	5th	Simple numerical problem	
	1st	Analysis of fixed beams carrying udl covering full span by principle of superposition, draw SF and BM	
		diagrams	
15th Week (19th	2nd	Simple numerical problem	
Dec - 22th Dec)		Analysis of two span continuous beams carying point loads and udl covering full span by principle of	
	3rd	superposition, draw SF and BM diagrams	
Extra classes		Trusses (10P)	
		8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of	
		indeterminacy, stable and unstable trusses, advantages of trusses	
		8.2 Analysis of trusses: Analytical method (Method of joints, method of Section	
		Simple numerical problem	
		lambra mamanasi bi awasiii	