LESSON PLAN OF STRUCTURAL MECHANICS 3RD SEM SEC A			
DISCIPLINE : CIVIL ENGG.	Semester : 3 rd sem (sec. A)	Name of the Teaching faculty: DEBASHIS BEHERA	
Subject :- Structural Mechanics	No.of Days/ week class allotted : 03 DAYS (05 PERIODS)	Semester from date: 15/09/2022 to 22/12/2022 No. of Weeks :15 Topics to be covered:-	
Week	Class Day	Topics	Remarks
		1 Review Of Basic Concepts(04 PERIODS)	
1st Week (15 th	1	1.1 Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram	
Sept- 17 th Sept)	1	1.2 Review of CG and MI of different sections	
	2	1.2 Review of CG and MI of different sections	
		2 Simple And Complex Stress, Strain(15 PERIODS)	
2ND WEEK 19 SEPT to 24th sept)	2	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.	
2ND WEEK 19 SEPT to 24th sept)	3	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.	

3RD WEEK 26th sept to 1st ct)	1	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.	
	2	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight	
	3	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight	
4TH WEEK		DURGA PUJA	
	1	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight	
51H WEEK 10th oct to 15th oct)	2	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses	
	3	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses	

6TH WEEK		2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses,	
17th oct to	1	Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations,	
22nd oct)		Mohr's Circle and its application to solve problems of complex stresses	
		3 Stresses In Beams and Shafts(10 PERIODS)	
		3.1 Stresses in beams due to bending: Bending stress in beams – Theory of simple bending – Assumptions	
	r	- Moment of resistance - Equation for Flexure- Flexural stress distribution - Curvature of beam - Position	
6TH WEEK 17th oct to	Z	of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus	
22nd oct)		3.1 Stresses in beams due to bending: Bending stress in beams – Theory of simple bending – Assumptions	
	2	– Moment of resistance – Equation for Flexure– Flexural stress distribution – Curvature of beam – Position	
	3	of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus	
7TH WEEK		3.2 Shear stresses in beams: Shear stress distribution in beams of rectangular, circular and standard	
24th oct to 29th	2	sections symmetrical about vertical axis	
oct			
	2	3.2 Shear stresses in beams: Shear stress distribution in beams of rectangular, circular and standard	
	5	sections symmetrical about vertical axis	
8TH WEEK		3.3 Stresses in shafts due to torsion: Concept of torsion, basic assumptions of pure torsion, torsion of	
31st oct to 5th	1	solid and hollow circular sections, polar moment of inertia, torsional shearing stresses, angle of twist,	
nov		torsional rigidity, equation of torsion	
		3.4 Combined bending and direct stresses: Combination of stresses, Combined direct and bending	
	Э	stresses, Maximum and Minimum stresses in Sections, Conditions for no tension, Limit of eccentricity,	
0711111551/	2	Middle third/fourth rule, Core or Kern for square, rectangular and circular sections, chimneys, dams and	
81H WEEK		retaining wall	
31st oct to 5th		4. Columns and Struts(04)	
		4.1 Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent length / Effective	
	3	length, Slenderness ratio, Axially loaded short and long column, Euler's theory of long columns, Critical	
		load for Columns with different end conditions	
9TH WEEK		4.1 Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent length / Effective	
7th nov to 12th	1	length, Slenderness ratio, Axially loaded short and long column, Euler's theory of long columns, Critical	
nov		load for Columns with different end conditions	

9TH WEEK 7th nov to 12th nov		5. Shear Force and Bending Moment (12)	
	3	5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support, Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium. 5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M	
10TH WEEK 14th nov to 19th nov	1	5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support, Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium. 5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M	
	2	5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support, Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium. 5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M	

10TH WEEK 14th nov to 19th nov	3	5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support, Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium. 5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M	
	1	5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	
11TH WEEK 21st nov to 26th nov	2	5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	
	3	5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	
		6. Slope and Deflection(10)	
12TH WEEK 28th nov to 3rd dec	1	6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection.	
	2	6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection.	
	3	6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection.	
13TH WEEK	1	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).	
Sth dec to 10th dec	2	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).	

13TH WEEK	2		
5th dec to 10th	3	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly	
dec		distributed load (by Double Integration method, Macaulay's method).	
		7. Indeterminate Beams(10)	
14TH WEEK		7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped	
	1	cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point	
		load and udl covering full span)	
		7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped	
17th dec	2	cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point	
17th dec		load and udl covering full span)	
		7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped	
	3	cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point	
		load and udl covering full span)	
		7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped	
	1	cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point	
		load and udl covering full span)	
15TH WEEK	2	7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped	
19th dec to		cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point	
22nd dec		load and udl covering full span)	
	3	7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped	
		cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point	
		load and udl covering full span)	
		8. Trusses(10)	
	_	8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of	
	1	indeterminacy, stable and unstable trusses, advantages of trusses	
EXTRA CLASSES	2	8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of	
		indeterminacy, stable and unstable trusses, advantages of trusses	
	3	8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of	
		indeterminacy, stable and unstable trusses, advantages of trusses	
	1	8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	
	2	8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	
	3	8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	

Asloofer SIGNATURE OF FACULTY