ACADEMIC LESSON PLAN OF WINTER 2022

Discipline:	Semester:	Name of the Teaching Faculty: Amit Kumar Bisoyi
ELECTRICAL	5 [™] Sem Sec (A)	
Subject: ENERGY CONVERSION—II	No. of days/per	Semester From: 15 th Sept. 2022 to 22 nd Dec 2022
CONVENSION-II	week	No. of Weeks: 15 weeks
	class	
	allotted:	
	4p/week	
	1 st	Unit-1:ALTERNATOR
		1.1 Types of alternator and their constructional features
	2 nd	1.2 Basic working principle of alternator and establish the relation between
1 st		speed and frequency
	3 rd	1.3 Explain terminology in armature winding, and derive expressions for
		winding factors (Pitch factor, Distribution factor).
	4 th	1.4 Explain harmonics, its causes and impact on winding factor.
	1 st	1.5 Derive E.M.F equation. (Solve numerical problems (contd.)
2 nd	2 nd	1.5 Derive E.M.F equation. (Solve numerical problems
2	3 rd	1.6 Explain Armature reaction and its effect on emf at different pf of load (contd.)
	4 th	1.6 Explain Armature reaction and its effect on emf at different pf of load.
	1 st	1.7 Draw the vector diagram of loaded alternator. (Solve numerical problems)
	2 nd	1.8 State and explain testing of alternator (open circuit and short circuit methods) (Solve numerical problems).(contd.)
3 rd	3 rd	1.8 State and explain testing of alternator (open circuit and short circuit
		methods) (Solve numerical problems).
	4 th	1.9 Determination of voltage regulation of Alternator by direct loading and
		synchronous impedance method
4 th	1 st	1.10 Explain parallel operation of alternator using synchro-scope, dark and bright lamp method
	2 nd	1.11 Explain distribution of load by parallel connected alternators
	3 rd	Unit-2:SYNCHRONOUS MOTOR
		2.1 Explain constructional feature of Synchronous Motor.
		2.2 Explain principles of operation, concept of load angle.
	4 th	2.3 Explain effect of varying load with constant excitation(cont)
5 th	1 st	2.3 Explain effect of varying load with constant excitation
	2 nd	2.4 Explain effect of varying excitation with constant load.
	3 rd	2.5 Derive torque, power developed(cont)

	4 th	2.5 Derive torque, power developed.
	4	2.6 Explain power angle characteristics of cylindrical rotor motor.
	1 st	2.7 Explain effect of excitation on Armature current and power factor.
		2.8 Explain Hunting & function of Damper Bars.
	2 nd	2.9 Describe method of starting of Synchronous motor.(cont)
6 th		
	3 rd	2.9 Describe method of starting of Synchronous motor.
		2.10 State application of synchronous motor
	4 th	Unit-3: THREE PHASE INDUCTION MOTOR
		3. 1 Explain and derive production of rotating magnetic field.
	1st	3. 2 Explain constructional feature of Squirrel cage and Slip ring induction motor
7 th	2 nd	3. 3 Explain principles of operation of 3-phase Induction motor.
/	3 rd	3. 4 Explain slip speed, slip and slip relation with rotor quantities
	4 th	3. 5 Derive Torque during starting and running and conditions for maximum
		torque. (solve numerical problems) (contd.)
	1 st	3. 5 Derive Torque during starting and running and conditions for maximum
		torque. (solve numerical problems)
	2 nd	3. 6 Derive Torque-slip characteristics
8 th	ard	2.7 Desire relation between full land towns and 1.11
0	3 rd	3. 7 Derive relation between full load torque and starting torque etc. (solve
	- 415	numerical problems).
	4 th	3. 8 Determine the relations between Rotor Copper loss, Rotor output and
		Gross Torque, and relationship of slip with rotor copper loss. (solve
		numerical problems)
	1 st	3. 9 Explain and state Methods of starting and different types of starters
	2 nd	3. 10 Explain speed control by Voltage Control, Rotor resistance control, pole
9 th		changing, frequency control methods.
	3 rd	3. 11 Describe plugging applicable to three phase induction motor
	4 th	3. 12 Describe different types of motor enclosures
	1 st	3. 13 Explain principle of Induction Generator and state its applications
	2 nd	Unit-4:SINGLE PHASE INDUCTION MOTOR.
		4.1 Explain Rotating – field theory of 1-phase induction motor.
10 th	3 rd	4.2 Explain Ferrari's principle.
	3	4.2 Explain Ferrait's principle.
	4 th	4.3 Explain Working principle, Torque speed characteristics, performance
		characteristics and application offollowing single phase motors
		4.3.1 Split phase motor.
	1 st	4.3.2 Capacitor Start motor.
11 th	2 nd	4.3.3 Capacitor start, capacitor run motor
11	3 rd	4.3.4 Permanent capacitor type motor
	4 th	4.3.5 Shaded pole motor
	1 st	4.4 Explain the method to change the direction of rotation of above motors
	2 nd	Unit-5:COMMUTATOR MOTORS
12 th		5.1 Explain construction, working principle, running characteristic and
		application of singlephase series motor (contd.)
	3 rd	5.1 Explain construction, working principle, running characteristic and
	1	application of singlephase series motor.

	4 th	5.2 Explain construction, working principle and application of Universal motors.
		(contd.)
	1 st	5.2 Explain construction, working principle and application of Universal motors.
	2 nd	5.3 Explain working principle of Repulsion start Motor, Repulsion start
13 th		Induction run motor, Repulsion Induction motor.(cont)
15	3 rd	5.3 Explain working principle of Repulsion start Motor, Repulsion start
		Induction run motor, Repulsion Induction motor.
	4 th	Unit-6:SPECIAL ELECTRICAL MACHINE
		6.1 Principle of Stepper motor.
	1 st	6.2 Classification of Stepper motor.
		6.3 Principle of variable reluctant stepper motor.
14 th	2 nd	6.4 Principle of Permanent magnet stepper motor.
	3 rd	6.5 Principle of hybrid stepper motor.
	4 th	6.6 Applications of Stepper motor.
	1 st	Unit-7: THREE PHASE TRANSFORMERS
		7.1 Explain Grouping of winding, Advantages
15 th	2 nd	7.2 Explain parallel operation of the three phase transformers.
-	3 rd	7.3 Explain tap changer (On/Off load tap changing
	4 th	7.4 State maintenance of Transformers

Anuit Kumar Prisagi

Signature of Teaching Faculty

ACADEMIC LESSON PLAN OF WINTER 2022

Discipline:	Semester:	Name of the Teaching Faculty: Amit Kumar Bisoyi
ELECTRICAL	5 [™] Sem	
	Sec B	
Subject:	No. of	Semester From: 15 th Sept. 2022 to 22 nd Dec 2022
ENERGY	days/per	No. of Weeks: 15 weeks
CONVERSION-II	week	
	class	
	allotted:	
	4p/week 1st	II'A AALTERNATOR
	1	Unit-1:ALTERNATOR 1.1 Types of alternator and their constructional features
	2 nd	1.2 Basic working principle of alternator and establish the relation between
1 st	2	speed and frequency
1	3 rd	1.3 Explain terminology in armature winding, and derive expressions for
		winding factors (Pitch factor, Distribution factor).
	4 th	1.4 Explain harmonics, its causes and impact on winding factor.
	1 st	1.5 Derive E.M.F equation. (Solve numerical problems (contd.)
	2 nd	1.5 Derive E.M.F equation. (Solve numerical problems
2 nd	3 rd	1.6 Explain Armature reaction and its effect on emf at different pf of load
_		(contd.)
	4 th	1.6 Explain Armature reaction and its effect on emf at different pf of load.
	1 st	1.7 Draw the vector diagram of loaded alternator. (Solve numerical problems)
	2 nd	1.8 State and explain testing of alternator (open circuit and short circuit
		methods) (Solve numerical problems).(contd.)
3 rd	3 rd	1.8 State and explain testing of alternator (open circuit and short circuit
		methods) (Solve numerical problems).
	4 th	1.9 Determination of voltage regulation of Alternator by direct loading and
		synchronous impedance method
	1 st	1.10 Explain parallel operation of alternator using synchro-scope, dark and
		bright lamp method
	2 nd	1.11 Explain distribution of load by parallel connected alternators
4 th	3 rd	Unit-2:SYNCHRONOUS MOTOR
		2.1 Explain constructional feature of Synchronous Motor.
		2.2 Explain principles of operation, concept of load angle.
	4 th	2.3 Explain effect of varying load with constant excitation(cont)
5 th	1 st	2.3 Explain effect of varying load with constant excitation
	2 nd	2.4 Explain effect of varying excitation with constant load.
	3 rd	2.5 Derive torque, power developed(cont)
	4 th	2.5 Derive torque, power developed.
	4 st	2.6 Explain power angle characteristics of cylindrical rotor motor.
	1 st	2.7 Explain effect of excitation on Armature current and power factor.
	and	2.8 Explain Hunting & function of Damper Bars.
ath	2 nd	2.9 Describe method of starting of Synchronous motor.(cont)
6 th	3 rd	2.9 Describe method of starting of Synchronous motor.
	ath	2.10 State application of synchronous motor
	4 th	Unit-3: THREE PHASE INDUCTION MOTOR
_+h	4 .	3. 1 Explain and derive production of rotating magnetic field.
7 th	1st	3. 2 Explain constructional feature of Squirrel cage and Slip ring induction

		motor.
	2 nd	3. 3 Explain principles of operation of 3-phase Induction motor.
	3 rd	3. 4 Explain slip speed, slip and slip relation with rotor quantities
	4 th	3. 5 Derive Torque during starting and running and conditions for maximum
		torque. (solve numerical problems) (contd.)
	1 st	3. 5 Derive Torque during starting and running and conditions for maximum
		torque. (solve numerical problems)
	2 nd	3. 6 Derive Torque-slip characteristics
	3 rd	3. 7 Derive relation between full load torque and starting torque etc. (solve
8 th		numerical problems).
	4 th	3. 8 Determine the relations between Rotor Copper loss, Rotor output and
		Gross Torque, and relationship of slip with rotor copper loss. (solve
		numerical problems)
	1 st	3. 9 Explain and state Methods of starting and different types of starters
	2 nd	
oth	2	3. 10 Explain speed control by Voltage Control, Rotor resistance control, pole
9 th	3 rd	changing, frequency control methods.
		3. 11 Describe plugging applicable to three phase induction motor
	4 th	3. 12 Describe different types of motor enclosures
	1 st	3. 13 Explain principle of Induction Generator and state its applications
	2 nd	Unit-4:SINGLE PHASE INDUCTION MOTOR.
4 Oth		4.1 Explain Rotating – field theory of 1-phase induction motor.
10 th	3 rd	4.2 Explain Ferrari's principle.
	4 th	4.3 Explain Working principle, Torque speed characteristics, performance
		characteristics and application offollowing single phase motors
	4 ct	4.3.1 Split phase motor.
	1 st	4.3.2 Capacitor Start motor.
11 th	2 nd	4.3.3 Capacitor start, capacitor run motor
	3 rd	4.3.4 Permanent capacitor type motor
	4 th	4.3.5 Shaded pole motor
	1 st	4.4 Explain the method to change the direction of rotation of above motors
	2 nd	Unit-5:COMMUTATOR MOTORS
		5.1 Explain construction, working principle, running characteristic and
12 th	ord	application of singlephase series motor (contd.)
	3 rd	5.1 Explain construction, working principle, running characteristic and
	4 th	application of singlephase series motor.
	4"	5.2 Explain construction, working principle and application of Universal
	1 st	motors. (contd.)
	1	5.2 Explain construction, working principle and application of Universal
	2 nd	motors.
	2	5.3 Explain working principle of Repulsion start Motor, Repulsion start
13 th	ard	Induction run motor, Repulsion Induction motor.(cont)
	3 rd	5.3 Explain working principle of Repulsion start Motor, Repulsion start
	-+h	Induction run motor, Repulsion Induction motor.
	4 th	Unit-6:SPECIAL ELECTRICAL MACHINE
		6.1 Principle of Stepper motor.
	1 st	6.2 Classification of Stepper motor.
14 th		6.3 Principle of variable reluctant stepper motor.
	2 nd	6.4 Principle of Permanent magnet stepper motor.

	3 rd	6.5 Principle of hybrid stepper motor.
	4 th	6.6 Applications of Stepper motor.
	1 st	Unit-7: THREE PHASE TRANSFORMERS
		7.1 Explain Grouping of winding, Advantages
15 th	2 nd	7.2 Explain parallel operation of the three phase transformers.
	3 rd	7.3 Explain tap changer (On/Off load tap changing
	4 th	7.4 State maintenance of Transformers

Anuit Kumar Prisogi

Signature of Teaching Faculty