ACADEMIC LESSON PLAN OF WINTER 2022

Discipline: ELECTRICAL	$\begin{aligned} & \text { Semester: 3rdSem } \\ & \text { (SEC-B) } \end{aligned}$	Name of the Teaching Faculty: ANANYA SHUBHADARSINEE
Subject:TH-1 NETWORK THEORY)	No. of days/per week class allotted: $4 p /$ week No. Tutorial period 1p/week	Semester From: 15 th Sept. 2022 to 22 ${ }^{\text {nd }}$ Dec 202D No. of Weeks: 15 weeks
$1^{\text {st }}$	$1^{\text {st }}$	1.MAGNETIC CIRCUITS 1.1 Introduction
	$2^{\text {nd }}$	1.2 Magnetizing force, Intensity, MMF, flux and their relations
	$3{ }^{\text {rd }}$	1.3 Permeability, reluctance and permeance
	$4^{\text {th }}$	1.4 Analogy between electric and Magnetic Circuits
	$5^{\text {th }}$	Tutorial
$2^{\text {nd }}$	$1^{\text {st }}$	1.5 B-H Curve
	$2^{\text {nd }}$	1.6 Series \& parallel magnetic circuit.
	$3{ }^{\text {rd }}$	1.7 Hysteresis loop
	$4^{\text {th }}$	2.COUPLED CIRCUITS: 2. 1 Self Inductance and Mutual Inductance
	$5^{\text {th }}$	Tutorial
$3{ }^{\text {rd }}$	$1^{\text {st }}$	2. 2 Conductively coupled circuit and mutual impedance 2.3 Dot convention 2. 4 Coefficient of coupling
	$2^{\text {nd }}$	2.5 Series and parallel connection of coupled inductors.
	$3{ }^{\text {rd }}$	2.6 Solve numerical problems (Contd.)
	$4^{\text {th }}$	2.6 Solve numerical problems
	$5^{\text {th }}$	Tutorial
$4^{\text {th }}$	$1^{\text {st }}$	3. CIRCUIT ELEMENTS AND ANALYSIS: 3.1 Active, Passive, Unilateral \& bilateral, Linear \&Non linear elements
	$2^{\text {nd }}$	3.2 Mesh Analysis, Mesh Equations by inspection
	$3{ }^{\text {rd }}$	3.3 Super mesh Analysis
	$4^{\text {th }}$	3.4 Nodal Analysis, Nodal Equations by inspection
	$5^{\text {th }}$	Tutorial
$5^{\text {th }}$	$1^{\text {st }}$	3.5 Super node Analysis. 3.6 Source Transformation Technique
	$2^{\text {nd }}$	3.7 Solve numerical problems (With Independent Sources Only)
	$3{ }^{\text {rd }}$	4. NETWORK THEOREMS: 4.1 Star to delta and delta to star transformation
	$4^{\text {th }}$	4.2 Super position Theorem
	$5^{\text {th }}$	Tutorial
$6^{\text {th }}$	$1^{\text {st }}$	4.3 Thevenin's Theorem
	$2^{\text {nd }}$	4.4 Norton's Theorem
	$3{ }^{\text {rd }}$	4.5 Maximum power Transfer Theorem.
	$4^{\text {th }}$	4.6 Solve numerical problems (With Independent Sources Only)(Contd.)
	$5^{\text {th }}$	Tutorial
$7^{\text {th }}$	1st	4.6 Solve numerical problems (With Independent Sources Only)(Contd.)
	$2^{\text {nd }}$	4.6 Solve numerical problems (With Independent Sources Only)
	$3{ }^{\text {rd }}$	5. AC CIRCUIT AND RESONANCE: 5.1 A.C. through R-L, R-C \& R-L-C Circuit
	$4^{\text {th }}$	5.2 Solution of problems of A.C. through R-L, R-C \& R-L-C series Circuit by complex algebra method.
	$5^{\text {th }}$	Tutorial
$8^{\text {th }}$	$1^{\text {st }}$	5.3 Solution of problems of A.C. through R-L, R-C \& R-L-C parallel \& Composite Circuits
	$2^{\text {nd }}$	5.4 Power factor \& power triangle.
	$3{ }^{\text {rd }}$	5.5 Deduce expression for active, reactive, apparent power.
	$4^{\text {th }}$	5.6 Derive the resonant frequency of series resonance and parallel resonance circuit
	$5^{\text {th }}$	Tutorial

9th	$1^{\text {st }}$	5.7 Define Bandwidth, Selectivity \& Q-factor in series circuit.
	$2^{\text {nd }}$	5.8 Solve numerical problems
	$3{ }^{\text {rd }}$	6. POLYPHASE CIRCUIT 6.1 Concept of poly-phase system and phase sequence
	$4^{\text {th }}$	6.2 Relation between phase and line quantities in star \& delta connection
	$5^{\text {th }}$	Tutorial
$10^{\text {th }}$	$1^{\text {st }}$	6.3 Power equation in 3-phase balanced circuit
	$2^{\text {nd }}$	6.4 Solve numerical problems
	$3{ }^{\text {rd }}$	6.5 Measurement of 3-phase power by two wattmeter method.
	$4^{\text {th }}$	6.6 Solve numerical problems.
	$5^{\text {th }}$	Tutorial
$11^{\text {th }}$	$1{ }^{\text {st }}$	7. TRANSIENTS 7.1 Steady state \& transient state response. (Contd.)
	$2^{\text {nd }}$	7.1 Steady state \& transient state response
	$3{ }^{\text {rd }}$	7.2 Response to R-L, R-C \& RLC circuit under DC condition. (Contd.)
	$4^{\text {th }}$	7.2 Response to R-L, R-C \& RLC circuit under DC condition.
	$5^{\text {th }}$	Tutorial
$12^{\text {th }}$	$1{ }^{\text {st }}$	7.3 Solve numerical problems(Contd.)
	$2^{\text {nd }}$	7.3 Solve numerical problems
	$3{ }^{\text {rd }}$	8. TWO-PORT NETWORK 8.1 Open circuit impedance (z) parameters
	$4^{\text {th }}$	8.2 Short circuit admittance (y) parameters
	$5^{\text {th }}$	Tutorial
$13^{\text {th }}$	$1^{\text {st }}$	8.3 Transmission (ABCD) parameters
	$2^{\text {nd }}$	8.4 Hybrid (h) parameters.
	$3{ }^{\text {rd }}$	8.5 Inter relationships of different parameters.
	$4^{\text {th }}$	8.6 T and π representation.
	$5^{\text {th }}$	Tutorial
$14^{\text {th }}$	$1^{\text {st }}$	8.7 Solve numerical problems
	$2^{\text {nd }}$	8.7 Solve numerical problems
	$3{ }^{\text {rd }}$	9. FILTERS: 9.1 Define filter 9.2 Classification of pass Band, stop Band and cut-off frequency
	$4^{\text {th }}$	9.3 Classification of filters. 9.4 Constant - K low pass filter. 9.5 Constant - K high pass filter.
	$5^{\text {th }}$	Tutorial
$15^{\text {th }}$	$1{ }^{\text {st }}$	9.6 Constant - K Band pass filter.
	$2^{\text {nd }}$	9.7 Constant - K Band elimination filter.
	$3{ }^{\text {rd }}$	9.8 Solve Numerical problems
	$4^{\text {th }}$	9.8 Solve Numerical problems
	$5^{\text {th }}$	Tutorial

ACADEMIC LESSON PLAN OF WINTER 2022

Discipline: ELECTRICAL	Semester: $3^{\text {rd }}$ Sem (SEC-A)	Name of the Teaching Faculty: ANANYA SHUBHADARSINEE
Subject: TH-1 (CIRCUIT \& NETWORK THEORY)	No. of days/per week class allotted: 4p/week No. Tutorial period 1p/week	Semester From: 15 th Sept. 2022 to $22^{\text {nd }}$ Dec 202D No. of Weeks: 15 weeks
$1^{\text {st }}$	$1^{\text {st }}$	1.MAGNETIC CIRCUITS 1.1 Introduction
	$2^{\text {nd }}$	1.2 Magnetizing force, Intensity, MMF, flux and their relations
	$3{ }^{\text {rd }}$	1.3 Permeability, reluctance and permeance
	$4^{\text {th }}$	1.4 Analogy between electric and Magnetic Circuits
	$5^{\text {th }}$	Tutorial
$2^{\text {nd }}$	$1^{\text {st }}$	1.5 B-H Curve
	$2^{\text {nd }}$	1.6 Series \& parallel magnetic circuit.
	$3{ }^{\text {rd }}$	1.7 Hysteresis loop
	$4^{\text {th }}$	2.COUPLED CIRCUITS: 2. 1 Self Inductance and Mutual Inductance
	$5^{\text {th }}$	Tutorial
$3{ }^{\text {rd }}$	$1^{\text {st }}$	2. 2 Conductively coupled circuit and mutual impedance 2.3 Dot convention 2. 4 Coefficient of coupling
	$2^{\text {nd }}$	2.5 Series and parallel connection of coupled inductors.
	$3{ }^{\text {rd }}$	2.6 Solve numerical problems (Contd.)
	$4^{\text {th }}$	2.6 Solve numerical problems
	$5^{\text {th }}$	Tutorial
$4^{\text {th }}$	$1^{\text {st }}$	3. CIRCUIT ELEMENTS AND ANALYSIS: 3.1 Active, Passive, Unilateral \& bilateral, Linear \&Non linear elements
	$2^{\text {nd }}$	3.2 Mesh Analysis, Mesh Equations by inspection
	$3{ }^{\text {rd }}$	3.3 Super mesh Analysis
	$4^{\text {th }}$	3.4 Nodal Analysis, Nodal Equations by inspection
	$5^{\text {th }}$	Tutorial
$5^{\text {th }}$	$1^{\text {st }}$	3.5 Super node Analysis. 3.6 Source Transformation Technique
	$2^{\text {nd }}$	3.7 Solve numerical problems (With Independent Sources Only)
	$3{ }^{\text {rd }}$	4. NETWORK THEOREMS: 4.1 Star to delta and delta to star transformation
	$4^{\text {th }}$	4.2 Super position Theorem
	$5^{\text {th }}$	Tutorial
$6^{\text {th }}$	$1^{\text {st }}$	4.3 Thevenin's Theorem
	$2^{\text {nd }}$	4.4 Norton's Theorem
	$3{ }^{\text {rd }}$	4.5 Maximum power Transfer Theorem.
	$4^{\text {th }}$	4.6 Solve numerical problems (With Independent Sources Only)(Contd.)
	$5^{\text {th }}$	Tutorial
$7^{\text {th }}$	1st	4.6 Solve numerical problems (With Independent Sources Only)(Contd.)
	$2^{\text {nd }}$	4.6 Solve numerical problems (With Independent Sources Only)
	$3{ }^{\text {rd }}$	5. AC CIRCUIT AND RESONANCE: 5.1 A.C. through R-L, R-C \& R-L-C Circuit
	$4^{\text {th }}$	5.2 Solution of problems of A.C. through R-L, R-C \& R-L-C series Circuit by complex algebra method.
	$5^{\text {th }}$	Tutorial
$8^{\text {th }}$	$1^{\text {st }}$	5.3 Solution of problems of A.C. through R-L, R-C \& R-L-C parallel \& Composite Circuits
	$2^{\text {nd }}$	5.4 Power factor \& power triangle.
	$3{ }^{\text {rd }}$	5.5 Deduce expression for active, reactive, apparent power.
	$4^{\text {th }}$	5.6 Derive the resonant frequency of series resonance and parallel resonance circuit
	$5^{\text {th }}$	Tutorial

9th	$1^{\text {st }}$	5.7 Define Bandwidth, Selectivity \& Q-factor in series circuit.
	$2^{\text {nd }}$	5.8 Solve numerical problems
	$3{ }^{\text {rd }}$	6. POLYPHASE CIRCUIT 6.1 Concept of poly-phase system and phase sequence
	$4^{\text {th }}$	6.2 Relation between phase and line quantities in star \& delta connection
	$5^{\text {th }}$	Tutorial
$10^{\text {th }}$	$1^{\text {st }}$	6.3 Power equation in 3-phase balanced circuit
	$2^{\text {nd }}$	6.4 Solve numerical problems
	$3{ }^{\text {rd }}$	6.5 Measurement of 3-phase power by two wattmeter method.
	$4^{\text {th }}$	6.6 Solve numerical problems.
	$5^{\text {th }}$	Tutorial
$11^{\text {th }}$	$1{ }^{\text {st }}$	7. TRANSIENTS 7.1 Steady state \& transient state response. (Contd.)
	$2^{\text {nd }}$	7.1 Steady state \& transient state response
	$3{ }^{\text {rd }}$	7.2 Response to R-L, R-C \& RLC circuit under DC condition. (Contd.)
	$4^{\text {th }}$	7.2 Response to R-L, R-C \& RLC circuit under DC condition.
	$5^{\text {th }}$	Tutorial
$12^{\text {th }}$	$1{ }^{\text {st }}$	7.3 Solve numerical problems(Contd.)
	$2^{\text {nd }}$	7.3 Solve numerical problems
	$3{ }^{\text {rd }}$	8. TWO-PORT NETWORK 8.1 Open circuit impedance (z) parameters
	$4^{\text {th }}$	8.2 Short circuit admittance (y) parameters
	$5^{\text {th }}$	Tutorial
$13^{\text {th }}$	$1^{\text {st }}$	8.3 Transmission (ABCD) parameters
	$2^{\text {nd }}$	8.4 Hybrid (h) parameters.
	$3{ }^{\text {rd }}$	8.5 Inter relationships of different parameters.
	$4^{\text {th }}$	8.6 T and π representation.
	$5^{\text {th }}$	Tutorial
$14^{\text {th }}$	$1^{\text {st }}$	8.7 Solve numerical problems
	$2^{\text {nd }}$	8.7 Solve numerical problems
	$3{ }^{\text {rd }}$	9. FILTERS: 9.1 Define filter 9.2 Classification of pass Band, stop Band and cut-off frequency
	$4^{\text {th }}$	9.3 Classification of filters. 9.4 Constant - K low pass filter. 9.5 Constant - K high pass filter.
	$5^{\text {th }}$	Tutorial
$15^{\text {th }}$	$1{ }^{\text {st }}$	9.6 Constant - K Band pass filter.
	$2^{\text {nd }}$	9.7 Constant - K Band elimination filter.
	$3{ }^{\text {rd }}$	9.8 Solve Numerical problems
	$4^{\text {th }}$	9.8 Solve Numerical problems
	$5^{\text {th }}$	Tutorial

Signature of Teaching Faculty

